Advanced Nanomaterial-Based Electrochemical Biosensing of Loop-Mediated Isothermal Amplification Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Commercial Materials Used
2.2. DNA Preparation
2.2.1. gBlocks Design
2.2.2. Plant DNA Isolation
2.2.3. “Mock” GM DNA Samples
2.2.4. LAMP Assay
2.2.5. Oligonucleotide Probe Design
2.3. Nanomaterials Synthesis and Preparation
2.3.1. Green Synthesis of Ti3C2Tx
2.3.2. MoS2 Exfoliation
2.3.3. Materials Characterization
2.4. Electrode Preparation, Various Nanomaterial Surface Functionalization, and Electrochemical Signal-Measurement Methodology
2.4.1. Fabrication of In-House Electrodes
2.4.2. Modification of Electrode Surface
2.4.3. Electrochemical Signal Measurement
3. Results and Discussion
3.1. Determination of LAMP LOD
3.2. Analytical Sensitivity of LAMP in the Context of GMO Regulations
3.3. Nanomaterials Characterization
3.3.1. MXene Characterization
3.3.2. MoS2 Characterization
3.3.3. GO Characterization
3.4. Functionalization of the Electrodes with Various Nanomaterials and DNA Probe Immobilization
3.4.1. Gold Electrode Comparison in DNA Detection, Repeatability, Real Sample Detection, and Calibration
3.4.2. Gold Nanoparticles Electrodeposition on Four Types of Au Electrodes and Carbon Electrodes—DNA Detection Comparison
3.5. Electrochemical Detection of Target DNA Molecules
3.5.1. Optimal DNA Target Concentration for Sensitive Electrochemical Detection
3.5.2. Comparison of the Electrochemical Techniques for DNA Target Detection
3.5.3. Selectivity of the Detection and Various DNA Probe Testing
3.5.4. Comparison of Various Nanomaterials in Detection Sensitivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azizoglu, U.; Karabörklü, S. Role of Recombinant DNA Technology to Improve the Efficacy of Microbial Insecticides. In Microbes for Sustainable lnsect Pest Management: Hydrolytic Enzyme & Secondary Metabolite; Khan, M.A., Ahmad, W., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 2, pp. 159–182. ISBN 978-3-030-67231-7. [Google Scholar]
- Dong, H.; Huang, Y.; Wang, K. The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing. Genes 2021, 12, 912. [Google Scholar] [CrossRef]
- Germing, K.; Navarrete, C.A.D.; Schiermeyer, A.; Hommen, U.; Zühl, L.; Eilebrecht, S.; Eilebrecht, E. Crop Protection by RNA Interference: A Review of Recent Approaches, Current State of Developments and Use as of 2013. Environ. Sci. Eur. 2025, 37, 15. [Google Scholar] [CrossRef]
- Anderson, J.A.; Ellsworth, P.C.; Faria, J.C.; Head, G.P.; Owen, M.D.K.; Pilcher, C.D.; Shelton, A.M.; Meissle, M. Genetically Engineered Crops: Importance of Diversified Integrated Pest Management for Agricultural Sustainability. Front. Bioeng. Biotechnol. 2019, 7, 24. [Google Scholar] [CrossRef]
- Naveen, A.K.; Sontakke, M. A Review on Regulatory Aspects, Challenges and Public Perception in Acceptance of Genetically Modified Foods. Food Sci. Biotechnol. 2024, 33, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, C.; Lillemo, M.; Hvoslef-Eide, T.A.K. Global Regulation of Genetically Modified Crops Amid the Gene Edited Crop Boom—A Review. Front. Plant Sci. 2021, 12, 630396. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Wang, R.; Wu, H.; Ping, J.; Wu, J. Recent Advances in Emerging DNA-Based Methods for Genetically Modified Organisms (GMOs) Rapid Detection. TrAC Trends Anal. Chem. 2018, 109, 19–31. [Google Scholar] [CrossRef]
