3D Carbon Microelectrodes with Bio-Functionalized Graphene for Electrochemical Biosensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microfabrication of 3D Carbon Microelectrodes
2.2. Reduced Graphene Oxide (RGO) Synthesis
2.3. Biosensor Preparation
2.4. Electrochemical Biosensing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Turner, A.P.F. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Barsan, M.M.; Ghica, M.E.; Brett, C.M.A. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: A review. Anal. Chim. Acta 2015, 881, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Mazzocchi, R.A. Medical sensors–defining a pathway to commercialization. ACS Sens. 2016, 1, 1167–1170. [Google Scholar] [CrossRef]
- Perreault, F.; de Faria, A.F.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015, 44, 5861–5896. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.P.; Koucianos, E. Biosensors: A tutorial review. IEEE Potentials 2006, 25, 35–40. [Google Scholar] [CrossRef]
- Turner, A. Biosensors: Then and now. Trends Biotechnol. 2013, 31, 119–120. [Google Scholar] [CrossRef] [PubMed]
- Burke, A.M.; Gorodetsky, A.A. Electrochemical sensors: Taking charge of detection. Nat. Chem. 2012, 4, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.N.; Vij, V.; Kemp, K.C.; Kim, K.S. Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 2016, 10, 46–80. [Google Scholar] [CrossRef] [PubMed]
- McCreery, R.L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef] [PubMed]
- Uslu, B.; Ozkan, S. Electroanalytical application of carbon-based electrodes to the pharmaceuticals. Anal. Lett. 2007, 40, 817–853. [Google Scholar] [CrossRef]
- Yang, C.; Denno, M.E.; Pyakurel, P.; Venton, B.J. Analytica chimica acta recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Anal. Chim. Acta 2015, 887, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Greiner, F.; Quednau, S.; Dassinger, F.; Sarwar, R.; Schlaak, H.F.; Guttmann, M.; Meyer, P. Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration. J. Micromech. Microeng. 2013, 23, 025018. [Google Scholar] [CrossRef]
- Piotter, V.; Benzler, T.; Gietzelt, T.; Ruprecht, R.; Hausselt, J. Micro powder injection molding. Adv. Eng. Mater. 2000, 2, 639–642. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Yang, C.; Hsu, W.; Lin, L. 3D-printed microelectronics for integrated circuitry and passive wireless sensors. Microsyst. Nanoeng. 2015, 1, 15013. [Google Scholar] [CrossRef]
- Hart, A.; Taylor, H. 2D and 3D growth of carbon nanotubes on substrates, from nanometre to millimetre scales. Int. J. Nanomanuf. 2007, 1, 701–709. [Google Scholar] [CrossRef]
- Choi, J.-W.; Rosset, S.; Niklaus, M.; Adleman, J.R.; Shea, H.; Psaltis, D. 3-Dimensional electrode patterning within a microfluidic channel using metal ion implantation. Lab Chip 2010, 10, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Hemanth, S.; Caviglia, C.; Amato, L.; Anhøj, T.A.; Heiskanen, A.; Emnéus, J.; Keller, S.S. Pyrolytic 3D carbon microelectrodes for electrochemistry. ECS Trans. 2016, 72, 117–124. [Google Scholar] [CrossRef]
- Dey, R.S.; Hjuler, H.A.; Chi, Q. Approaching the theoretical capacitance of graphene through copper foam integrated three-dimensional graphene networks. J. Mater. Chem. A 2015, 3, 6324–6329. [Google Scholar] [CrossRef]
