Gold Nanoparticle-Enhanced Recombinase Polymerase Amplification for Rapid Visual Detection of Mycobacterium tuberculosis
Abstract
1. Introduction
2. Materials and Methods
2.1. MTB and Nontuberculous Bacterial Isolates Used in This Study
2.2. Sputum Specimens
2.3. DNA Extraction from Bacterial Strains and Sputum Samples
2.4. Primer Design and Selection
2.5. Optimization of the RPA Reaction
2.6. Development and Optimization of a Colorimetric MTB Detection Assay Using RPA Combined with AuNPs
2.7. Limit of Detection of the TB-GoldDx Assay
2.8. Validation and Evaluation of the TB-GoldDx Assay
3. Results
3.1. Optimization of RPA Reaction
3.2. Development of TB-GoldDx for Detecting MTBC
3.3. Validation of TB-GoldDx Assay for Detecting Clinical MTB Isolates
3.4. Evaluation of TB-GoldDx for Detecting MTBC from Sputum Specimens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LPA | Line probe assay |
PCR | Polymerase chain reaction |
Mol ID | Molecular mycobacterial species identification |
MTB | Mycobacterium tuberculosis |
MTC | Mycobacterium tuberculosis complex |
References
- World Health Organization. Global Tuberculosis Report 2023; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2023 (accessed on 1 July 2025).
- Centers for Disease Control and Prevention (CDC). TB 101 for Health Care Workers: Bacteriological Examination; CDC: Atlanta, GA, USA, 2024. Available online: https://www.cdc.gov/tb/webcourses/TB101/page16994.html (accessed on 1 July 2025).
- van Zyl-Smit, R.N.; Binder, A.; Meldau, R.; Mishra, H.; Semple, P.L.; Theron, G.; Jamieson, L.; Sharkey, T.; Calligaro, G.; Allwood, B.; et al. Comparison of Quantitative Techniques Including Xpert MTB/RIF to Evaluate Mycobacterial Burden. PLoS ONE 2011, 6, e28815. [Google Scholar] [CrossRef]
- American Thoracic Society (ATS); Centers for Disease Control and Prevention (CDC); Infectious Diseases Society of America (IDSA). Diagnostic Standards and Classification of Tuberculosis in Adults and Children. Am. J. Respir. Crit. Care Med. 2000, 161, 1376–1395. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Handbook on Tuberculosis Laboratory Diagnostic Methods in the European Union—Updated 2018; ECDC: Stockholm, Sweden, 2018; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Handbook_on_tuberculosis_laboratory_diagnostic_methods_in_the_EU.pdf (accessed on 1 July 2025).
- Bartolomeu-Gonçalves, G.; Souza, J.M.; Fernandes, B.T.; Spoladori, L.F.A.; Correia, G.F.; Castro, I.M.; Borges, P.H.G.; Silva-Rodrigues, G.; Tavares, E.R.; Yamauchi, L.M.; et al. Tuberculosis Diagnosis: Current, Ongoing, and Future Approaches. Diseases 2024, 12, 202. [Google Scholar] [CrossRef] [PubMed]
- MacLean, E.; Kohli, M.; Weber, S.F.; Suresh, A.; Schumacher, S.G.; Denkinger, C.M.; Pai, M. Advances in Molecular Diagnosis of Tuberculosis. J. Clin. Microbiol. 2020, 58, e01582-19. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Operational Handbook on Tuberculosis. Module 3: Diagnosis—Rapid Diagnostics for Tuberculosis Detection, 3rd ed.; World Health Organization: Geneva, Switzerland, 2024; Available online: https://tbksp.who.int/en/node/720 (accessed on 1 July 2025).