- Gampala, S.S.; Wulfkuhle, B.; Richey, K.A. Detection of Transgenic Proteins by Immunoassays. In Transgenic Plants: Methods and Protocols; Kumar, S., Barone, P., Smith, M., Eds.; Springer: New York, NY, USA, 2019; pp. 411–417. ISBN 978-1-4939-8778-8. [Google Scholar]
- He, S.; Fan, Y.; Tao, S.; Zhang, Y.; Yin, C.; Yu, X. Application of Next-Generation Sequencing in the Detection of Transgenic Crop. Front. Genet. 2024, 15, 1461115. [Google Scholar] [CrossRef]
- Bak, A.; Emerson, J.B. Multiplex Quantitative PCR for Single-Reaction Genetically Modified (GM) Plant Detection and Identification of False-Positive GM Plants Linked to Cauliflower Mosaic Virus (CaMV) Infection. BMC Biotechnol. 2019, 19, 73. [Google Scholar] [CrossRef]
- Singh, M.; Bhoge, R.K.; Randhawa, G. Real—Time and Visual Loop-Mediated Isothermal Amplification: Efficient GMO Screening Targeting Pat and Pmi Marker Genes. Food Control 2017, 71, 248–254. [Google Scholar] [CrossRef]
- Salisu, I.B.; Shahid, A.A.; Yaqoob, A.; Ali, Q.; Bajwa, K.S.; Rao, A.Q.; Husnain, T. Molecular Approaches for High Throughput Detection and Quantification of Genetically Modified Crops: A Review. Front. Plant Sci. 2017, 8, 1670. [Google Scholar] [CrossRef]
- Randhawa, G.J.; Singh, M.; Morisset, D.; Sood, P.; Žel, J. Loop—Mediated Isothermal Amplification: Rapid Visual and Real-Time Methods for Detection of Genetically Modified Crops. J. Agric. Food Chem. 2013, 61, 11338–11346. [Google Scholar] [CrossRef]
- Xing, Y.; Liang, J.; Dong, F.; Wu, J.; Shi, J.; Xu, J.; Wang, J. Rapid Visual LAMP Method for Detection of Genetically Modified Organisms. ACS Omega 2023, 8, 29608–29614. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Yoon, A.-M.; Lee, J.-W.; Lim, H.S.; Jung, Y.J.; Lee, J.R. Event-Specific Loop-Mediated Isothermal Amplification for Living Modified Cotton MON88701, MON531, MON15985, MON88913, and COT102. Biotechnol. Bioproc E 2024, 29, 955–962. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, M.; Zhang, J.; Wang, N.; Fu, W.; Chen, H.; Wang, H.; Li, L.; Pang, X.; Liu, C.; et al. Rapid DNA Extraction and Microfluidic LAMP System in Portable Equipment for GM Crops Detection. Sens. Actuators B Chem. 2024, 411, 135716. [Google Scholar] [CrossRef]
- Gadkar, V.J.; Goldfarb, D.M.; Gantt, S.; Tilley, P.A.G. Real-Time Detection and Monitoring of Loop Mediated Amplification (LAMP) Reaction Using Self-Quenching and De-Quenching Fluorogenic Probes. Sci. Rep. 2018, 8, 5548. [Google Scholar] [CrossRef]
- Dangerfield, T.L.; Paik, I.; Bhadra, S.; Johnson, K.A.; Ellington, A.D. Kinetics of Elementary Steps in Loop-Mediated Isothermal Amplification (LAMP) Show That Strand Invasion during Initiation Is Rate-Limiting. Nucleic Acids Res. 2023, 51, 488–499. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, H.; Han, X.; Liu, Z.; Lu, Y. Advancements and Applications of Loop-Mediated Isothermal Amplification Technology: A Comprehensive Overview. Front. Microbiol. 2024, 15, 1406632. [Google Scholar] [CrossRef]
- Nwe, M.K.; Jangpromma, N.; Taemaitree, L. Evaluation of Molecular Inhibitors of Loop—Mediated Isothermal Amplification (LAMP). Sci. Rep. 2024, 14, 5916. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, D.; Yang, Y.; Yuan, Q. Recent Progress in Electrochemical Biosensors Based on DNA-functionalized Nanomaterials. Nano Biomed. Eng. 2024, 16, 309–330. [Google Scholar] [CrossRef]
