Kinematic Biomarkers of Functional Disability in Older Adults: Analysis of the Timed Up and Go Test
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sample Characterization
2.3. Disability Status Characterization and Assessment
2.4. Kinematic Assessment
2.5. Data Processing and Kinematic Parameters
2.6. Data Analysis
2.7. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADL | Activities of Daily Living |
CoM | Center of Mass |
GRF | Ground Reaction Forces |
IADL | Instrumental Activities of Daily Living |
IPAQ | International Physical Activity Questionnaire |
KMO | Kaiser–Meyer–Olkin |
MMSE | Mini Mental State Examination |
OLST | One-Leg Standing Test |
PC | Principal Components |
PCA | Principal Component Analysis |
PCM | Principal Component Model |
ROM | Range of Motion |
SD | Standard Deviation |
SRH | Self-Reported Health |
STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
iTuG | Instrumented Timed Up and Go |
TuG | Timed Up and Go |
References
- Huhn, S.; Axt, M.; Gunga, H.C.; Maggioni, M.A.; Munga, S.; Obor, D.; Sié, A.; Boudo, V.; Bunker, A.; Sauerborn, R.; et al. The Impact of Wearable Technologies in Health Research: Scoping Review. JMIR Mhealth Uhealth 2022, 10, e34384. [Google Scholar] [CrossRef] [PubMed]
- Vo, D.-K.; Trinh, K.T.L. Advances in Wearable Biosensors for Healthcare: Current Trends, Applications, and Future Perspectives. Biosensors 2024, 14, 560. [Google Scholar] [CrossRef] [PubMed]
- Jansen, C.-P.; Gordt-Oesterwind, K.; Schwenk, M. Wearable Motion Sensors in Older Adults: On the Cutting Edge of Health and Mobility Research. Sensors 2022, 22, 973. [Google Scholar] [CrossRef]
- Mangano, G.R.A.; Valle, M.S.; Casabona, A.; Vagnini, A.; Cioni, M. Age-Related Changes in Mobility Evaluated by the Timed Up and Go Test Instrumented through a Single Sensor. Sensors 2020, 20, 719. [Google Scholar] [CrossRef]
- Ortega-Bastidas, P.; Gómez, B.; Aqueveque, P.; Luarte-Martínez, S.; Cano-de-la-Cuerda, R. Instrumented Timed Up and Go Test (iTUG)—More Than Assessing Time to Predict Falls: A Systematic Review. Sensors 2023, 23, 3426. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Sprint, G.; Cook, D.J.; Weeks, D.L. Toward Automating Clinical Assessments: A Survey of the Timed Up and Go. IEEE Rev. Biomed. Eng. 2015, 8, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Herman, T.; Giladi, N.; Hausdorff, J.M. Properties of the ‘timed up and go’ test: More than meets the eye. Gerontology 2011, 57, 203–210. [Google Scholar] [CrossRef]
- Donoghue, O.A.; Savva, G.M.; Cronin, H.; Kenny, R.A.; Horgan, N.F. Using timed up and go and usual gait speed to predict incident disability in daily activities among community-dwelling adults aged 65 and older. Arch. Phys. Med. Rehabil. 2014, 95, 1954–1961. [Google Scholar] [CrossRef]
- Choo, P.L.; Tou, N.X.; Jun Pang, B.W.; Lau, L.K.; Jabbar, K.A.; Seah, W.T.; Chen, K.K.; Ng, T.P.; Wee, S.L. Timed Up and Go (TUG) Reference Values and Predictive Cutoffs for Fall Risk and Disability in Singaporean Community-Dwelling Adults: Yishun Cross-Sectional Study and Singapore Longitudinal Aging Study. J. Am. Med. Dir. Assoc. 2021, 22, 1640–1645. [Google Scholar] [CrossRef]
