Case Study on Skin Calorimetry: Modeling Localized Muscle Heat Transfer During Exercise
Abstract
1. Introduction
2. Materials and Methods
2.1. Skin Calorimeter
2.2. Operating Model
2.3. Verification of the Calorimetric Model and Heat Flux Determination
2.4. Determination of Skin Thermal Properties (At Rest)
2.5. Determination of Skin Heat Flux and Subcutaneous Temperature (At Exercise)
3. Results and Discussion
3.1. Experimental Measurements
3.2. Mathematical Model of Heat Flux and Internal Skin Temperature Evolution
3.3. Transfer Function and Thermal Simulations
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PID control | Proportional–Integral–Derivative Controller |
RMSE | Root Mean Square Error |
GPIB | General Purpose Interface Bus |
TF | Transfer Function |
HFS | Heat-Flux Sensor |
IRT | Infrared Thermography |
NIRS | Near-Infrared Spectroscopy |
EPS | Expanded Polystyrene |
bpm | Beats Per Minute (Heart Rate) |
References
- Hill, A.V. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. 1938, 195, 126136. [Google Scholar] [CrossRef]
- Ettema, G.; Lorås, H.W. Efficiency in cycling: A review. Eur. J. Appl. Physiol. 2009, 106, 1–14. [Google Scholar] [CrossRef]
- Kenny, G.P.; Reardon, F.D.; Zaleski, W.; Reardon, M.L.; Haman, F.; Ducharme, M.B. Muscle temperature transients before, during, and after exercise measured using an intramuscular multisensor probe. J. Appl. Physiol. 2003, 94, 2350–2357. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.G.; Teller, C.; Andersen, S.L.; Jensen, F.B.; Hyldig, T.; Nielsen, B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J. Appl. Physiol. 1999, 86, 1032–1039. [Google Scholar] [CrossRef]
- Kenney, W.L.; Wolf, S.T.; Dillon, G.A.; Berry, C.W.; Alexander, L.M. Temperature regulation during exercise in the heat: Insights for the aging athlete. J. Sci. Med. Sport. 2021, 24, 739–746. [Google Scholar] [CrossRef]
- Ferrannini, E. The theoretical bases of indirect calorimetry: A review. Metabolism 1988, 37, 287–301. [Google Scholar] [CrossRef]
- Delsoglio, M.; Achamrah, N.; Berger, M.M.; Pichard, C. Indirect Calorimetry in Clinical Practice. J. Clin. Med. 2019, 8, 1387. [Google Scholar] [CrossRef]
- Koga, S.; Okushima, D.; Barstow, T.J.; Rossiter, H.B.; Kondo, N.; Poole, D.C. Near-infrared spectroscopy of superficial and deep rectus femoris reveals markedly different exercise response to superficial vastus lateralis. Physiol. Rep. 2017, 5, e13402. [Google Scholar] [CrossRef]
- Deng, Z.S.; Liu, J. Blood perfusion-based model for characterizing the temperature fluctuation in living tissues. Physica A 2001, 300, 521–530. [Google Scholar] [CrossRef]
- Hassanpour, S.; Saboonchi, A. Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process. J. Therm. Biol. 2016, 62, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Pardasani, K.R. Finite element model to study temperature distribution in skin and deep tissues of human limbs. J. Therm. Biol. 2016, 62, 98–105. [Google Scholar] [CrossRef]
- Cochrane, D.J.; Stannard, S.R.; Sargeant, A.J.; Rittweger, J. The rate of muscle temperature increase during acute whole-body vibration exercise. Eur. J. Appl. Physiol. 2008, 103, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Masur, L.; Brand, F.; Düking, P. Response of infrared thermography related parameters to (non-)sport specific exercise and relationship with internal load parameters in individual and team sport athletes—A systematic review. Front. Sports Act. Living 2024, 6, 1479608. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Garcia Luna, J.L.; Rangel-Berridi, K.; Bartlett, R.; Fraser, R.D.J.; Martínez-Jiménez, M.A. Use of Infrared Thermal Imaging for Assessing Acute Inflammatory Changes: A Case Series. Cureus 2022, 14, e28980. [Google Scholar] [CrossRef]