- Low, S.S.; Ji, D.; Chai, W.S.; Liu, J.; Khoo, K.S.; Salmanpour, S.; Karimi, F.; Deepanraj, B.; Show, P.L. Recent Progress in Nanomaterials Modified Electrochemical Biosensors for the Detection of MicroRNA. Micromachines 2021, 12, 1409. [Google Scholar] [CrossRef]
- Xu, K.; Huang, J.; Ye, Z.; Ying, Y.; Li, Y. Recent Development of Nano-Materials Used in DNA Biosensors. Sensors 2009, 9, 5534–5557. [Google Scholar] [CrossRef]
- Wei, F.; Lillehoj, P.B.; Ho, C.-M. DNA Diagnostics: Nanotechnology-Enhanced Electrochemical Detection of Nucleic Acids. Pediatr. Res. 2010, 67, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Bobrinetskiy, I.; Radovic, M.; Rizzotto, F.; Vizzini, P.; Jaric, S.; Pavlovic, Z.; Radonic, V.; Nikolic, M.V.; Vidic, J. Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection. Nanomaterials 2021, 11, 2700. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Singh, J.; Goyat, R.; Saharan, Y.; Chaudhry, V.; Umar, A.; Ibrahim, A.A.; Akbar, S.; Ameen, S.; Baskoutas, S.; et al. Nanomaterials-Based Biosensor and Their Applications: A Review. Heliyon 2023, 9, e19929. [Google Scholar] [CrossRef] [PubMed]
- Szymczyk, A.; Ziółkowski, R.; Malinowska, E. Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials. Sensors 2023, 23, 3230. [Google Scholar] [CrossRef]
- Mitrevska, K.; Milosavljevic, V.; Gagic, M.; Richtera, L.; Adam, V. 2D Transition Metal Dichalcogenide Nanomaterial-Based miRNA Biosensors. Appl. Mater. Today 2021, 23, 101043. [Google Scholar] [CrossRef]
- Alwarappan, S.; Nesakumar, N.; Sun, D.; Hu, T.Y.; Li, C.-Z. 2D Metal Carbides and Nitrides (MXenes) for Sensors and Biosensors. Biosens. Bioelectron. 2022, 205, 113943. [Google Scholar] [CrossRef]
- Chen, W.Y.; Lin, H.; Barui, A.K.; Gomez, A.M.U.; Wendt, M.K.; Stanciu, L.A. DNA-Functionalized Ti3C2Tx MXenes for Selective and Rapid Detection of SARS-CoV-2 Nucleocapsid Gene. ACS Appl. Nano Mater. 2022, 5, 1902–1910. [Google Scholar] [CrossRef]
- Yao, B.; Yao, J.; Fan, Z.; Zhao, J.; Zhang, K.; Huang, W. Rapid Advances of Versatile MXenes for Electrochemical Enzyme-Based Biosensors, Immunosensors, and Nucleic Acid-Based Biosensors. ChemElectroChem 2022, 9, e202200103. [Google Scholar] [CrossRef]
- Kuprešanin, A.; Jarić, S.; Novaković, Z.; Radović, M.; Pavlović, M.; Knežić, T.; Šašić Zorić, L.; Janjušević, L.; Pavlović, Z. Future Perspectives of GMO Detection in Agriculture: Strategies for Electrochemical Nucleic Acid Detection. Microchim. Acta 2025, 192, 457. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, J.; Chao, J. Recent Advances in DNA-Based Electrogenerated Chemiluminescence Biosensors. Sens. Diagn. 2023, 2, 582–599. [Google Scholar] [CrossRef]
- López-Pérez, G.; Prado-Gotor, R.; Fuentes-Rojas, J.A.; Martin-Valero, M.J. Understanding Gold Nanoparticles Interactions with Chitosan: Crosslinking Agents as Novel Strategy for Direct Covalent Immobilization of Biomolecules on Metallic Surfaces. J. Mol. Liq. 2020, 302, 112381. [Google Scholar] [CrossRef]
- Yusoff, N.M.; Yusoff, H.M.; Asari, A. Optimisation on N-Amidation Reaction of Cinnamic Acid by. Malays. J. Anal. Sci. 2024, 28, 1374–1385. [Google Scholar]
- Rasheed, P.A.; Sandhyarani, N. Carbon Nanostructures as Immobilization Platform for DNA: A Review on Current Progress in Electrochemical DNA Sensors. Biosens. Bioelectron. 2017, 97, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z. An Overview of Carbon Nanotubes and Graphene for Biosensing Applications. Nano-Micro Lett. 2017, 9, 25. [Google Scholar] [CrossRef]