- Kurosawa, C.; Shimazu, N.; Yamamoto, S. Where do healthy older adults take more time during the Timed Up and Go test? J. Phys. Ther. Sci. 2020, 32, 663–668. [Google Scholar] [CrossRef]
- van der Kruk, E.; Strutton, P.; Koizia, L.J.; Fertleman, M.; Reilly, P.; Bull, A.M.J. Why do older adults stand-up differently to young adults?: Investigation of compensatory movement strategies in sit-to-walk. npj Aging 2022, 8, 13. [Google Scholar] [CrossRef]
- Thigpen, M.T.; Light, K.E.; Creel, G.L.; Flynn, S.M. Turning difficulty characteristics of adults aged 65 years or older. Phys. Ther. 2000, 80, 1174–1187. [Google Scholar] [CrossRef] [PubMed]
- Bovonsunthonchai, S.; Hiengkaew, V.; Vachalathiti, R.; Said, C.M.; Batchelor, F. Temporospatial analysis: Gait characteristics of young adults and the elderly in turning while walking. Int. J. Ther. Rehabil. 2015, 22, 129–134. [Google Scholar] [CrossRef]
- Madrid, J.; Ulrich, B.; Santos, A.N.; Jolles, B.M.; Favre, J.; Benninger, D.H. Spatiotemporal parameters during turning gait maneuvers of different amplitudes in young and elderly healthy adults: A descriptive and comparative study. Gait Posture 2023, 99, 152–159. [Google Scholar] [CrossRef]
- Perera, C.K.; Gopalai, A.A.; Gouwanda, D.; Ahmad, S.A.; Nurzaman, S.G. A Review on Sit-To-Walk Biomechanics for Healthy Young and Older Adults. In Proceedings of the 2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 7–9 December 2022; pp. 17–22. [Google Scholar]
- Lin, J.C.; Kuo, F.C.; Hong, C.Z.; Liau, B.Y. Kinematic variability of the head, lumbar spine and knee during the “walk and turn to sit down” task in older and young adults. Gait Posture 2014, 39, 272–277. [Google Scholar] [CrossRef]
- Gasparutto, X.; Gueugnon, M.; Laroche, D.; Martz, P.; Hannouche, D.; Armand, S. Which functional tasks present the largest deficits for patients with total hip arthroplasty before and six months after surgery? A study of the timed up-and-go test phases. PLoS ONE 2021, 16, e0255037. [Google Scholar] [CrossRef]
- Van Uem, J.M.; Walgaard, S.; Ainsworth, E.; Hasmann, S.E.; Heger, T.; Nussbaum, S.; Hobert, M.A.; Micó-Amigo, E.M.; Van Lummel, R.C.; Berg, D.; et al. Quantitative Timed-Up-and-Go Parameters in Relation to Cognitive Parameters and Health-Related Quality of Life in Mild-to-Moderate Parkinson’s Disease. PLoS ONE 2016, 11, e0151997. [Google Scholar] [CrossRef] [PubMed]
- Maiora, J.; Rezola-Pardo, C.; García, G.; Sanz, B.; Graña, M. Older Adult Fall Risk Prediction with Deep Learning and Timed Up and Go (TUG) Test Data. Bioengineering 2024, 11, 1000. [Google Scholar] [CrossRef]
- Choi, J.; Parker, S.M.; Knarr, B.A.; Gwon, Y.; Youn, J.H. Wearable Sensor-Based Prediction Model of Timed up and Go Test in Older Adults. Sensors 2021, 21, 6831. [Google Scholar] [CrossRef]
- Elm, E.v.; Altman, D.; Egger, M.; Pocock, S.; Gøtzsche, P.; Vandenbroucke, J. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Morgado, J.; Rocha, C.; Maruta, C.; Guerreiro, M.; Martins, I. Novos valores normativos do Mini-Mental State Examination. Sinapse 2009, 2, 10–16. [Google Scholar]