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA Detection Using Recombination Proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- Boyle, D.S.; McNerney, R.; Teng Low, H.; Leader, B.T.; Pérez-Osorio, A.C.; Meyer, J.C.; O’SUllivan, D.M.; Brooks, D.G.; Piepenburg, O.; Forrest, M.S.; et al. Rapid Detection of Mycobacterium tuberculosis by Recombinase Polymerase Amplification. PLoS ONE 2014, 9, e103091. [Google Scholar] [CrossRef]
- Singpanomchai, N.; Akeda, Y.; Tomono, K.; Tamaru, A.; Santanirand, P.; Ratthawongjirakul, P. Naked Eye Detection of the Mycobacterium tuberculosis Complex by Recombinase Polymerase Amplification–SYBR Green I Assays. J. Clin. Lab. Anal. 2019, 33, e22655. [Google Scholar] [CrossRef]
- Sciaudone, M.; Carpena, R.; Calderón, M.; Sheen, P.; Zimic, M.; Coronel, J.; Gilman, R.H.; Bowman, N.M.; Yu, G. Rapid Detection of Mycobacterium tuberculosis Using Recombinase Polymerase Amplification: A Pilot Study. PLoS ONE 2023, 18, e0295610. [Google Scholar] [CrossRef]
- Mo, Y.; Cui, F.; Li, D.; Dai, Y.; Li, X.; Zhang, X.; Qiu, Y.; Yin, Y.; Zhang, X.; Xu, W. Establishment of a Rapid and Sensitive Method Based on Recombinase Polymerase Amplification to Detect mts90, a New Molecular Target of Mycobacterium tuberculosis. RSC Adv. 2017, 7, 49895–49902. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, P.; Zhang, H.; Li, J. Rapid Detection of Mycobacterium tuberculosis Based on Antigen 85B via Real-Time Recombinase Polymerase Amplification. Lett. Appl. Microbiol. 2021, 72, 106–112. [Google Scholar] [CrossRef]
- Gill, P.; Ghalami, M.; Ghaemi, A.; Mosavari, N.; Abdul-Tehrani, H.; Sadeghizadeh, M. Nanodiagnostic Method for Colorimetric Detection of Mycobacterium tuberculosis 16S rRNA. Nanobiotechnology 2008, 4, 28–35. [Google Scholar] [CrossRef]
- Soo, P.C.; Horng, Y.T.; Chang, K.C.; Wang, J.Y.; Hsueh, P.R.; Chuang, C.Y.; Lu, C.C.; Lai, H.C. A Simple Gold Nanoparticle Probes Assay for Identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis Complex from Clinical Specimens. Mol. Cell. Probes 2009, 23, 240–246. [Google Scholar] [CrossRef]
- Kooti, S.; Kadivarian, S.; Abiri, R.; Mohajeri, P.; Atashi, S.; Ahmadpor, H.; Alvandi, A. Modified Gold Nanoparticle Colorimetric Probe-Based Biosensor for Direct and Rapid Detection of Mycobacterium tuberculosis in Sputum Specimens. World J. Microbiol. Biotechnol. 2023, 39, 118. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, X.; Li, H.; Guan, F.; Guo, J.; Shen, F.; Luo, Y.; Sun, C.; Zhang, L. Sensitive Fluorescent Detection of Melamine in Raw Milk Based on the Inner Filter Effect of Au Nanoparticles on the Fluorescence of CdTe Quantum Dots. Food Chem. 2012, 135, 1894–1900. [Google Scholar] [CrossRef]
- Thanunchai, M.; Sangboonruang, S.; Semakul, N.; Kumthip, K.; Maneekarn, N.; Tragoolpua, K. Aptamer-Functionalized Gold Nanoparticle Assay for Rapid Visual Detection of Norovirus in Stool Samples. Biosensors 2025, 15, 387. [Google Scholar] [CrossRef] [PubMed]
- Technology Networks. Copy Number Calculator. 2025. Available online: https://www.technologynetworks.com/tn/tools/copynumbercalculator (accessed on 1 July 2025).
- MedCalc Software Ltd. Diagnostic Test Evaluation Calculator, Version 23.2.8 [Web Application]. 2023. Available online: https://www.medcalc.org/calc/diagnostic_test.php (accessed on 1 July 2025).
- He, H.; Dai, J.; Duan, Z.; Zheng, B.; Meng, Y.; Guo, Y.; Xiao, D. Unusual Sequence Length-Dependent Gold Nanoparticles Aggregation of the ssDNA Sticky End and Its Application for Enzyme-Free and Signal Amplified Colorimetric DNA Detection. Sci. Rep. 2016, 6, 30878. [Google Scholar] [CrossRef] [PubMed]