- Campuzano, S.; Pedrero, M.; Yáñez-Sedeño, P.; Pingarrón, J.M. Antifouling (Bio)Materials for Electrochemical (Bio)Sensing. Int. J. Mol. Sci. 2019, 20, 423. [Google Scholar] [CrossRef]
- Wang, F.; Xie, Y.; Zhu, W.; Wei, T. Recent Advances in Functionalization Strategies for Biosensor Interfaces, Especially the Emerging Electro-Click: A Review. Chemosensors 2023, 11, 481. [Google Scholar] [CrossRef]
- Hua, Y.; Ma, J.; Li, D.; Wang, R. DNA-Based Biosensors for the Biochemical Analysis: A Review. Biosensors 2022, 12, 183. [Google Scholar] [CrossRef]
- Barrias, S.; Ibáñez, J.; Fernandes, J.R.; Martins-Lopes, P. The Role of DNA-Based Biosensors in Species Identification for Food Authenticity Assessment. Trends Food Sci. Technol. 2024, 145, 104350. [Google Scholar] [CrossRef]
- Xiao, Y.; Lai, R.Y.; Plaxco, K.W. Preparation of Electrode-Immobilized, Redox-Modified Oligonucleotides for Electrochemical DNA and Aptamer-Based Sensing. Nat. Protoc. 2007, 2, 2875–2880. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, L.; Yang, X.; Wang, K.; He, L.; Zhu, J.; Su, T. An Electrochemical DNA Biosensor Based on the “Y” Junction Structure and Restriction Endonuclease-Aided Target Recycling Strategy. Chem. Commun. 2012, 48, 2982. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Z.; Li, Y.; Xie, G. Amplified Electrochemical Detection of mecA Gene in Methicillin-Resistant Staphylococcus Aureus Based on Target Recycling Amplification and Isothermal Strand-Displacement Polymerization Reaction. Sens. Actuators B Chem. 2015, 221, 148–154. [Google Scholar] [CrossRef]
- Williamson, P.; Piskunen, P.; Ijäs, H.; Butterworth, A.; Linko, V.; Corrigan, D.K. Signal Amplification in Electrochemical DNA Biosensors Using Target-Capturing DNA Origami Tiles. ACS Sens. 2023, 8, 1471–1480. [Google Scholar] [CrossRef]
- Immoos, C.E.; Lee, S.J.; Grinstaff, M.W. DNA-PEG-DNA Triblock Macromolecules for Reagentless DNA Detection. J. Am. Chem. Soc. 2004, 126, 10814–10815. [Google Scholar] [CrossRef] [PubMed]
- Xiong, E.; Li, Z.; Zhang, X.; Zhou, J.; Yan, X.; Liu, Y.; Chen, J. Triple-Helix Molecular Switch Electrochemical Ratiometric Biosensor for Ultrasensitive Detection of Nucleic Acids. Anal. Chem. 2017, 89, 8830–8835. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Tang, D.; Du, L.; Zhang, Y.; Zhang, L. 40Gao, F. A Novel Signal-on Electrochemical DNA Sensor Based on Target Catalyzed Hairpin Assembly Strategy. Biosens. Bioelectron. 2015, 64, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Lubin, A.A.; Baker, B.R.; Plaxco, K.W.; Heeger, A.J. Single-Step Electronic Detection of Femtomolar DNA by Target-Induced Strand Displacement in an Electrode-Bound Duplex. Proc. Natl. Acad. Sci. USA 2006, 103, 16677–16680. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, F.; Ni, J.; Liao, X.; Zhang, X.; Lin, Z. Facile Construction of a Highly Sensitive DNA Biosensor by In-Situ Assembly of Electro-Active Tags on Hairpin-Structured Probe Fragment. Sci. Rep. 2016, 6, 22441. [Google Scholar] [CrossRef]
- Steel, A.B.; Herne, T.M.; Tarlov, M.J. Electrochemical Quantitation of DNA Immobilized on Gold. Anal. Chem. 1998, 70, 4670–4677. [Google Scholar] [CrossRef]
- Keighley, S.D.; Li, P.; Estrela, P.; Migliorato, P. Optimization of DNA Immobilization on Gold Electrodes for Label-Free Detection by Electrochemical Impedance Spectroscopy. Biosens. Bioelectron. 2008, 23, 1291–1297. [Google Scholar] [CrossRef]
