A Highly Sensitive SERS Technique Based on Au NPs Monolayer Film Combined with Multivariate Statistical Algorithms for Auxiliary Screening of Postmenopausal Osteoporosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Rat Model and Treatment
2.2. Collection of Serum and Bone Tissue Samples
2.3. Preparation and Characterization of Au NPs Monolayer Film
2.3.1. Preparation of Au NPs Monolayer Film Based on the Marangoni Effect
2.3.2. Characterization of Gold Nanosol and Au NPs Monolayer Film
2.4. Serum SERS Measurements
2.5. SERS Data Processing and Analysis
2.6. Statistical Analyses
3. Results
3.1. Histomorphology Confirms the Successful Establishment of the PMOP Rat Model
3.2. Au NPs Monolayer Film Has Good SERS Enhancement Effect and Stability
3.3. Differences in Serum SERS Spectra Between Sham, OVX, and ICA Treatment Groups
3.4. PMOP Screening Based on PLS-SVM Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, Y.; Lv, B.; Li, Z.; Ma, C.; Gui, Z.; Geng, Y.; Liu, G.; Sang, L.; Xu, C.; Min, Q.; et al. Bone-Targeted Biomimetic Nanogels Re-Establish Osteoblast/Osteoclast Balance to Treat Postmenopausal Osteoporosis. Small 2024, 20, e2303494. [Google Scholar] [CrossRef]
- Foessl, I.; Dimai, H.P.; Obermayer-Pietsch, B. Long-term and sequential treatment for osteoporosis. Nat. Rev. Endocrinol. 2023, 19, 520–533. [Google Scholar] [CrossRef] [PubMed]
- Arceo-Mendoza, R.M.; Camacho, P.M. Postmenopausal Osteoporosis: Latest Guidelines. Endocrinol. Metab. Clin. N. Am. 2021, 50, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yu, W.; Yin, X.; Cui, L.; Tang, S.; Jiang, N.; Cui, L.; Zhao, N.; Lin, Q.; Chen, L.; et al. Prevalence of Osteoporosis and Fracture in China: The China Osteoporosis Prevalence Study. JAMA Netw. Open 2021, 4, e2121106. [Google Scholar] [CrossRef] [PubMed]
- Siris, E.S.; Adler, R.; Bilezikian, J.; Bolognese, M.; Dawson-Hughes, B.; Favus, M.J.; Harris, S.T.; Jan de Beur, S.M.; Khosla, S.; Lane, N.E.; et al. The clinical diagnosis of osteoporosis: A position statement from the National Bone Health Alliance Working Group. Osteoporos. Int. 2014, 25, 1439–1443. [Google Scholar] [CrossRef]
- Shevroja, E.; Cafarelli, F.P.; Guglielmi, G.; Hans, D. DXA parameters, Trabecular Bone Score (TBS) and Bone Mineral Density (BMD), in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrine 2021, 74, 20–28. [Google Scholar] [CrossRef]
- Pickhardt, P.J.; Graffy, P.M.; Zea, R.; Lee, S.J.; Liu, J.; Sandfort, V.; Summers, R.M. Automated Abdominal CT Imaging Biomarkers for Opportunistic Prediction of Future Major Osteoporotic Fractures in Asymptomatic Adults. Radiology 2020, 297, 64–72. [Google Scholar] [CrossRef]
- Management of osteoporosis in postmenopausal women: The 2021 position statement of The North American Menopause Society. Menopause 2021, 28, 973–997. [CrossRef]
- Schini, M.; Vilaca, T.; Gossiel, F.; Salam, S.; Eastell, R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr. Rev. 2023, 44, 417–473. [Google Scholar] [CrossRef]
- Qu, X.L.; Zheng, B.; Chen, T.Y.; Cao, Z.R.; Qu, B.; Jiang, T. Bone Turnover Markers and Bone Mineral Density to Predict Osteoporotic Fractures in Older Women: A Retrospective Comparative Study. Orthop. Surg. 2020, 12, 116–123. [Google Scholar] [CrossRef]