- Perrey, S.; Quaresima, V.; Ferrari, M. Muscle Oximetry in Sports Science: An Updated Systematic Review. Sports Med. 2024, 54, 975–996. [Google Scholar] [CrossRef] [PubMed]
- Eggenberger, P.; MacRae, B.A.; Kemp, S.; Bürguisser, M.; Rossi, R.M.; Annaheim, S. Prediction of core body temperature based on skin heat flux and heart rate during exercise. Front. Physiol. 2018, 9, 1780. [Google Scholar] [CrossRef]
- Daanen, H.A.M.; Kohlen, V.; Teunissen, L.P.J. Heat flux systems for body core temperature assessment during exercise. J. Therm. Biol. 2023, 112, 103480. [Google Scholar] [CrossRef]
- Grenier, E.; Gehin, C.; Mcadams, E.; Lun, B.; Gobin, J.P.; Uhl, J.F. Effect of compression stockings on cutaneous microcirculation: Evaluation based on measurements of the skin thermal conductivity. Phlebology 2014, 31, 101–105. [Google Scholar] [CrossRef]
- Wang, L.; Chong, D.; Di, Y.; Yi, H. A revised method to predict skin’s thermal resistance. Therm. Sci. 2018, 22, 1795–1802. [Google Scholar] [CrossRef]
- Okabe, T.; Fujimura, T.; Okajima, J.; Aiba, S.; Maruyama, S. Non-invasive measurement of effective thermal conductivity of human skin with a guard-heated thermistor probe. Int. J. Heat. Mass. Transf. 2018, 126, 625–635. [Google Scholar] [CrossRef]
- Webb, R.C.; Pielak, R.M.; Bastien, P.; Ayers, J.; Niittynen, J.; Kurniawan, J.; Manco, M.; Lin, A.; Cho, N.H.; Malyrchuk, V.; et al. Thermal Transport Characteristics of Human Skin Measured In Vivo Using Ultrathin Conformal Arrays of Thermal Sensors and Actuators. PLoS ONE 2015, 10, e0118131. [Google Scholar] [CrossRef]
- Webb, R.C.; Bonifas, A.P.; Behnaz, A.; Zhang, Y.; Yu, K.J.; Cheng, H.; Shi, M.; Bian, Z.; Liu, Z.; Kim, Y.-S.; et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013, 12, 938–944. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Malyarchuk, V.; Jia, L.; Jang, K.-I.; Webb, R.C.; Fu, H.; Shi, Y.; Zhou, G.; Shi, L.; et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat. Commun. 2014, 5, 4938. [Google Scholar] [CrossRef]
- Kharalkar, N.M.; Hayes, L.J.; Valvano, J.W. Pulse-power integrated-decay technique for the measurement of thermal conductivity. Meas. Sci. Technol. 2008, 19, 075104. [Google Scholar] [CrossRef]
- Rodríguez de Rivera, P.J.; Rodríguez de Rivera, M.; Socorro, F.; Rodríguez de Rivera, M. Heat flow measurement of human skin using a calorimetric sensor with a programmable thermostat. An alternative to climate chambers. Measurement 2021, 201, 111693. [Google Scholar] [CrossRef]
- Rodríguez de Rivera, P.J.; Rodríguez de Rivera, M.; Socorro, F.; Callicó, G.M.; Calbet, J.A.L.; Rodríguez de Rivera, M. Heat flow, heat capacity and thermal resistance of localized surfaces of the human body using a new calorimetric sensor. J. Therm. Anal. Calorim. 2022, 147, 7385–7398. [Google Scholar] [CrossRef]
- Rodríguez de Rivera, P.J.; Rodríguez de Rivera, M.; Socorro, F.; Rodríguez de Rivera, M. Monitoring of some minor human skin lesions using a skin calorimeter. J. Therm. Anal. Calorim. 2024, 149, 5257–5264. [Google Scholar] [CrossRef]
- Rodríguez de Rivera, M.; Rodríguez de Rivera, P.J. New, Optimized Skin Calorimeter Version for Measuring Thermal Responses of Localized Skin Areas during Physical Activity. Sensors 2024, 24, 5927. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez de Rivera, P.J.; Rodríguez de Rivera, M.; Socorro, F.; Rodríguez de Rivera, M. Modelling of heat conduction calorimeters. Case of a non-differential skin calorimeter. Thermochim. Acta 2025, 749, 180015. [Google Scholar] [CrossRef]
- Freitag, L.; Clijsen, R.; Deflorin, C.; Taube, W.; Taeymans, J.; Hohenauer, E. Intramuscular Temperature Changes in the Quadriceps Femoris Muscle After Post-Exercise Cold-Water Immersion (10 °C for 10 min): A Systematic Review with Meta-Analysis. Front. Sports Act. Living. 2021, 3, 660092. [Google Scholar] [CrossRef]