- Dutour, R.; Bruylants, G. Gold Nanoparticles Coated with Nucleic Acids: An Overview of the Different Bioconjugation Pathways. Bioconjug. Chem. 2025, 36, 1133–1156. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.M.; Samir, T.M.; Azzazy, H.M. Unmodified Gold Nanoparticles for Direct and Rapid Detection of Mycobacterium tuberculosis Complex. Clin. Biochem. 2013, 46, 633–637. [Google Scholar] [CrossRef]
- Zhang, L.; Bai, H.; Zhang, C.; He, X.; Zou, J.; Bai, W.; Hu, W.W. Dual-Mode Sensing of Mycobacterium tuberculosis with DNA-Functionalized Gold Nanoparticles and Asymmetric RPA-Triggered PAM-Free CRISPR System. Sens. Actuators B Chem. 2025, 424, 136920. [Google Scholar] [CrossRef]
- Nathavitharana, R.R.; Cudahy, P.G.; Schumacher, S.G.; Steingart, K.R.; Pai, M.; Denkinger, C.M. Accuracy of Line Probe Assays for the Diagnosis of Pulmonary and Multidrug-Resistant Tuberculosis: A Systematic Review and Meta-Analysis. Eur. Respir. J. 2017, 49, 1601075. [Google Scholar] [CrossRef]
- Deng, S.; Sun, Y.; Xia, H.; Liu, Z.; Gao, L.; Yang, J.; Zhao, Y.; Huang, F.; Feng, J.; Wang, L.; et al. Accuracy of Commercial Molecular Diagnostics for the Detection of Pulmonary Tuberculosis in China: A Systematic Review. Sci. Rep. 2019, 9, 4553. [Google Scholar] [CrossRef] [PubMed]
- Alfalah, W.; Sulaiman, Y. Clinico-Demographic Aspects of Pulmonary and Extrapulmonary Tuberculosis among Pediatric Patients Admitted to Benghazi Children Hospital, Benghazi 2023. Libyan Med. J. 2025, 17, 22–28. [Google Scholar] [CrossRef]
- Fukuzumi, N.; Hirao, G.; Ogawa, A.; Asahi, T.; Maeda, M.; Zako, T. Density and Structure of DNA Immobilised on Gold Nanoparticles Affect Sensitivity in Nucleic Acid Detection. Sci. Rep. 2025, 15, 8222. [Google Scholar] [CrossRef] [PubMed]
- Jama, S.S.; Abdi, M. Tuberculosis Treatment Outcomes and Associated Factors among Patients Treated at Bosaso TB Hospital, Bosaso, Somalia: A Five-Year Retrospective Study. PLoS ONE 2025, 20, e0314693. [Google Scholar] [CrossRef]
- Kim, J.W.; Patel, H.; Halliwell, R.; Free, R.C.; Glimour-Caunt, A.; Pareek, M.; Woltmann, G.; Verma, R.; Perera, N.; Haldar, P. Real-World Clinical Utility of Xpert MTB/RIF Ultra in the Assessment of Tuberculosis in a Low-TB-Incidence, High-Resource Setting. BMJ Open Respir. Res. 2025, 12, e002624. [Google Scholar] [CrossRef]
- Compiro, P.; Chomta, N.; Nimnual, J.; Sunantawanit, S.; Payungporn, S.; Rotcheewaphan, S.; Keawsapsak, P. CRISPR-Cas12a-Based Detection and Differentiation of Mycobacterium spp. Clin. Chim. Acta 2025, 567, 120101. [Google Scholar] [CrossRef]
- Xiao, J.; Li, J.; Quan, S.; Wang, Y.; Jiang, G.; Wang, Y.; Huang, H.; Jiao, W.; Shen, A. Development and Preliminary Assessment of a CRISPR-Cas12a-Based Multiplex Detection of Mycobacterium tuberculosis Complex. Front. Bioeng. Biotechnol. 2023, 11, 1233353. [Google Scholar] [CrossRef]
- Reed, J.L.; Basu, D.; Butzler, M.A.; McFall, S.M. XtracTB Assay, a Mycobacterium tuberculosis Molecular Screening Test with Sensitivity Approaching Culture. Sci. Rep. 2017, 7, 3653. [Google Scholar] [CrossRef]
Mycobacterial Species | Source (No.) | Non-Mycobacterial Species | Source (No.) |
---|---|---|---|
Mycobacterium tuberculosis complex (MTC) | Respiratory pathogens and normal flora | ||
Mycobacterium tuberculosis H37Rv (ATCC 27294) | CMB (1) | Haemophilus influenzae | CMB (1) |
Clinical M. tuberculosis isolates (n = 72) | ODPC-1 (20), DR-TB (52) | Moraxella catarrhalis | CMB (1) |
Nontuberculous mycobacteria (NTM) | Enterococcus faecium | CMB (1) | |
Mycobacterium smegmatis ATCC 14468 | CMB (1) | Acinetobacter baumannii | CMB (1) |
Mycobacterium avium complex | CMB (1) | Burkholderia pseudomallei | CMB (1) |
Mycobacterium chelonae | CMB (1) | Klebsiella pneumoniae | CMB (1) |