- Napoli, N.; Conte, C.; Eastell, R.; Ewing, S.K.; Bauer, D.C.; Strotmeyer, E.S.; Black, D.M.; Samelson, E.J.; Vittinghoff, E.; Schwartz, A.V. Bone Turnover Markers Do Not Predict Fracture Risk in Type 2 Diabetes. J. Bone Miner. Res. 2020, 35, 2363–2371. [Google Scholar] [CrossRef]
- Dou, H.; Sun, W.; Chen, S.; Chen, K. Predicting bone aging using spatially offset Raman spectroscopy: A longitudinal analysis on mice. Anal. Bioanal. Chem. 2025, 417, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Liu, Y.; Luo, J. Recent application of Raman spectroscopy in tumor diagnosis: From conventional methods to artificial intelligence fusion. PhotoniX 2023, 4, 22. [Google Scholar] [CrossRef]
- Orlando, A.; Franceschini, F.; Muscas, C.; Pidkova, S.; Bartoli, M.; Rovere, M.; Tagliaferro, A. A Comprehensive Review on Raman Spectroscopy Applications. Chemosensors 2021, 9, 262. [Google Scholar] [CrossRef]
- Monzem, S.; Sônego, D.A.; de Cássia Martini, A.; Bispo Dantas Moura, A.P.; da Silva, F.G.; de Faria, J.L.B.; de Souza, R.L. Raman spectroscopic of osteoporosis model in mouse tibia in vivo. Vib. Spectrosc. 2018, 98, 88–91. [Google Scholar] [CrossRef]
- Beattie, J.R.; Sophocleous, A.; Caraher, M.C.; O’Driscoll, O.; Cummins, N.M.; Bell, S.E.J.; Towler, M.; Rahimnejad Yazdi, A.; Ralston, S.H.; Idris, A.I. Raman spectroscopy as a predictive tool for monitoring osteoporosis therapy in a rat model of postmenopausal osteoporosis. J. Mater. Sci. Mater. Med. 2019, 30, 25. [Google Scholar] [CrossRef]
- Beattie, J.R.; Towler, M.R. Raman spectroscopy as a tool for monitoring osteoporosis therapy in postmenopausal osteoporosis. J. Raman Spectrosc. 2023, 54, 1399–1407. [Google Scholar] [CrossRef]
- Chen, K.; Yao, C.; Sun, M.; Li, Q.; Luo, Z.; Lan, Y.; Chen, Y.; Chen, S. Raman spectroscopic analysis for osteoporosis identification in humans with hip fractures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 314, 124193. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Andrade, G.F.S.; Brolo, A.G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal. Chim. Acta 2020, 1097, 1–29. [Google Scholar] [CrossRef]
- Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; Ozaki, Y.; Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 2022, 1, 87. [Google Scholar] [CrossRef]
- Ying, Y.; Tang, Z.; Liu, Y. Material design, development, and trend for surface-enhanced Raman scattering substrates. Nanoscale 2023, 15, 10860–10881. [Google Scholar] [CrossRef]
- Guo, X.; Li, J.; Arabi, M.; Wang, X.; Wang, Y.; Chen, L. Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors. ACS Sens. 2020, 5, 601–619. [Google Scholar] [CrossRef]
- Guan, P.C.; Zhang, H.; Li, Z.Y.; Xu, S.S.; Sun, M.; Tian, X.M.; Ma, Z.; Lin, J.S.; Gu, M.M.; Wen, H.; et al. Rapid Point-of-Care Assay by SERS Detection of SARS-CoV-2 Virus and Its Variants. Anal. Chem. 2022, 94, 17795–17802. [Google Scholar] [CrossRef]
- Li, J.; Cupil-Garcia, V.; Wang, H.N.; Strobbia, P.; Lai, B.; Hu, J.; Maiwald, M.; Sumpf, B.; Sun, T.P.; Kemner, K.M.; et al. Plasmonics nanorod biosensor for in situ intracellular detection of gene expression biomarkers in intact plant systems. Biosens. Bioelectron. 2024, 261, 116471. [Google Scholar] [CrossRef]