- Lee, E.A.; Brettler, J.W.; Kanter, M.H.; Steinberg, S.G.; Khang, P.; Distasio, C.C.; Martin, J.; Dreskin, M.; Thompson, N.H.; Cotter, T.M.; et al. Refining the Definition of Polypharmacy and Its Link to Disability in Older Adults: Conceptualizing Necessary Polypharmacy, Unnecessary Polypharmacy, and Polypharmacy of Unclear Benefit. Perm. J. 2020, 24, 212. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Moreira, J.S.; Melo, A.; Santos, R.; Sousa, A.S.P. Indicators and Instruments to Assess Components of Disability in Community-Dwelling Older Adults: A Systematic Review. Sensors 2022, 22, 8270. [Google Scholar] [CrossRef]
- Jansen, C.W.S.; Niebuhr, B.R.; Coussirat, D.J.; Hawthorne, D.; Moreno, L.; Phillip, M. Hand force of men and women over 65 years of age as measured by maximum pinch and grip force. J. Aging Phys. Act. 2008, 16, 24–41. [Google Scholar] [CrossRef]
- Furuna, T.; Nagasaki, H.; Nishizawa, S.; Sugiura, M.; Okuzumi, H.; Ito, H.; Kinugasa, T.; Hashizume, K.; Maruyama, H. Longitudinal change in the physical performance of older adults in the community. J. Jpn. Phys. Ther. Assoc. Rigaku Ryoho 1998, 1, 1–5. [Google Scholar] [CrossRef]
- Crimmins, E.M. Trends in the health of the elderly. Annu. Rev. Public Health 2004, 25, 79–98. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Araújo, F.; Ribeiro, J.; Oliveira, A.; Pinto, C. Validação do índice de Barthel numa amostra de idosos não institucionalizados. Rev. Port. SaúdePública 2007, 25, 59–66. [Google Scholar]
- Collin, C.; Wade, D.T.; Davies, S.; Horne, V. The Barthel ADL Index: A reliability study. Int. Disabil. Stud. 1988, 10, 61–63. [Google Scholar] [CrossRef]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- Araújo, F.; Ribeiro, J.P.; Oliveira, A.; Pinto, C.; Martins, T. Validação da escala de Lawton e Brody numa amostra de idosos não institucionalizados. In Proceedings of the 7º Congresso Nacional de Psicologia da Saúde, Porto, Portugal, 31 January–2 February 2008; pp. 217–220. [Google Scholar]
- Moreira, J.; Cunha, B.; Félix, J.; Santos, R.; Sousa, A.S.P. Kinematic and Kinetic Gait Principal Component Domains in Older Adults With and Without Functional Disability: A Cross-Sectional Study. J. Funct. Morphol. Kinesiol. 2025, 10, 140. [Google Scholar] [CrossRef]
- Pisciottano, M.V.C.; Pinto, S.S.; Szejnfeld, V.L.; Castro, C.H.M. The relationship between lean mass, muscle strength and physical ability in independent healthy elderly women from the community. J. Nutr. Health Aging 2014, 18, 554–558. [Google Scholar] [CrossRef]
- Leardini, A.; Biagi, F.; Merlo, A.; Belvedere, C.; Benedetti, M. Multi-segment trunk kinematics during locomotion and elementary exercises. Clin. Biomech. 2011, 26, 15. [Google Scholar] [CrossRef] [PubMed]
- Petuskey, K.; Bagley, A.; Abdala, E.; James, M.A.; Rab, G. Upper extremity kinematics during functional activities: Three-dimensional studies in a normal pediatric population. Gait Posture 2007, 25, 6. [Google Scholar] [CrossRef] [PubMed]
- Ansai, J.H.; Farche, A.C.S.; Rossi, P.G.; de Andrade, L.P.; Nakagawa, T.H.; Takahashi, A.C.M. Performance of Different Timed Up and Go Subtasks in Frailty Syndrome. J. Geriatr. Phys. Ther. 2019, 42, 287–293. [Google Scholar] [CrossRef]