Mycobacterium phlei | CMB (1) | Escherichia coli | CMB (1) |
Mycobacterium avium-intracellulare | CMB (1) | Neisseria meningitidis | CMB (1) |
Mycobacterium nonchromogenicum | CMB (1) | Corynebacterium diphtheriae | CMB (1) |
Mycobacterium abscessus | CMB (1) | Respiratory bacterial flora | |
Mycobacterium fortuitum | CMB (1) | Haemophilus parainfluenzae | CMB (1) |
Mycobacterium scrofulaceum | CMB (1) | alpha-Streptococcus sp. | CMB (1) |
Mycobacterium austroafricanum | CMB (1) | Streptococcus oralis | CMB (1) |
Mycobacterium vaccae | CMB (1) | Streptococcus mitis | CMB (1) |
Mycobacterium terrae | CMB (1) | Nocardia sp. | CMB (1) |
Mycobacterium massiliense | CMB (1) | Neisseria sp. | CMB (1) |
Assays | TB-GoldDx Assay | ||
---|---|---|---|
Sensitivity (%) | Specificity (%) | ||
Culture + Mol ID 100 MTB isolates | MTB-positive (72) | 95.83 (69/72) [95% CI: 88.30–99.13] | 100 (28/28) [95% CI: 87.66–100.00] |
MTB-negative (28) | |||
Smear microscopy 140 sputum samples | AFB 3+ (22) | 95.45 (21/22) | - |
AFB 2+ (17) | 70.59 (12/17) | - | |
AFB 1+/ Scanty (31) | 77.42 (24/31) | - | |
AFB-positive (70) | 81.43 (57/70) [95% CI: 70.34–89.72] | 58.57 (41/70) [95% CI: 46.17–70.23] | |
AFB-negative (70) | |||
LPA 83 sputum samples | LPA-positive (47) | 82.98 (39/47) [95% CI: 69.19–92.35] | 55.56 (20/36) [95% CI: 38.10–72.06] |
LPA-negative (36) |
Smear Grade | Statistic | TB-GoldDx Assay | LPA |
---|---|---|---|
AFB 3+ (13) | Sensitivity (%) | 100 (13/13) | 100 (13/13) |
AFB 2+ (6) | Sensitivity (%) | 88.33 (5/6) | 88.33 (5/6) |
AFB 1+/ Scanty (27) | Sensitivity (%) | 77.78 (21/27) | 74.07 (20/27) |
AFB-positive (46) | Sensitivity (%) | 84.78 (39/46) [95% CI: 71.78–92.43] | 82.61 (38/46) [95%CI: 69.28–90.91] |
AFB-negative (37) | Specificity (%) | 54.05 (20/37) [95% CI: 38.38–68.96] | 78.38 (29/37) [95% CI: 62.80–88.61] |
Positive Likelihood Ratio (PLR) | 1.85 [95% CI: 1.27–2.67] | 3.82 [95% CI: 2.04–7.16] | |
Negative Likelihood Ratio (NLR) | 0.28 [95% CI: 0.13–0.59] | 0.22 [95% CI: 0.12–0.43] | |
Overall Accuracy (%) | 71.08 [95% CI: 60.09–80.52] | 80.72 [95% CI: 70.59–88.56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saikaew, S.; Sangboonruang, S.; Pongsararuk, R.; Srilohasin, P.; Butr-Indr, B.; Intorasoot, S.; Phunpae, P.; Tharinjaroen, C.S.; Arunothong, S.; Panyasit, W.; et al. Gold Nanoparticle-Enhanced Recombinase Polymerase Amplification for Rapid Visual Detection of Mycobacterium tuberculosis. Biosensors 2025, 15, 607. https://doi.org/10.3390/bios15090607
Saikaew S, Sangboonruang S, Pongsararuk R, Srilohasin P, Butr-Indr B, Intorasoot S, Phunpae P, Tharinjaroen CS, Arunothong S, Panyasit W, et al. Gold Nanoparticle-Enhanced Recombinase Polymerase Amplification for Rapid Visual Detection of Mycobacterium tuberculosis. Biosensors. 2025; 15(9):607. https://doi.org/10.3390/bios15090607
Chicago/Turabian StyleSaikaew, Sukanya, Sirikwan Sangboonruang, Rodjana Pongsararuk, Prapaporn Srilohasin, Bordin Butr-Indr, Sorasak Intorasoot, Ponrut Phunpae, Chayada Sitthidet Tharinjaroen, Surachet Arunothong, Wutthichai Panyasit, and et al. 2025. "Gold Nanoparticle-Enhanced Recombinase Polymerase Amplification for Rapid Visual Detection of Mycobacterium tuberculosis" Biosensors 15, no. 9: 607. https://doi.org/10.3390/bios15090607
APA StyleSaikaew, S., Sangboonruang, S., Pongsararuk, R., Srilohasin, P., Butr-Indr, B., Intorasoot, S., Phunpae, P., Tharinjaroen, C. S., Arunothong, S., Panyasit, W., Chaiprasert, A., Tragoolpua, K., & Wattananandkul, U. (2025). Gold Nanoparticle-Enhanced Recombinase Polymerase Amplification for Rapid Visual Detection of Mycobacterium tuberculosis. Biosensors, 15(9), 607. https://doi.org/10.3390/bios15090607