- Zhang, X.; Gan, T.; Xu, Z.; Zhang, H.; Wang, D.; Zhao, X.; Huang, Y.; Liu, Q.; Fu, B.; Dai, Z.; et al. Immune-like sandwich multiple hotspots SERS biosensor for ultrasensitive detection of NDKA biomarker in serum. Talanta 2024, 271, 125630. [Google Scholar] [CrossRef]
- Liu, H.; He, Y.; Cao, K. Flexible Surface-Enhanced Raman Scattering Substrates: A Review on Constructions, Applications, and Challenges. Adv. Mater. Interfaces 2021, 8, 2100982. [Google Scholar] [CrossRef]
- Chen, B.; Gao, J.; Sun, H.; Chen, Z.; Qiu, X. Innovative applications of SERS in precision medicine: In situ and real-time live imaging. Talanta 2025, 294, 128225. [Google Scholar] [CrossRef]
- Lin, W.; Lai, S.; Lu, D.; Zhang, Q.; Lin, X.; Lin, J.; Wang, J.; Huang, Z. An acousto-assisted liquid-marble-based microreactor for quantitative SERS detection of alkaline phosphatase. Sens. Actuators B Chem. 2022, 356, 131361. [Google Scholar] [CrossRef]
- Sun, D.; Xu, W.; Liang, C.; Shi, W.; Xu, S. Smart Surface-Enhanced Resonance Raman Scattering Nanoprobe for Monitoring Cellular Alkaline Phosphatase Activity during Osteogenic Differentiation. ACS Sens. 2020, 5, 1758–1767. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wang, Z.; Bi, L.; Bi, C.; Du, Q. Gold nanocage-based surface-enhanced Raman scattering probes for long-term monitoring of intracellular microRNA during bone marrow stem cell differentiation. Nanoscale 2020, 12, 1513–1527. [Google Scholar] [CrossRef]
- Jiang, H.; Wu, M.; Li, A.; Lv, X.; Deng, Y.; Li, X. A surface-enhanced Raman scattering-based competitive lateral flow assay for on-orbit rapid detection of bone loss biomarker CTX I. Acta Astronaut. 2023, 213, 138–144. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Xu, S.; Chen, Q.; Zhang, Z.; Yuan, D.; Wei, G.; Huang, H.; Li, X.; Yu, Y. Study on the activity of Huo–Xue–Hua–Yu decoction and its drug groups in improving fracture healing using surface-enhanced Raman scattering (SERS) spectroscopy based on gold nanoparticles. Anal. Methods 2022, 14, 2212–2218. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, W.; Wang, L.; Zu, Z.; Zhang, Z.; Chen, Q.; Huang, H.; Li, X. An auxiliary diagnostic technology and clinical efficacy evaluation in knee osteoarthritis based on serum surface-enhanced Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 296, 122654. [Google Scholar] [CrossRef]
- Sun, T.; Lin, Y.; Yu, Y.; Gao, S.; Gao, X.; Zhang, H.; Lin, K.; Lin, J. Low-abundance proteins-based label-free SERS approach for high precision detection of liver cancer with different stages. Anal. Chim. Acta 2024, 1304, 342518. [Google Scholar] [CrossRef]
- Gao, S.; Zheng, M.; Lin, Y.; Lin, K.; Zeng, J.; Xie, S.; Yu, Y.; Lin, J. Surface-enhanced Raman scattering analysis of serum albumin via adsorption-exfoliation on hydroxyapatite nanoparticles for noninvasive cancers screening. J. Biophotonics 2020, 13, e202000087. [Google Scholar] [CrossRef]
- Hong, Q.; Chen, W.; Zhang, Z.; Chen, Q.; Wei, G.; Huang, H.; Yu, Y. Nasopharyngeal carcinoma cell screening based on the electroporation-SERS spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 308, 123747. [Google Scholar] [CrossRef]