- Kerr, A.; Durward, B.; Kerr, K.M. Defining phases for the sit-to-walk movement. Clin. Biomech. 2004, 19, 385–390. [Google Scholar] [CrossRef]
- Buckley, T.; Pitsikoulis, C.; Barthelemy, E.; Hass, C. Age Impairs Sit-To-Walk Motor Performance. J. Biomech. 2009, 42, 23. [Google Scholar] [CrossRef]
- Richards, J. The Comprehensive Textbook of Clinical Biomechanics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine. International Society of Biomechanics. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Hair, J.; Tatham, R.; Anderson, R.; Black, W. Multivariate Data Analysis, 5th ed.; Prentice-Hall: London, UK, 1998. [Google Scholar]
- Association, W.M. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Lee, J.E.; Chun, H.; Kim, Y.S.; Jung, H.W.; Jang, I.Y.; Cha, H.M.; Son, K.Y.; Cho, B.; Kwon, I.S.; Yoon, J.L. Association between Timed Up and Go Test and Subsequent Functional Dependency. J. Korean Med. Sci. 2020, 35, e25. [Google Scholar] [CrossRef]
- Doi, T.; Nakakubo, S.; Tsutsumimoto, K.; Kim, M.J.; Kurita, S.; Ishii, H.; Shimada, H. Spatio-temporal gait variables predicted incident disability. J. Neuroeng. Rehabil. 2020, 17, 11. [Google Scholar] [CrossRef] [PubMed]
- Perera, S.; Patel, K.V.; Rosano, C.; Rubin, S.M.; Satterfield, S.; Harris, T.; Ensrud, K.; Orwoll, E.; Lee, C.G.; Chandler, J.M.; et al. Gait Speed Predicts Incident Disability: A Pooled Analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 63–71. [Google Scholar] [CrossRef]
- Abe, T.; Kitamura, A.; Taniguchi, Y.; Amano, H.; Seino, S.; Yokoyama, Y.; Nishi, M.; Narita, M.; Ikeuchi, T.; Fujiwara, Y.; et al. Pathway from gait speed to incidence of disability and mortality in older adults: A mediating role of physical activity. Maturitas 2019, 123, 32–36. [Google Scholar] [CrossRef]
- Rojas-Valverde, D.; Pino-Ortega, J.; Gómez-Carmona, C.D.; Rico-González, M. A Systematic Review of Methods and Criteria Standard Proposal for the Use of Principal Component Analysis in Team’s Sports Science. Int. J. Environ. Res. Public Health 2020, 17, 8712. [Google Scholar] [CrossRef]
- Ziegl, A.; Hayn, D.; Kastner, P.; Fabiani, E.; Šimunič, B.; Löffler, K.; Weidinger, L.; Brix, B.; Goswami, N.; Günter, S. Quantification of the Link between Timed Up-and-Go Test Subtasks and Contractile Muscle Properties. Sensors 2021, 21, 6539. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chang, C.C.; Chou, L.S. Sagittal plane center of mass movement strategy and joint kinetics during sit-to-walk in elderly fallers. Clin. Biomech. 2013, 28, 807–812. [Google Scholar] [CrossRef]
- Prisco, G.; Pirozzi, M.A.; Santone, A.; Esposito, F.; Cesarelli, M.; Amato, F.; Donisi, L. Validity of Wearable Inertial Sensors for Gait Analysis: A Systematic Review. Diagnostics 2025, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Sadeh, S.; Gobert, D.; Shen, K.-H.; Foroughi, F.; Hsiao, H.-Y. Biomechanical and neuromuscular control characteristics of sit-to-stand transfer in young and older adults: A systematic review with implications for balance regulation mechanisms. Clin. Biomech. 2023, 109, 106068. [Google Scholar] [CrossRef] [PubMed]
- Fotoohabadi, M.R.; Tully, E.A.; Galea, M.P. Kinematics of rising from a chair: Image-based analysis of the sagittal hip-spine movement pattern in elderly people who are healthy. Phys. Ther. 2010, 90, 561–571. [Google Scholar] [CrossRef]