- McEwen, G.D.; Chen, F.; Zhou, A. Immobilization, Hybridization, and Oxidation of Synthetic DNA on Gold Surface: Electron Transfer Investigated by Electrochemistry and Scanning Tunneling Microscopy. Anal. Chim. Acta 2009, 643, 26–37. [Google Scholar] [CrossRef]
- Xu, X. Interface Studies for Gold-Based Electrochemical DNA Sensors; Acta Universitatis Upsaliensis: Uppsala, Sweden, 2019. [Google Scholar]
- Rowe, A.A.; White, R.J.; Bonham, A.J.; Plaxco, K.W. Fabrication of Electrochemical-DNA Biosensors for the Reagentless Detection of Nucleic Acids, Proteins and Small Molecules. J. Vis. Exp. 2011, 52, e2922. [Google Scholar] [CrossRef] [PubMed]
- Kazemzadeh-Beneh, H.; Safarnejad, M.R.; Norouzi, P.; Samsampour, D.; Alavi, S.M.; Shaterreza, D. Development of Label-Free Electrochemical OMP-DNA Probe Biosensor as a Highly Sensitive System to Detect of Citrus Huanglongbing. Sci. Rep. 2024, 14, 12183. [Google Scholar] [CrossRef]
- Zakiyyah, S.N.; Satriana, N.P.; Fransisca, N.; Gaffar, S.; Syakir, N.; Irkham, I.; Hartati, Y.W. Gold Nanoparticle-Modified Screen-Printed Carbon Electrodes for Label-Free Detection of SARS-CoV-2 RNA Using Drop Casting and Spray Coating Methods: Original Scientific Article. ADMET DMPK 2025, 13, 2577. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, W.J.; Chung, M. Enhanced Electrochemical Biosensing on Gold Electrodes with a Ferri/Ferrocyanide Redox Couple. Analyst 2021, 146, 5236–5244. [Google Scholar] [CrossRef]
- Tomlinson, J.; Boonham, N. Real-Time LAMP for Chalara Fraxinea Diagnosis. In Plant Pathology; Methods in Molecular Biology; Lacomme, C., Ed.; Springer: New York, NY, USA, 2015; Volume 1302, pp. 75–83. ISBN 978-1-4939-2619-0. [Google Scholar]
- Lee, D.; La Mura, M.; Allnutt, T.R.; Powell, W. Detection of Genetically Modified Organisms (GMOs) Using Isothermal Amplification of Target DNA Sequences. BMC Biotechnol. 2009, 9, 7. [Google Scholar] [CrossRef]
- Kiddle, G.; Hardinge, P.; Buttigieg, N.; Gandelman, O.; Pereira, C.; McElgunn, C.J.; Rizzoli, M.; Jackson, R.; Appleton, N.; Moore, C.; et al. GMO Detection Using a Bioluminescent Real Time Reporter (BART) of Loop Mediated Isothermal Amplification (LAMP) Suitable for Field Use. BMC Biotechnol. 2012, 12, 15. [Google Scholar] [CrossRef]
- De Muro, M.A. Probe Design, Production, and Applications. In Molecular Biomethods Handbook; Walker, J.M., Rapley, R., Eds.; Humana Press: Totowa, NJ, USA, 2008; pp. 41–53. ISBN 978-1-60327-375-6. [Google Scholar]
- Prediger, E. How to Design Primers and Probes for PCR and qPCR, IDT. Available online: https://www.idtdna.com/pages/education/decoded/article/designing-pcr-primers-and-probes (accessed on 8 July 2025).
- Yang, W.; Lai, R.Y. Comparison of the Stem-Loop and Linear Probe-Based Electrochemical DNA Sensors by Alternating Current Voltammetry and Cyclic Voltammetry. Langmuir 2011, 27, 14669–14677. [Google Scholar] [CrossRef]
- Duan, H.; Wang, Y.; Tang, S.-Y.; Xiao, T.-H.; Goda, K.; Li, M. A CRISPR-Cas12a Powered Electrochemical Sensor Based on Gold Nanoparticles and MXene Composite for Enhanced Nucleic Acid Detection. Sens. Actuators B Chem. 2023, 380, 133342. [Google Scholar] [CrossRef]
- Zuker, M. Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Sequence Alignment Tool. VectorBuilder. Available online: https://en.vectorbuilder.com/tool/sequence-alignment.html (accessed on 10 July 2025).