- Yu, Y.; Lin, Y.; Xu, C.; Lin, K.; Ye, Q.; Wang, X.; Xie, S.; Chen, R.; Lin, J. Label-free detection of nasopharyngeal and liver cancer using surface-enhanced Raman spectroscopy and partial lease squares combined with support vector machine. Biomed. Opt. Express 2018, 9, 6053–6066. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, J.; Zheng, M.; Gong, W.; Li, H.; Shu, Z.; Du, W.; Gao, S.; Yu, Y. Quantitative and direct serum albumin detection by label-free SERS using tunable hydroxyapatite nanostructure for prostate cancer detection. Anal. Chim. Acta 2022, 1221, 340101. [Google Scholar] [CrossRef]
- Bai, X.; Lin, J.; Wu, X.; Lin, Y.; Zhao, X.; Du, W.; Gao, J.; Hu, Z.; Xu, Q.; Li, T.; et al. Label-free detection of bladder cancer and kidney cancer plasma based on SERS and multivariate statistical algorithm. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121336. [Google Scholar] [CrossRef] [PubMed]
- Yousefzadeh, N.; Kashfi, K.; Jeddi, S.; Ghasemi, A. Ovariectomized rat model of osteoporosis: A practical guide. EXCLI J. 2020, 19, 89–107. [Google Scholar] [CrossRef]
- Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Wang, J.; Teng, C.; Jiang, Y.; Zhu, Y.; Jiang, L. Wetting-Induced Climbing for Transferring Interfacially Assembled Large-Area Ultrathin Pristine Graphene Film. Adv. Mater. 2019, 31, 1806742. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.; Yun, J.M.; Yun, T.; Kim, P.; Lee, K.E.; Lee, W.J.; Ryoo, R.; Pine, D.J.; Yi, G.R.; Kim, S.O. Two-Minute Assembly of Pristine Large-Area Graphene Based Films. Nano Lett. 2014, 14, 1388–1393. [Google Scholar] [CrossRef]
- Lin, X.; Fang, G.; Liu, Y.; He, Y.; Wang, L.; Dong, B. Marangoni Effect-Driven Transfer and Compression at Three-Phase Interfaces for Highly Reproducible Nanoparticle Monolayers. J. Phys. Chem. Lett. 2020, 11, 3573–3581. [Google Scholar] [CrossRef]
- Zhao, J.; Lui, H.; McLean, D.I.; Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 2007, 61, 1225–1232. [Google Scholar] [CrossRef]
- Chang, C.; Lin, C. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Li, R.; Lv, H.; Zhang, X.; Liu, P.; Chen, L.; Cheng, J.; Zhao, B. Vibrational spectroscopy and density functional theory study of 4-mercaptobenzoic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 148, 369–374. [Google Scholar] [CrossRef]
- Prakash, O.; Umapathy, S. Raman spectroscopy study of CdS nanorods and strain induced by the adsorption of 4-mercaptobenzoic acid. J. Chem. Phys. 2023, 158, 134719. [Google Scholar] [CrossRef]
- Li, P.; Wang, X.; Li, H.; Yang, X.; Zhang, X.; Zhang, L.; Ozaki, Y.; Liu, B.; Zhao, B. Investigation of charge-transfer between a 4-mercaptobenzoic acid monolayer and TiO2 nanoparticles under high pressure using surface-enhanced Raman scattering. Chem. Commun. 2018, 54, 6280–6283. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Wu, Q.; Qiu, S.; Yu, Y.; Chen, W.; Lin, H.; Lin, D.; Feng, S.; Chen, R. Assessment of the radiotherapy effect for nasopharyngeal cancer using plasma surface-enhanced Raman spectroscopy technology. Biomed. Opt. Express 2018, 9, 3413–3423. [Google Scholar] [CrossRef]
- Talari, A.C.S.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2015, 50, 46–111. [Google Scholar] [CrossRef]
- Li, B.; Morris, J.; Martin, E.B. Model selection for partial least squares regression. Chemom. Intell. Lab. Syst. 2002, 64, 79–89. [Google Scholar] [CrossRef]