- Van Criekinge, T.; Hallemans, A.; Van de Walle, P.; Sloot, L.H. Age- and sex-related differences in trunk kinematics during walking in able-bodied adults. Geroscience 2024, 46, 2545–2559. [Google Scholar] [CrossRef] [PubMed]
- Kefala, V.; Cyr, A.J.; Harris, M.D.; Hume, D.R.; Davidson, B.S.; Kim, R.H.; Shelburne, K.B. Assessment of Knee Kinematics in Older Adults Using High-Speed Stereo Radiography. Med. Sci. Sports Exerc. 2017, 49, 2260–2267. [Google Scholar] [CrossRef] [PubMed]
- Kuo, F.C.; Hong, C.Z.; Liau, B.Y. Kinematics and muscle activity of the head, lumbar and knee joints during 180° turning and sitting down task in older adults. Clin. Biomech. 2014, 29, 14–20. [Google Scholar] [CrossRef]
- Coyle, P.C.; Knox, P.J.; Pohlig, R.T.; Pugliese, J.M.; Sions, J.M.; Hicks, G.E. Hip Range of Motion and Strength Predict 12-Month Physical Function Outcomes in Older Adults With Chronic Low Back Pain: The Delaware Spine Studies. ACR Open Rheumatol. 2021, 3, 850–859. [Google Scholar] [CrossRef]
- Zhai, M.; Huang, Y.; Zhou, S.; Jin, Y.; Feng, J.; Pei, C.; Wen, L.; Wen’s, L. Effects of age-related changes in trunk and lower limb range of motion on gait. BMC Musculoskelet. Disord. 2023, 24, 234. [Google Scholar] [CrossRef]
- Boyer, K.A.; Hayes, K.L.; Umberger, B.R.; Adamczyk, P.G.; Bean, J.F.; Brach, J.S.; Clark, B.C.; Clark, D.J.; Ferrucci, L.; Finley, J.; et al. Age-related changes in gait biomechanics and their impact on the metabolic cost of walking: Report from a National Institute on Aging workshop. Exp. Gerontol. 2023, 173, 112102. [Google Scholar] [CrossRef]
- Kataoka, Y.; Ishida, T.; Osuka, S.; Takeda, R.; Tadano, S.; Yamada, S.; Tohyama, H. Validity of Wearable Gait Analysis System for Measuring Lower-Limb Kinematics during Timed Up and Go Test. Sensors 2024, 24, 6296. [Google Scholar] [CrossRef]
OA (n = 60) | ND (n = 35) | D (n = 25) | p-Value (Test Value) | ||
---|---|---|---|---|---|
Demographic and Clinical Data | |||||
Age (years) | 67.86 ± 6.46 | 66.34 ± 5.60 | 68.60 ± 6.77 | 0.147 (534) (a) | |
Gender (n female/%) | 38 (63.3) | 19 (54.29) | 19 (76) | 0.085 (2.961) (b) | |
BMI (kg/m2) | 25.39 ± 2.96 | 25.22 ± 3.08 | 26.02 ± 2.66 | 0.298 (−1.049) (c) | |
History of fall (n fallers/%) | 22 (36.7) | 11 (31.4) | 11 (44) | 0.469 (0.525) (b) | |
Polypharmacy (n polymedicated/%) | 13 (21.7) | 2 (5.71) | 11 (44) | <0.001 * (12.595) (b) | |
Cognitive function (MMSE score) | 28.74 ± 1.38 | 28.94 ± 1.31 | 28.68 ± 1.49 | 0.495 (394) (a) | |
Self-reported physical activity (IPAQ MET-min/week) | 3193.70 ± 2829.86 | 3186.46 ± 2964.91 | 3519.66 ± 2822.11 | 0.509 (393.5) (a) | |
Disability Indicators | |||||
Self-reported health | poor | 29 (48.3) | 8 (22.86) | 21 (84) | <0.001 * (21.832) (b) |
good | 31 (51.6) | 27 (77.14) | 4 (16) | ||
Hand grip strength (kg) | 27.39 ± 8.56 | 36.59 ± 39.86 | 25.07 ± 7.54 | 0.018 * (279.5) (a) | |
One-leg standing time (s) | 30.32 ± 22.77 | 38.83 ± 20.93 | 18.19 ± 20.72 | <0.001 * (192.5) (a) | |
ADL independence (Barthel Index score) | 19.86 ± 0.35 | 19.97 ± 0.17 | 19.76 ± 0.44 | 0.013 (345) (a) | |
