Electrochemical Sensors Based on Screen-Printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Electrochemical Measurements
2.3. Solutions’ Preparation
2.4. Characterization of Modified Electrodes
2.5. Electrodes Modifications by Dropcasting
2.6. Acetic Acid Detection Experiments
3. Result and Discussion
3.1. Electrode Modification by Dropcast Deposition
3.2. Characterization of the Modified Electrodes
3.3. Acetic Acid Detection
4. Conclusions
Supplementary Materials
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pind, P.F.; Angelidaki, I.; Ahring, B.K. Dynamics of the anaerobic process: Effects of volatile fatty acids. Biotechnol. Bioeng. 2003, 82, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Guo, Z.; Yang, C.; Kong, F.; Liu, W.; Wang, A. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: Effect of feedstock proportion. J. Biotechnol. 2013, 168, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Appels, L.; Assche, A.V.; Willems, K.; Degrève, J.; Impe, J.V.; Dewil, R. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresour. Technol. 2011, 102, 4124–4130. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Kim, N.-J.; Kang, J.; Jeong, C. Biomass-Derived volatile fatty acid platform for fuels and chemicals. Biotechnol. Bioproc. Eng. 2010, 15, 1–10. [Google Scholar] [CrossRef]
- Greetham, D. Presence of low concentrations of acetic acid improves fermentations using saccharomyces cerevisiae. J. Bioprocess. Biotech. 2014, 5, 192. [Google Scholar]
- Lahav, O.; Morgan, B.E. Titration methodologies for monitoring of anaerobic digestion in developing countries—A review. J. Chem. Technol. Biotechnol. 2004, 79, 1331–1341. [Google Scholar] [CrossRef]
- Franke-Whittle, I.H.; Walter, A.; Ebner, C.; Insam, H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. 2014, 34, 2080–2089. [Google Scholar] [CrossRef] [PubMed]
- Lahav, O.; Morgan, B.E.; Loewenthal, R.E. Rapid, simple, and accurate method for measurement of VFA and carbonate alkalinity in anaerobic reactors. Environ. Sci. Technol. 2002, 36, 2736–2741. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yuan, L.; Ye, T.; Qiu, S.; Zhu, X.; Torimoto, Y.; Yamamoto, M.; Li, Q. Effects of current upon hydrogen production from electrochemical catalytic reforming of acetic acid. Int. J. Hydrogen Energy 2009, 34, 1760–1770. [Google Scholar] [CrossRef]
- Barbier, J., Jr.; Delanoë, F.; Jabouille, F.; Duprez, D.; Blanchard, G.; Isnard, P. Total oxidation of acetic acid in aqueous solutions over noble metal catalysts. J. Catal. 1998, 177, 378–385. [Google Scholar] [CrossRef]
- Nonaka, H.; Matsumura, Y. Electrochemical oxidation of carbon monoxide, methanol, formic acid, ethanol, and acetic acid on a platinum electrode under hot aqueous conditions. J. Electroanal. Chem. 2002, 520, 101–110. [Google Scholar] [CrossRef]
- Hoang, T.M.C.; Geerdink, B.; Sturm, J.M.; Lefferts, L.; Seshan, K. Steam reforming of acetic acid—A major component in the volatiles formed during gasification of humin. Appl. Catal. B Environ. 2015, 163, 74–82. [Google Scholar] [CrossRef]
- Nogueira, F.G.E.; Assaf, P.G.M.; Carvalho, H.W.P.; Assaf, E.M. Catalytic steam reforming of acetic acid as a model compound of bio-oil. Appl. Catal. B Environ. 2014, 160–161, 188–199. [Google Scholar] [CrossRef]
- Gaberkorn, A.A.; Popkova, I.A.; Stuzhin, P.A.; Ercolani, C. Study of basic properties of tert-butyl-substituted tribenzo(1,2,5-thiadiazolo)porphyrazines. Russ. J. Gen. Chem. 2006, 76, 1494–1503. [Google Scholar] [CrossRef]
- Stuzhin, P.A. Azaporphyrins and phthalocyanines as multicentre conjugated ampholites. J. Porphyr. Phthalocyanines 1999, 03, 500–513. [Google Scholar] [CrossRef]