- Gao, S.; Lin, Y.; Zhao, X.; Gao, J.; Xie, S.; Gong, W.; Yu, Y.; Lin, J. Label-free surface enhanced Raman spectroscopy analysis of blood serum via coffee ring effect for accurate diagnosis of cancers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120605. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, J.; Tang, S.; Zhao, X.; Zheng, M.; Gong, W.; Xie, S.; Gao, S.; Yu, Y.; Lin, J. Label-free diagnosis of breast cancer based on serum protein purification assisted surface-enhanced Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 263, 120234. [Google Scholar] [CrossRef] [PubMed]
- Cortet, B.; Guañabens, N.; Brandi, M.L.; Siggelkow, H. Similarities and differences between European guidelines for the management of postmenopausal osteoporosis. Arch. Osteoporos. 2024, 19, 84. [Google Scholar] [CrossRef]
- Anagnostis, P.; Lallas, K.; Pappa, A.; Avgeris, G.; Beta, K.; Damakis, D.; Fountoukidou, E.; Zidrou, M.; Lambrinoudaki, I.; Goulis, D.G. The association of vasomotor symptoms with fracture risk and bone mineral density in postmenopausal women: A systematic review and meta-analysis of observational studies. Osteoporos. Int. 2024, 35, 1329–1336. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, H.; Xie, H.; Zhang, J.; Ma, Q.; Wang, S.; Yuan, P.; Xue, H.; Hong, H.; Fan, S.; et al. l-arginine promotes angio-osteogenesis to enhance oxidative stress-inhibited bone formation by ameliorating mitophagy. J. Orthop. Translat. 2024, 46, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Li, Y.; Song, R.; Meng, X.; Fuchs, M.; Liang, C.; Kachler, K.; Meng, X.; Wen, J.; Schlötzer-Schrehardt, U.; et al. L-arginine metabolism inhibits arthritis and inflammatory bone loss. Ann. Rheum. Dis. 2024, 83, 72–87. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, J.; Liu, Q.; Guo, Y.; Li, M.; Tao, J.; Peng, S.; Li, R.; Deng, X.; Zhang, G.; et al. Role of amino acid metabolism in osteoporosis: Effects on the bone microenvironment and treatment strategies (Review). Mol. Med. Rep. 2025, 32, 212. [Google Scholar] [CrossRef]
- Ling, C.W.; Miao, Z.; Xiao, M.L.; Zhou, H.; Jiang, Z.; Fu, Y.; Xiong, F.; Zuo, L.S.Y.; Liu, Y.P.; Wu, Y.Y.; et al. The Association of Gut Microbiota with Osteoporosis Is Mediated by Amino Acid Metabolism: Multiomics in a Large Cohort. J. Clin. Endocrinol. Metab. 2021, 106, e3852–e3864. [Google Scholar] [CrossRef]
- Dehghanbanadaki, H.; Soltani, A.; Majidi, Z.; Rezaei-Tavirani, M.; Shafiee, G.; Ostovar, A.; Bandarian, F.; Najjar, N.; Larijani, B.; Nabipour, I.; et al. Metabolomic insights into amino acid signatures and pathways associated with osteoporosis in Iranian elderly population. Front. Med. 2025, 12, 1515449. [Google Scholar] [CrossRef]
- Su, S.; Tian, L. Association Between Dietary Tryptophan Intake and Bone Health: A Cross-Sectional Study. Calcif. Tissue Int. 2024, 116, 6. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liu, T.; Wang, X.; Lei, J.; Vuong, A.M.; Shi, X.; Han, Q. Plasma levels of amino acids and osteoporosis: A cross-sectional study. Sci. Rep. 2025, 15, 9811. [Google Scholar] [CrossRef] [PubMed]
- Michalowska, M.; Znorko, B.; Kaminski, T.; Oksztulska-Kolanek, E.; Pawlak, D. New insights into tryptophan and its metabolites in the regulation of bone metabolism. J. Physiol. Pharmacol. 2015, 66, 779–791. [Google Scholar] [PubMed]