- Limbu, T.B.; Chitara, B.; Orlando, J.D.; Cervantes, M.Y.; Kumari, S.; Li, Q.; Tang, Y.; Yan, F. Green Synthesis of Reduced Ti 3 C 2 T x MXene Nanosheets with Enhanced Conductivity, Oxidation Stability, and SERS Activity. J. Mater. Chem. C 2020, 8, 4722–4731. [Google Scholar] [CrossRef]
- Prabhakar, T.; Giaretta, J.; Zulli, R.; Rath, R.J.; Farajikhah, S.; Talebian, S.; Dehghani, F. Covalent Immobilization: A Review from an Enzyme Perspective. Chem. Eng. J. 2025, 503, 158054. [Google Scholar] [CrossRef]
- Podunavac, I.; Kukkar, M.; Léguillier, V.; Rizzotto, F.; Pavlovic, Z.; Janjušević, L.; Costache, V.; Radonic, V.; Vidic, J. Low-Cost Goldleaf Electrode as a Platform for Escherichia coli Immunodetection. Talanta 2023, 259, 124557. [Google Scholar] [CrossRef] [PubMed]
- Jarić, S.; Schobesberger, S.; Velicki, L.; Milovančev, A.; Nikolić, S.; Ertl, P.; Bobrinetskiy, I.; Knežević, N.Ž. Direct Electrochemical Reduction of Graphene Oxide Thin Film for Aptamer-Based Selective and Highly Sensitive Detection of Matrix Metalloproteinase 2. Talanta 2024, 274, 126079. [Google Scholar] [CrossRef] [PubMed]
- Regulation—1829/2003—EN—EUR—Lex. Available online: https://eur-lex.europa.eu/eli/reg/2003/1829/oj/eng (accessed on 8 July 2025).
- Davison, J.; Bertheau, Y. EU Regulations on the Traceability and Detection of GMOs: Difficulties in Interpretation, Implementation and Compliance. CABI Rev. 2008, 2007, 14. [Google Scholar] [CrossRef]
- Waiblinger, H.-U.; Eichner, C.A.; Näumann, G.; Busch, U. GMO Analysis Results from Official Food Control Laboratories in Germany from 2017 to 2021. J. Verbrauch Lebensm. 2023, 18, 93–99. [Google Scholar] [CrossRef]
- Singh, M.; Pal, D.; Aminedi, R.; Singh, A.K. Multiplex Real-Time Loop-Mediated Isothermal Amplification (LAMP) Based on the Annealing Curve Analysis: Toward an On-Site Multiplex Detection of Transgenic Sequences in Seeds and Food Products. J. Agric. Food Chem. 2024, 72, 17658–17665. [Google Scholar] [CrossRef]
- Takabatake, R.; Kagiya, Y.; Minegishi, Y.; Futo, S.; Soga, K.; Nakamura, K.; Kondo, K.; Mano, J.; Kitta, K. Rapid Screening Detection of Genetically Modified Crops by Loop-Mediated Isothermal Amplification with a Lateral Flow Dipstick. J. Agric. Food Chem. 2018, 66, 7839–7845. [Google Scholar] [CrossRef]
- Pataer, P.; Gao, K.; Zhang, P.; Wang, X.; Li, Z. A Simple, Portable and Multiplex LAMP-Based CRISPR/Cas12a Assay for Visually Screening Genetically Modified Crops. Sens. Actuators B Chem. 2024, 403, 135124. [Google Scholar] [CrossRef]
- Yu, Y.; Li, R.; Ma, Z.; Han, M.; Zhang, S.; Zhang, M.; Qiu, Y. Development and Evaluation of a Novel Loop Mediated Isothermal Amplification Coupled with TaqMan Probe Assay for Detection of Genetically Modified Organism with NOS Terminator. Food Chem. 2021, 356, 129684. [Google Scholar] [CrossRef]
- Halim, J.; Cook, K.M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M.W. X-Ray Photoelectron Spectroscopy of Select Multi-Layered Transition Metal Carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417. [Google Scholar] [CrossRef]
- Hu, K.; Lan, D.; Li, X.; Zhang, S. Electrochemical DNA Biosensor Based on Nanoporous Gold Electrode and Multifunctional Encoded DNA−Au Bio Bar Codes. Anal. Chem. 2008, 80, 9124–9130. [Google Scholar] [CrossRef]