IADL independence (Lawton and Brody score) | 22.70 ± 1.23 | 23 ± 0.00 | 21.96 ± 2.67 | 0.002 (332.5) (a) |
Time | OA (n = 60) | ND (n = 35) | D (n = 25) | p-Value (Test Value) |
---|---|---|---|---|
TuG | 10.83 ± 2.02 | 10.34 ± 2.14 | 11.51 ± 1.63 | 0.006 * (254.00) (a) |
Sit-to-walk | 1.36 ± 0.25 | 1.30 ± 0.27 | 1.44 ± 0.20 | 0.015 * (−2.21) (b) |
Walk-forward | 2.21 ± 0.48 | 2.08 ± 0.49 | 2.39 ± 0.41 | 0.003 * (237.00) (a) |
Turn | 1.78 ± 0.32 | 1.71 ± 0.29 | 1.87 ± 0.35 | 0.086 (323.00) (a) |
Walk-back | 2.73 ± 0.71 | 2.56 ± 0.77 | 2.97 ± 0.55 | 0.007 * (259.00) (a) |
Turn-to-sit | 2.72 ± 0.70 | 2.64 ± 0.76 | 2.84 ± 0.59 | 0.06 (312.00) (a) |
Principal Component Model of Timed Up and Go Task | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Principal Component | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Explained Variance (%) | 22.21 | 11.31 | 9.18 | 7.34 | 6.57 | 5.86 | 5.45 | 4.98 | 4.31 | 3.70 | 3.42 |
Parameters | Loadings | ||||||||||
Sagittal hip ROM—Walk back | 0.877 | 0.062 | 0.015 | 0.036 | 0.079 | −0.036 | −0.215 | −0.018 | −0.054 | 0.161 | −0.041 |
Sagittal hip velocity range—Walk back | 0.865 | 0.049 | −0.113 | 0.179 | 0.154 | −0.03 | −0.259 | 0.118 | 0.114 | 0.089 | 0.091 |
Vertical CoM velocity range—Walk-back | 0.864 | 0.043 | 0.094 | 0.056 | 0.056 | −0.067 | 0.174 | 0.057 | 0.189 | −0.079 | 0.066 |
Sagittal hip ROM—Walk forward | 0.855 | 0.034 | −0.266 | −0.017 | 0.045 | −0.004 | 0.008 | 0.117 | −0.041 | 0.08 | 0.057 |
Sagittal knee velocity range—Walk forward | 0.826 | −0.007 | −0.159 | 0.074 | 0.116 | 0.066 | 0.055 | 0.134 | 0.133 | 0.004 | 0.035 |
AP CoM velocity range—Turn | 0.816 | 0.027 | −0.175 | −0.039 | 0.04 | −0.153 | 0.188 | 0.198 | 0.154 | 0.094 | 0.11 |
Vertical CoM velocity range—Turn | 0.812 | 0.05 | −0.099 | 0.052 | 0.006 | −0.112 | 0.224 | 0.046 | 0.186 | −0.156 | 0.085 |
Frontal trunk velocity range—Turn | −0.063 | 0.950 | 0.022 | 0.043 | −0.056 | 0.081 | −0.023 | −0.013 | −0.008 | 0.01 | 0.02 |
Sagittal trunk velocity range—Turn | −0.08 | 0.933 | −0.036 | 0.099 | 0.075 | 0.177 | −0.056 | −0.037 | 0.006 | 0.025 | 0.074 |
Frontal trunk ROM—Turn | 0.157 | 0.833 | 0.063 | −0.013 | −0.121 | 0.034 | 0.182 | 0.017 | −0.096 | −0.021 | −0.015 |
Sagittal knee velocity range—Sit-to-walk | −0.075 | 0.019 | 0.892 | 0.078 | −0.017 | 0.018 | −0.04 | −0.045 | 0.094 | 0.139 | 0.016 |
Sagittal hip ROM—Sit-to-walk | −0.218 | −0.026 | 0.852 | 0.065 | 0.164 | 0.144 | 0.068 | −0.018 | −0.033 | −0.127 | 0.03 |
Sagittal trunk velocity range—Walk back | −0.094 | 0.075 | 0.151 | 0.917 | 0.077 | −0.048 | −0.043 | −0.118 | −0.063 | −0.131 | −0.031 |
Frontal trunk velocity range—Walk back | 0.014 | 0.067 | 0.161 | 0.904 | −0.021 | −0.08 | 0.057 | 0.095 | −0.076 | −0.039 | 0.032 |
Transverse trunk velocity range—Walk back | 0.307 | −0.038 | −0.038 | 0.816 | 0.044 | −0.162 | −0.032 | −0.076 | 0.087 | 0.021 | −0.089 |
Transverse knee velocity range—Turn | 0.188 | −0.014 | −0.008 | 0.059 | 0.904 | −0.05 | 0.013 | 0.132 | −0.044 | −0.03 | 0.115 |
Transverse knee ROM—Turn | 0.102 | −0.074 | 0.132 | 0.049 | 0.853 | −0.079 | −0.044 | 0.004 | −0.093 | 0.122 | −0.147 |