- Wang, C.; Madou, M. From MEMS to NEMS with carbon. Biosens. Bioelectron. 2005, 20, 2181–2187. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Duarte, R. SU-8 photolithography as a toolbox for carbon MEMS. Micromachines 2014, 5, 766–782. [Google Scholar] [CrossRef]
- Falcao, E.H.; Wudl, F. Carbon allotropes: beyond graphite and diamond. J. Chem. Technol. Biotechnol. 2007, 82, 524–531. [Google Scholar] [CrossRef]
- Amato, L.; Heiskanen, A.; Caviglia, C.; Shah, F.; Zór, K.; Skolimowski, M.; Madou, M.; Gammelgaard, L.; Hansen, R.; Seiz, E.G.; et al. 3D-carbon scaffolds induce spontaneous differentiation of human neural stem cells and facilitate real-time dopamine detection. Adv. Funct. Mater. 2014, 24, 7042–7052. [Google Scholar] [CrossRef]
- Lee, J.A.; Hwang, S.; Kwak, J.; Park, S.I.; Lee, S.S.; Lee, K.-C. An electrochemical impedance biosensor with aptamer-modified pyrolyzed carbon electrode for label-free protein detection. Sens. Actuators B Chem. 2008, 129, 372–379. [Google Scholar] [CrossRef]
- Halder, A.; Zhang, M.; Chi, Q. Graphene-metal oxide hybrid nanostructured materials for electrocatalytic sensing and sustainable energy storage. Rev. Adv. Sci. Eng. 2016, 5, 4–31. [Google Scholar] [CrossRef]
- Buzaglo, M.; Bar, I.P.; Varenik, M.; Shunak, L.; Pevzner, S.; Regev, O. Graphite-to-graphene: Total conversion. Adv. Mater. 2016, 29, 1603528. [Google Scholar] [CrossRef] [PubMed]
- Morales-Narváez, E.; Baptista-Pires, L.; Zamora-Gálvez, A.; Merkoçi, A. Graphene-based biosensors: Going simple. Adv. Mater. 2016, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hemanth, S.; Caviglia, C.; Keller, S.S. Suspended 3D pyrolytic carbon microelectrodes for electrochemistry. Carbon 2017, 121, 226–234. [Google Scholar] [CrossRef]
- Halder, A.; Zhang, M.; Chi, Q. Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms. Biosens. Bioelectron. 2017, 87, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Hou, C.; Halder, A.; Chi, Q. Ultralight, flexible, and semi-transparent metal oxide papers for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2017, 9, 3922–3930. [Google Scholar] [CrossRef] [PubMed]
- Chi, Q.; Han, S.; Halder, A.; Zhu, N.; Ulstrup, J. Graphene-Polymer-Enzyme Hybrid Nanomaterials for Biosensors. U.S. Patent WO2016083204 A1, 2 June 2016. [Google Scholar]
Blood Sample | Glucose Concentration Measured with 3D Carbon Electrodes | Glucose Concentration Measured with Commercial Device | RSD |
---|---|---|---|
Sample 1 | 4.5 mM | 4.8 mM | 3.1% |
Sample 2 | 5.9 mM | 6.1 mM | 4.7% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemanth, S.; Halder, A.; Caviglia, C.; Chi, Q.; Keller, S.S. 3D Carbon Microelectrodes with Bio-Functionalized Graphene for Electrochemical Biosensing. Biosensors 2018, 8, 70. https://doi.org/10.3390/bios8030070
Hemanth S, Halder A, Caviglia C, Chi Q, Keller SS. 3D Carbon Microelectrodes with Bio-Functionalized Graphene for Electrochemical Biosensing. Biosensors. 2018; 8(3):70. https://doi.org/10.3390/bios8030070
Chicago/Turabian StyleHemanth, Suhith, Arnab Halder, Claudia Caviglia, Qijin Chi, and Stephan Sylvest Keller. 2018. "3D Carbon Microelectrodes with Bio-Functionalized Graphene for Electrochemical Biosensing" Biosensors 8, no. 3: 70. https://doi.org/10.3390/bios8030070
APA StyleHemanth, S., Halder, A., Caviglia, C., Chi, Q., & Keller, S. S. (2018). 3D Carbon Microelectrodes with Bio-Functionalized Graphene for Electrochemical Biosensing. Biosensors, 8(3), 70. https://doi.org/10.3390/bios8030070