Lectin- and Saccharide-Functionalized Nano-Chemiresistor Arrays for Detection and Identification of Pathogenic Bacteria Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Functionalized SWNT Devices
2.3. Bacteria Growth
2.4. MS2 Phage and Influenza H1N1 Virus Preparation
2.5. Artificial Matrices Preparation
2.6. Detection
3. Results and Discussion
3.1. Device Reproducibility
3.2. Validation Studies
3.3. Device Sensitivity
3.4. Identification of Infection-Type
3.4.1. Response Profiles
3.4.2. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.; Roy, S.L.; Griffin, P.M. Foodborne Illness Acquired in the United States—Major Pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of Escherichia coli O157: H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 2005, 11, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Heron, M. Deaths: Leading causes for 2015. National vital statistics reports: From the Centers for Disease Control and Prevention, National Center for Health Statistics. Natl. Vital Stat. Syst. 2017, 66, 1–96. [Google Scholar]
- CDC. Antibiotic Resistance Threats in the United States; Centers for Disease Control and Prevention, US Department of Health and Human Services: Washington, DC, USA, 2013.
- President’s Council of Advisors on Science and Technology (PCAST). Report to the President on Combating Antibiotic Resistance; PCAST: Washington, DC, USA, 2014.
- CDC. Antibiotic Use in the United States, 2017: Progress and Opportunities; Centers for Disease Control and Prevention, US Department of Health and Human Services: Washington, DC, USA, 2017.
- Saucedo, N.M.; Mulchandani, A. Sensing of biological contaminants: Pathogens and toxins. In Biosensors for Sustainable Food—New Opportunities and Technical Challenges; Scognamiglio, V., Rea, G., Arduini, F., Palleschi, G., Eds.; Elsvier: Cambridge, MA, USA, 2016; Volume 24, pp. 73–89. ISBN 978-0-444-63579-2. [Google Scholar]
- Safarik, I.; Safarikova, M.; Forsythe, S.J. The application of magnetic separations in applied microbiology. J. Appl. Microbiol. 1995, 78, 575–585. [Google Scholar] [CrossRef]
- Lazcka, O.; Del Campo, F.J.; Munoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217. [Google Scholar] [CrossRef] [PubMed]
- Ozalp, V.C.; Bayramoglu, G.; Erdem, Z.; Arica, M.Y. Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core–shell type magnetic separation. Anal. Chim. Acta 2015, 853, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ye, Z.; Si, C.; Ying, Y. Monitoring of Escherichia coli O157: H7 in food samples using lectin based surface plasmon resonance biosensor. Food Chem. 2013, 136, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Carey, J.R.; Suslick, K.S.; Hulkower, K.I.; Imlay, J.A.; Imlay, K.R.C.; Ingison, C.K.; Ponder, J.B.; Sen, A.; Wittrig, A.E. Rapid identification of bacteria with a disposable colorimetric sensing array. J. Am. Chem. Soc. 2011, 133, 7571–7576. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dong, X.; Liu, Y.; Li, L.J.; Chen, P. Graphene-based biosensors for detection of bacteria and their metabolic activities. J. Mater. Chem. 2011, 21, 12358–12362. [Google Scholar] [CrossRef]
- Ramnani, P.; Saucedo, N.M.; Mulchandani, A. Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 2016, 143, 85–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lis, H.; Sharon, N. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 1998, 98, 637–674. [Google Scholar] [CrossRef] [PubMed]
- Knirel, Y.A.; Valvano, M.A. Bacterial Liposaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells; Springer Science and Business Media: New York, NY, USA, 2011. [Google Scholar]
- Mukhopadhyay, B.; Martins, M.B.; Karamanska, R.; Russell, D.A.; Field, R.A. Bacterial detection using carbohydrate-functionalised CdS quantum dots: A model study exploiting E. coli recognition of mannosides. Tetrahedron Lett. 2009, 50, 886–889. [Google Scholar] [CrossRef]