Frontal knee ROM—Turn | 0.045 | 0.195 | −0.047 | 0.041 | 0.819 | −0.166 | −0.098 | 0.014 | 0.08 | 0.162 | 0.016 |
Sagittal trunk velocity range—Sit-to-walk | −0.102 | 0.047 | 0.05 | −0.101 | −0.113 | 0.873 | 0.116 | −0.019 | 0.084 | 0.02 | 0.113 |
Frontal trunk velocity range—Sit-to-walk | 0.023 | 0.165 | 0.06 | −0.042 | −0.111 | 0.846 | −0.167 | 0.043 | −0.073 | 0.04 | −0.068 |
Transverse trunk velocity range—Sit-to-walk | −0.131 | 0.211 | 0.017 | −0.056 | −0.048 | 0.814 | −0.056 | 0.077 | −0.002 | −0.124 | 0.115 |
Vertical CoM displacement—Turn-to-sit | −0.038 | 0.091 | 0.154 | 0.038 | −0.09 | −0.12 | 0.878 | 0.015 | −0.135 | −0.083 | 0.053 |
ML CoM displacement—Turn | 0.216 | 0.068 | −0.035 | −0.105 | 0.086 | 0.03 | −0.024 | 0.932 | 0.103 | −0.024 | −0.008 |
ML CoM displacement—Walk back | 0.146 | −0.119 | −0.092 | 0.047 | 0.097 | 0.04 | 0.068 | 0.899 | 0.013 | −0.059 | −0.054 |
Transverse ankle velocity range—Walk forward | 0.215 | −0.101 | 0.001 | −0.009 | 0.087 | −0.023 | 0.007 | −0.002 | 0.918 | 0.085 | −0.02 |
Transverse ankle ROM—Walk forward | 0.255 | 0.014 | −0.005 | 0.002 | −0.181 | 0.032 | −0.073 | 0.150 | 0.883 | 0.036 | −0.005 |
Transverse hip ROM—Walk forward | −0.012 | 0.048 | 0.021 | −0.004 | 0.071 | 0.015 | 0.001 | −0.067 | −0.03 | 0.911 | 0.076 |
Transverse hip velocity range—Walk forward | 0.137 | −0.04 | −0.01 | −0.074 | 0.16 | −0.077 | 0.027 | 0.032 | 0.16 | 0.887 | 0.071 |
Transverse hip ROM—Walk back | 0.077 | 0.054 | 0.003 | 0.008 | −0.129 | 0.129 | −0.058 | −0.065 | −0.086 | 0.076 | 0.882 |
Transverse hip velocity range—Walk back | 0.230 | 0.061 | 0.048 | −0.113 | 0.131 | 0.012 | 0.100 | 0.013 | 0.064 | 0.073 | 0.875 |
Principal Component | p-Value (Test Value) | Cohen’s d | 95% CI [Low, High] |
---|---|---|---|
1 | 0.035 * (278) | 0.59 | [0.06, 1.12] |
2 | 0.094 (306) | 0.34 | [−0.18, 0.86] |
3 | 0.146 (320) | 0.32 | [−0.85, 0.20] |
4 | 0.035 * (278) | 0.08 | [−0.44, 0.60] |
5 | 0.832 (399) | 0.07 | [−0.45, 0.59] |
6 | 0.282 (344) | −0.04 | [−0.55, 0.48] |
7 | 0.061 (293) | 0.44 | [−0.10, 0.98] |
8 | 0.206 (332) | −0.32 | [−0.85, 0.21] |
9 | 0.179 (327) | 0.37 | [−0.17, 0.91] |
10 | 0.783 (395) | 0.06 | [−0.47, 0.59] |
11 | 0.906 (405) | 0.12 | [−0.41, 0.66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, J.; Cunha, B.; Félix, J.; Santos, R.; Sousa, A.S.P. Kinematic Biomarkers of Functional Disability in Older Adults: Analysis of the Timed Up and Go Test. Biosensors 2025, 15, 621. https://doi.org/10.3390/bios15090621
Moreira J, Cunha B, Félix J, Santos R, Sousa ASP. Kinematic Biomarkers of Functional Disability in Older Adults: Analysis of the Timed Up and Go Test. Biosensors. 2025; 15(9):621. https://doi.org/10.3390/bios15090621
Chicago/Turabian StyleMoreira, Juliana, Bruno Cunha, José Félix, Rubim Santos, and Andreia S. P. Sousa. 2025. "Kinematic Biomarkers of Functional Disability in Older Adults: Analysis of the Timed Up and Go Test" Biosensors 15, no. 9: 621. https://doi.org/10.3390/bios15090621
APA StyleMoreira, J., Cunha, B., Félix, J., Santos, R., & Sousa, A. S. P. (2025). Kinematic Biomarkers of Functional Disability in Older Adults: Analysis of the Timed Up and Go Test. Biosensors, 15(9), 621. https://doi.org/10.3390/bios15090621