- Trevin, S.; Bedioui, F.; Guadalupe Gomez Villegas, M.; Bied-Charreton, C. Electropolymerized nickel macrocyclic complex-based films: Design and electrocatalytic application. J. Mater. Chem. 1997, 7, 923–928. [Google Scholar] [CrossRef]
- Seelan, S.; Sinha, A.K.; Srinivas, D.; Sivasanker, S. Spectroscopic investigation and catalytic activity of copper(ii) phthalocyanine encapsulated in zeolite y. J. Mol. Catal. A Chem. 2000, 157, 163–171. [Google Scholar] [CrossRef]
- Zagal, J.H.; Griveau, S.; Silva, J.F.; Nyokong, T.; Bedioui, F. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord. Chem. Rev. 2010, 254, 2755–2791. [Google Scholar] [CrossRef]
- Matemadombo, F.; Apetrei, C.; Nyokong, T.; Rodríguez-Méndez, M.L.; de Saja, J.A. Comparison of carbon screen-printed and disk electrodes in the detection of antioxidants using copc derivatives. Sens. Actuators B Chem. 2012, 166–167, 457–466. [Google Scholar] [CrossRef]
- Bedioui, F.; Devynck, J.; Bied-Charreton, C. Immobilization of metalloporphyrins in electropolymerized films: Design and applications. Accounts Chem. Res. 1995, 28, 30–36. [Google Scholar] [CrossRef]
- Arrieta, A.; Rodriguez-Mendez, M.L.; de Saja, J.A. Langmuir–Blodgett film and carbon paste electrodes based on phthalocyanines as sensing units for taste. Sens. Actuators B Chem. 2003, 95, 357–365. [Google Scholar] [CrossRef]
- Lever, A.B.P.; Milaeva, E.R.; Speier, G. Phthalocyanines, Properties and Application; Leznoff, C.C., Lever, A.B.P., Eds.; VCH Publishers: New York, NY, USA, 1993; Volume 3. [Google Scholar]
- Li, H.; Guarr, T.F. Formation of electronically conductive thin films of metal phthalocyanines via electropolymerization. J. Chem. Soc. Chem. Commun. 1989, 832–834. [Google Scholar] [CrossRef]
- Bıyıklıoğlu, Z.; Çakır, V.; Demir, F.; Koca, A. New electropolymerizable metal-free and metallophthalocyanines bearing {2-[3-(diethylamino)phenoxy]ethoxy} substituents. Synth. Metals 2014, 196, 166–172. [Google Scholar] [CrossRef]
- Peeters, K.; De Wael, K.; Vincze, L.; Adriaens, A. Comparison of different surface modification techniques for electrodes by means of electrochemistry and micro synchrotron radiation x-ray fluorescence. Dimerization of cobalt(ii) tetrasulfonated phthalocyanine and its influence on the electrodeposition on gold surfaces. Anal. Chem. 2005, 77, 5512–5519. [Google Scholar] [PubMed]
- De Wael, K.; Westbroek, P.; Adriaens, A.; Temmerman, E. Role of gold adatoms in the stability and electrochemical behavior of gold surfaces modified with phthalocyanines. Electrochem. Solid-State Lett. 2005, 8, C65–C68. [Google Scholar] [CrossRef]
- Ilangovan, G.; Zweier, J.L.; Kuppusamy, P. Electrochemical preparation and epr studies of lithium phthalocyanine: Evaluation of the nucleation and growth mechanism and evidence for potential-dependent phase formation. J. Phys. Chem. B 2000, 104, 4047–4059. [Google Scholar] [CrossRef]
- Sehlotho, N.; Nyokong, T.; Zagal, J.H.; Bedioui, F. Electrocatalysis of oxidation of 2-mercaptoethanol, l-cysteine and reduced glutathione by adsorbed and electrodeposited cobalt tetra phenoxypyrrole and tetra ethoxythiophene substituted phthalocyanines. Electrochim. Acta 2006, 51, 5125–5130. [Google Scholar] [CrossRef]
- Conzuelo, F.; Gamella, M.; Campuzano, S.; Reviejo, A.J.; Pingarrón, J.M. Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk. Anal. Chim. Acta 2012, 737, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Pellicer, C.; Gomez-Caballero, A.; Unceta, N.; Goicolea, M.A.; Barrio, R.J. Using a portable device based on a screen-printed sensor modified with a molecularly imprinted polymer for the determination of the insecticide fenitrothion in forest samples. Anal. Methods 2010, 2, 1280–1285. [Google Scholar] [CrossRef]