- Mader, A.; Gruber, K.; Castelli, R.; Hermann, B.A.; Seeberger, P.H.; Rädler, J.O.; Leisner, M. Discrimination of Escherichia coli strains using glycan cantilever array sensors. Nano Lett. 2011, 12, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Ramnani, P.; Gao, Y.; Ozsoz, M.; Mulchandani, A. Electronic detection of microRNA at attomolar level with high specificity. Anal. Chem. 2013, 85, 8061–8064. [Google Scholar] [CrossRef] [PubMed]
- Brooks, T.; Keevil, C.W. A simple artificial urine for the growth of urinary pathogens. Lett. Appl. Microbial. 1997, 24, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Tlili, C.; Myung, N.V.; Shetty, V.; Mulchandani, A. Label-free, chemiresistor immunosensor for stress biomarker cortisol in saliva. Biosens. Bioelectron. 2011, 26, 4382–4386. [Google Scholar] [CrossRef] [PubMed]
- Cole, H.B.; Ezzell, J.W.; Keller, K.F.; Doyle, R.J. Differentiation of Bacillus anthracis and other Bacillus species by lectins. J. Clin. Microbial. 1984, 19, 48–53. [Google Scholar]
- Serra, B.; Gamella, M.; Reviejo, A.J.; Pingarron, J.M. Lectin-modified piezoelectric biosensors for bacteria recognition and quantification. Anal. Bioanal. Chem. 2008, 391, 1853–1860. [Google Scholar] [CrossRef] [PubMed]
- Zebda, N.; Bailly, M.; Brown, S.; Doré, J.F.; Berthier-Vergnes, O. Expression of PNA-binding sites on specific glycoproteins by human melanoma cells is associated with a high metastatic potential. J. Cell. Biochem. 1994, 54, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Swamy, M.J.; Gupta, D.; Mahanta, S.K.; Surolia, A. Further characterization of the saccharide specificity of peanut (Arachis hypogaea) agglutinin. Carbohydr. Res. 1991, 213, 59–67. [Google Scholar] [CrossRef]
- Safina, G.; van Lier, M.; Danielsson, B. Flow-injection assay of the pathogenic bacteria using lectin-based quartz crystal microbalance biosensor. Talanta 2008, 77, 468–472. [Google Scholar] [CrossRef]
- Ko, S.M.; Kwon, J.; Vaidya, B.; Choi, J.S.; Lee, H.M.; Oh, M.J.; Bae, H.J.; Cho, S.Y.; Oh, K.S.; Kim, D. Development of Lectin-Linked Immunomagnetic Separation for the Detection of Hepatitis A Virus. Viruses 2014, 6, 1037–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, H.; Winter, H.C.; Van Damme, E.J.; Peumans, W.J.; Misaki, A.; Goldstein, I.J. Carbohydrate binding properties of banana (Musa acuminata) lectin. FEBS J. 2001, 268, 2609–2615. [Google Scholar] [CrossRef] [Green Version]
- Pace, C.N.; Huyghues-Despointes, B.M.P.; Fu, H.; Takano, K.; Scholtz, J.M.; Grimsley, G.R. Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins. Protein Sci. 2010, 19, 929–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tlili, C.; Badhulika, S.; Tran, T.T.; Lee, I.; Mulchandani, A. Affinity chemiresistor sensor for sugars. Talanta 2014, 128, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Lavine, B.K.; Davidson, C.E. Classification and Pattern Recognition. In Practical Guide to Chemometrics, 2nd ed.; Gemperline, P.J., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 339–374. ISBN 1-57444-783-1. [Google Scholar]
- Jacobsen, S.M.; Stickler, D.J.; Mobley, H.L.T.; Shirtliff, M.E. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbial. Rev. 2008, 21, 26–59. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saucedo, N.M.; Gao, Y.; Pham, T.; Mulchandani, A. Lectin- and Saccharide-Functionalized Nano-Chemiresistor Arrays for Detection and Identification of Pathogenic Bacteria Infection. Biosensors 2018, 8, 63. https://doi.org/10.3390/bios8030063
Saucedo NM, Gao Y, Pham T, Mulchandani A. Lectin- and Saccharide-Functionalized Nano-Chemiresistor Arrays for Detection and Identification of Pathogenic Bacteria Infection. Biosensors. 2018; 8(3):63. https://doi.org/10.3390/bios8030063
Chicago/Turabian StyleSaucedo, Nuvia M., Yingning Gao, Tung Pham, and Ashok Mulchandani. 2018. "Lectin- and Saccharide-Functionalized Nano-Chemiresistor Arrays for Detection and Identification of Pathogenic Bacteria Infection" Biosensors 8, no. 3: 63. https://doi.org/10.3390/bios8030063
APA StyleSaucedo, N. M., Gao, Y., Pham, T., & Mulchandani, A. (2018). Lectin- and Saccharide-Functionalized Nano-Chemiresistor Arrays for Detection and Identification of Pathogenic Bacteria Infection. Biosensors, 8(3), 63. https://doi.org/10.3390/bios8030063