- Feng, D.; Su, J.; He, G.; Xu, Y.; Wang, C.; Zheng, M.; Qian, Q.; Mi, X. Electrochemical DNA Sensor for Sensitive BRCA1 Detection Based on DNA Tetrahedral-Structured Probe and Poly-Adenine Mediated Gold Nanoparticles. Biosensors 2020, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, K.; Patterson, A.S.; Ferguson, B.S.; Plaxco, K.W.; Soh, H.T. Rapid, Sensitive, and Quantitative Detection of Pathogenic DNA at the Point of Care through Microfluidic Electrochemical Quantitative Loop-Mediated Isothermal Amplification. Angew. Chem. Int. Ed. 2012, 51, 4896–4900. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Wang, H.; Wen, Y.; Zhang, X.; Su, L. A Specially Designed DNA-Assembled Framework Structure Probe Coupled with Loop-Mediated Isothermal Amplification (LAMP)-DNA Signal Transducer for Rapid and Sensitive Electrochemical Detection of miRNA. Sens. Actuators B Chem. 2022, 372, 132610. [Google Scholar] [CrossRef]
- Sewid, A.H.; Dylewski, H.C.; Ramos, J.H.; Morgan, B.M.; Gelalcha, B.D.; D’Souza, D.H.; Wu, J.J.; Dego, O.K.; Eda, S. Colorimetric and Electrochemical Analysis of DNAzyme-LAMP Amplicons for the Detection of Escherichia coli in Food Matrices. Sci. Rep. 2024, 14, 28942. [Google Scholar] [CrossRef]
- Pellitero, M.A.; Shaver, A.; Arroyo-Currás, N. Critical Review—Approaches for the Electrochemical Interrogation of DNA-Based Sensors: A Critical Review. J. Electrochem. Soc. 2020, 167, 037529. [Google Scholar] [CrossRef]
- Lai, R.Y. Folding- and Dynamics-Based Electrochemical DNA Sensors. In Methods in Enzymology; Academic Press Inc.: Cambridge, MA, USA, 2017; Volume 589, pp. 221–252. [Google Scholar]
- Parveen, R.K. General Theory for Pulse Voltammetric Techniques on Rough and Finite Fractal Electrodes for Reversible Redox System with Unequal Diffusivities. Electrochim. Acta 2016, 194, 283–291. [Google Scholar] [CrossRef]
- Li, B.; Ellington, A.D. Electrochemical Techniques as Powerful Readout Methods for Aptamer-Based Biosensors. In DNA Conjugates and Sensors; RSC Publishing: London, UK, 2012. [Google Scholar] [CrossRef]
- Dauphin-Ducharme, P.; Plaxco, K.W. Maximizing the Signal Gain of Electrochemical-DNA Sensors. Anal. Chem. 2016, 88, 11654–11662. [Google Scholar] [CrossRef]
- Simões, F.R.; Xavier, M.G. 6–Electrochemical Sensors. In Nanoscience and Its Applications; Micro and Nano Technologies; Da Róz, A.L., Ferreira, M., Lima Leite, F.D., Oliveira, O.N., Eds.; William Andrew Publishing: Norwich, NY, USA, 2017; pp. 155–178. ISBN 978-0-323-49780-0. [Google Scholar]
- Zhao, Y.; Qiu, J.; Jiang, P.; Wang, M.; Sun, M.; Fan, G.; Yang, N.; Huang, N.; Han, Y.; Han, L.; et al. RNA extraction-free reduced graphene oxide-based RT-LAMP fluorescence assay for highly sensitive SARS-CoV-2 detection. Talanta 2024, 277, 126413. [Google Scholar] [CrossRef]
- Martin, A.; Grant, K.B.; Stressmann, F.; Ghigo, J.-M.; Marchal, D.; Limoges, B. Ultimate Single-Copy DNA Detection Using Real-Time Electrochemical LAMP. ACS Sens. 2016, 1, 904–912. [Google Scholar] [CrossRef]
- Yu, X.; Bai, S.; Wang, L. In situ reduction of gold nanoparticles-decorated MXenes-based electrochemical sensing platform for KRAS gene detection. Front. Bioeng. Biotechnol. 2023, 11, 1176046. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, X.; Duan, X.; Liu, C.; Huang, J.; Zhang, T.; Ding, S.; Min, X. A LAMP-based ratiometric electrochemical sensing for ultrasensitive detection of Group B Streptococci with improved stability and accuracy. Sens. Actuators B Chem. 2020, 321, 128502. [Google Scholar] [CrossRef]