- Christophe, G.; Kumar, V.; Nouaille, R.; Gaudet, G.; Fontanille, P.; Pandey, A.; Soccol, C.R.; Larroche, C. Recent developments in microbial oils production: A possible alternative to vegetable oils for biodiesel without competition with human food? Brazilian Arch. Biol. Technol. 2012, 55, 29–46. [Google Scholar] [CrossRef]
- Jin, X.; Angelidaki, I.; Zhang, Y. Microbial electrochemical monitoring of volatile fatty acids during anaerobic digestion. Environ. Sci. Technol. 2016, 50, 4422–4429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sträuber, H.; Bühligen, F.; Kleinsteuber, S.; Nikolausz, M.; Porsch, K. Improved anaerobic fermentation of wheat straw by alkaline pre-treatment and addition of alkali-tolerant microorganisms. Bioengineering 2015, 2, 66. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhattacharyya, C.B. Biomethanation of white rotted and brown rotted rice straw. Bioprocess Eng. 1999, 20, 297–302. [Google Scholar] [CrossRef]
- Somasiri, W.; Li, X.-F.; Ruan, W.-Q.; Jian, C. Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of colour and reduction of cod in real textile wastewater. Bioresour. Technol. 2008, 99, 3692–3699. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, G.; Stamatelatou, K.; Venetsaneas, N.; Kornaros, M.; Lyberatos, G. Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind. Eng. Chem. Res. 2008, 47, 5227–5233. [Google Scholar] [CrossRef]
- Bıyıklıoğlu, Z.; Çakır, D. New electropolymerizable metal-free and metallophthalocyanines bearing {2,3-bis[3-(diethylamino)phenoxy]propoxy} substituents. Dyes Pigment. 2014, 100, 150–157. [Google Scholar] [CrossRef]
- Çakır, V.; Demir, F.; Bıyıklıoğlu, Z.; Koca, A.; Kantekin, H. Synthesis, characterization, electrochemical and spectroelectrochemical properties of metal-free and metallophthalocyanines bearing electropolymerizable dimethylamine groups. Dyes Pigment. 2013, 98, 414–421. [Google Scholar] [CrossRef]
- Medina-Plaza, C.; García-Cabezón, C.; García-Hernández, C.; Bramorski, C.; Blanco-Val, Y.; Martín-Pedrosa, F.; Kawai, T.; de Saja, J.A.; Rodríguez-Méndez, M.L. Analysis of organic acids and phenols of interest in the wine industry using langmuir–blodgett films based on functionalized nanoparticles. Anal. Chim. Acta 2015, 853, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Ndiaye, A.; Bonnet, P.; Pauly, A.; Dubois, M.; Brunet, J.; Varenne, C.; Guerin, K.; Lauron, B. Noncovalent functionalization of single-wall carbon nanotubes for the elaboration of gas sensor dedicated to btx type gases: The case of toluene. J. Phys. Chem. C 2013, 117, 20217–20228. [Google Scholar] [CrossRef]
- Berezin, B.D.; Shukhto, O.V.; Berezin, D.B. A new type of metal porphyrin dissociation reaction. Russ. J. Inorg. Chem. 2002, 47, 1763–1768. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndiaye, A.L.; Delile, S.; Brunet, J.; Varenne, C.; Pauly, A. Electrochemical Sensors Based on Screen-Printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection. Biosensors 2016, 6, 46. https://doi.org/10.3390/bios6030046
Ndiaye AL, Delile S, Brunet J, Varenne C, Pauly A. Electrochemical Sensors Based on Screen-Printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection. Biosensors. 2016; 6(3):46. https://doi.org/10.3390/bios6030046
Chicago/Turabian StyleNdiaye, Amadou L., Sébastien Delile, Jérôme Brunet, Christelle Varenne, and Alain Pauly. 2016. "Electrochemical Sensors Based on Screen-Printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection" Biosensors 6, no. 3: 46. https://doi.org/10.3390/bios6030046
APA StyleNdiaye, A. L., Delile, S., Brunet, J., Varenne, C., & Pauly, A. (2016). Electrochemical Sensors Based on Screen-Printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection. Biosensors, 6(3), 46. https://doi.org/10.3390/bios6030046