- Wang, S.; Xu, B.; Yin, H.; Hua, Z.; Shao, Y.; Wang, J. Ginsenoside Rc alleviates osteoporosis by the TGF-β/Smad signaling pathway. Cell. Mol. Biol. 2024, 70, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, G.; Lu, Y.; Cui, Y.; Li, H.; Li, R.; Zhang, X.; Zhang, C.; Liu, T. The Combination of icariin and constrained dynamic loading stimulation attenuates bone loss in ovariectomy-induced osteoporotic mice. J. Orthop. Res. 2018, 36, 1415–1424. [Google Scholar] [CrossRef]
- Long, L.; Wang, X.; Lei, Y.; Guo, S.; Wang, C.; Dai, W.; Lin, B.; Xie, M.; Xu, H.; Li, S. Icariin: A Potential Alternative Against Osteoporosis. Nat. Prod. Commun. 2022, 17, 1–15. [Google Scholar] [CrossRef]
- Mevik, B.H.; Cederkvist, H.R. Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR). J. Chemom. 2004, 18, 422–429. [Google Scholar] [CrossRef]
Peak Positions (cm−1) | Tentative Assignments |
---|---|
490 | Arginine: S-S stretching vibration |
524 | Amino acid cysteine: S-S stretching mode |
588 | Ascorbic acid, Amide VI |
635 | Tyrosine: C-S stretching vibration |
802 | Uracil-based ring breathing mode |
883 | CH2, protein assignment |
1004 | Phenylalanine: Ring breathing |
1064 | Lipids: Skeletal C-C stretch |
1127 | D-mannose: C-N stretching vibration |
1197 | Tryptophan: ring vibration |
1323 | Collagen: CH3CH2 wagging mode |
1379 | Lipids: CH3 symmetric |
1575 | DNA/RNA bases: Ring breathing modes |
1647 | Collagen, Amide I: α-Helix |
Sample Groups | Sensitivity | Specificity | Accuracy |
---|---|---|---|
Sham vs. OVX | 100% | 100% | 100% |
OVX vs. ICA | 100% | 100% | 100% |
Sham vs. ICA | 96.67% | 96.67% | 96.67% |
Sham vs. OVX vs. ICA | 93.33% | 96.67% | 91.11% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Hu, J.; Shen, Q.; Xu, H.; Wang, S.; Wang, X.; Zhong, Y.; He, T.; Huang, H.; Hong, Q.; et al. A Highly Sensitive SERS Technique Based on Au NPs Monolayer Film Combined with Multivariate Statistical Algorithms for Auxiliary Screening of Postmenopausal Osteoporosis. Biosensors 2025, 15, 568. https://doi.org/10.3390/bios15090568
Yu Y, Hu J, Shen Q, Xu H, Wang S, Wang X, Zhong Y, He T, Huang H, Hong Q, et al. A Highly Sensitive SERS Technique Based on Au NPs Monolayer Film Combined with Multivariate Statistical Algorithms for Auxiliary Screening of Postmenopausal Osteoporosis. Biosensors. 2025; 15(9):568. https://doi.org/10.3390/bios15090568
Chicago/Turabian StyleYu, Yun, Jinlian Hu, Qidan Shen, Huifeng Xu, Shanshan Wang, Xiaoning Wang, Yuhuan Zhong, Tingting He, Hao Huang, Quanxing Hong, and et al. 2025. "A Highly Sensitive SERS Technique Based on Au NPs Monolayer Film Combined with Multivariate Statistical Algorithms for Auxiliary Screening of Postmenopausal Osteoporosis" Biosensors 15, no. 9: 568. https://doi.org/10.3390/bios15090568
APA StyleYu, Y., Hu, J., Shen, Q., Xu, H., Wang, S., Wang, X., Zhong, Y., He, T., Huang, H., Hong, Q., Huang, E., & Li, X. (2025). A Highly Sensitive SERS Technique Based on Au NPs Monolayer Film Combined with Multivariate Statistical Algorithms for Auxiliary Screening of Postmenopausal Osteoporosis. Biosensors, 15(9), 568. https://doi.org/10.3390/bios15090568