- Sarycheva, A.; Gogotsi, Y. Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488. [Google Scholar] [CrossRef]
- Adomaviciute-Grabusove, S.; Popov, A.; Ramanavicius, S.; Sablinskas, V.; Shevchuk, K.; Gogotsi, O.; Baginskiy, I.; Gogotsi, Y.; Ramanavicius, A. Monitoring Ti3C2Tx MXene Degradation Pathways Using Raman Spectroscopy. ACS Nano 2024, 18, 13184–13195. [Google Scholar] [CrossRef] [PubMed]
- Shevchuk, K.; Sarycheva, A.; Shuck, C.E.; Gogotsi, Y. Raman Spectroscopy Characterization of 2D Carbide and Carbonitride MXenes. Chem. Mater. 2023, 35, 8239–8247. [Google Scholar] [CrossRef]
- Zhang, L.; Su, W.; Huang, Y.; Li, H.; Fu, L.; Song, K.; Huang, X.; Yu, J.; Lin, C.-T. In Situ High-Pressure X-Ray Diffraction and Raman Spectroscopy Study of Ti3C2Tx MXene. Nanoscale Res Lett 2018, 13, 343. [Google Scholar] [CrossRef]
- Wang, H.; de Kogel, A.; Wang, Z.; Zou, R.; Wang, X. Strategies of Tailoring 2D MXenes for Enhancing Sulfur-Based Battery Performance. Chemical Engineering Journal 2025, 506, 159924. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, A.; Liu, F.; Cao, J.; Wang, L.; Hu, Q. Carbon Dioxide Adsorption of Two-Dimensional Carbide MXenes. J Adv Ceram 2018, 7, 237–245. [Google Scholar] [CrossRef]
Thiol + methylene blue (MB) modified linear oligonucleotide probe for electrochemistry | |
P-35S | /5ThioMC6-D/GAAGACGTTCCAACCACGTC/3MeBlN/ |
P-FMV | /5ThioMC6-D/GTGCTGGAACAGTAGTTTACTTTGATTG/3MeBlN/ |
Thiol + MB-modified stem-loop oligonucleotide probe for electrochemistry modifications | |
P-FMV SLP | /5ThioMC6-D/CCGTGTGCTGGAACAGTAGTTTACTTTGATTGACGG/3MeBlN/ |
Thiol-modified linear oligonucleotide probe for electrochemistry | |
P-35S | /5ThioMC6-D/GAAGACGTTCCAACCACGTC-3’ |
P-FMV | /5ThioMC6-D/GTGCTGGAACAGTAGTTTACTTTGATTG-3’ |
Amino + MB modified linear oligonucleotide probe for electrochemistry | |
P-FMV | /5AmMC6/GTGCTGGAACAGTAGTTTACTTTGATTG/3ATTO MB2/ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuprešanin, A.; Pavlović, M.; Šašić Zorić, L.; Perić, M.; Jarić, S.; Knežić, T.; Janjušević, L.; Novaković, Z.; Radović, M.; Djisalov, M.; et al. Advanced Nanomaterial-Based Electrochemical Biosensing of Loop-Mediated Isothermal Amplification Products. Biosensors 2025, 15, 584. https://doi.org/10.3390/bios15090584
Kuprešanin A, Pavlović M, Šašić Zorić L, Perić M, Jarić S, Knežić T, Janjušević L, Novaković Z, Radović M, Djisalov M, et al. Advanced Nanomaterial-Based Electrochemical Biosensing of Loop-Mediated Isothermal Amplification Products. Biosensors. 2025; 15(9):584. https://doi.org/10.3390/bios15090584
Chicago/Turabian StyleKuprešanin, Ana, Marija Pavlović, Ljiljana Šašić Zorić, Milinko Perić, Stefan Jarić, Teodora Knežić, Ljiljana Janjušević, Zorica Novaković, Marko Radović, Mila Djisalov, and et al. 2025. "Advanced Nanomaterial-Based Electrochemical Biosensing of Loop-Mediated Isothermal Amplification Products" Biosensors 15, no. 9: 584. https://doi.org/10.3390/bios15090584
APA StyleKuprešanin, A., Pavlović, M., Šašić Zorić, L., Perić, M., Jarić, S., Knežić, T., Janjušević, L., Novaković, Z., Radović, M., Djisalov, M., Kanas, N., Paskaš, J., & Pavlović, Z. (2025). Advanced Nanomaterial-Based Electrochemical Biosensing of Loop-Mediated Isothermal Amplification Products. Biosensors, 15(9), 584. https://doi.org/10.3390/bios15090584