- Chaillou, T.; Treigyte, V.; Mosely, S.; Brazaitis, M.; Venckunas, T.; Cheng, A.J. Functional Impact of Post-exercise Cooling and Heating on Recovery and Training Adaptations: Application to Resistance, Endurance, and Sprint Exercise. Sports Med. Open 2022, 8, 37. [Google Scholar] [CrossRef]
- Rodrigues, D.B.; Pereira, P.J.S.; Limão-Vieira, P.; Stauffer, P.R.; Maccarini, P.F. Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications. Int. J. Heat Mass Transf. 2013, 62, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Burgei, W.; Zhou, H. Analytical solution of one-dimensional Pennes’ bioheat equation. Open Physics 2020, 18, 1084–1092. [Google Scholar] [CrossRef]
- Subramaniam, J.S.; Hubig, M.; Muggenthaler, H.; Schenkl, S.; Ullrich, J.; Pourtier, G.; Weiser, M.; Mall, G. Sensitivity of temperature-based time since death estimation on measurement location. Int. J. Legal Med. 2023, 137, 1815–1837. [Google Scholar] [CrossRef]
- Waterman, F.M. Estimation of temperature artifact from a short interruption in ultrasonic power. Int. J. Hyperth. 1992, 8, 395–400. [Google Scholar] [CrossRef]
- Brown, A.; Marshall, T.K. Body temperature as a means of estimating the time of death. Forensic Sci. 1974, 4, 125–133. [Google Scholar] [CrossRef]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
- Available online: https://es.mathworks.com/help/matlab/ref/fminsearch.html (accessed on 7 April 2025).
- Okajima, J.; Junnosuke, M.S.; Takeda, H.; Komiya, A. Dimensionless solutions and general characteristics of bioheat transfer during thermal therapy. J. Therm. Biol. 2009, 34, 377–384. [Google Scholar] [CrossRef]
- Rodríguez de Rivera, P.J.; Rodríguez de Rivera, M.; Socorro, F.; Rodríguez de Rivera, M. Study of the thermal measurement depth of a skin calorimeter using simple RC and TF models. Int. J. Heat. Mass. Transf. 2025, 236, 126256. [Google Scholar] [CrossRef]
- Simmons, G.H.; Wong, B.J.; Holowatz, L.A.; Kenney, W.L. Changes in the control of skin blood flow with exercise training: Where do cutaneous vascular adaptations fit in? Exp. Physiol. 2011, 96, 822–828. [Google Scholar] [CrossRef]
- Bevegard, B.S.; Shepherd, J.T. Reaction in man of resistance and capacity vessels in forearm and hand to leg exercise. J. Appl. Physiol. 1966, 21, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Zelis, R.; Mason, D.T.; Braunwald, E. Partition of blood flow to the cutaneous and muscular beds of the forearm at rest and during leg exercise in normal subjects and in patients with heart failure. Circ. Res. 1969, 24, 799–806. [Google Scholar] [CrossRef]
- Kellogg, D.L.; Johnson, J.M.; Kosiba, W.A. Competition between cutaneous active vasoconstriction and active vasodilation during exercise in humans. Am. J. Physiol. 1991, 261, H1184–H1189. [Google Scholar] [CrossRef]
- Peçanha, T.; Forjaz, C.L.M.; Low, D.A. Passive Heating Attenuates Post-exercise Cardiac Autonomic Recovery in Healthy Young Males. Front. Neurosci. 2017, 11, 727. [Google Scholar] [CrossRef]
- Glaab, T.; Taube, C. Practical guide to cardiopulmonary exercise testing in adults. Respir. Res. 2022, 23, 9. [Google Scholar] [CrossRef]
- Available online: https://sea.omega.com/th/pptst/HFS-3_HFS-4.html#description (accessed on 16 August 2025).
- Available online: https://es.omega.com/pptst/UHF-HFS-SERIES.html#description (accessed on 16 August 2025).
- Available online: https://www.hukseflux.com/products/heat-flux-sensors/heat-flux-sensors. (accessed on 16 August 2025).
- Hildebrandt, W.; Schwarzbach, H.; Pardun, A.; Hannemann, L.; Bogs, B.; König, A.M.; Mahnken, A.H.; Hildebrandt, O.; Koehler, U.; Kinscherf, R. Age-Related Differences in Skeletal Muscle Microvascular Response to Exercise as Detected by Contrast-Enhanced Ultrasound (CEUS). PLoS ONE 2017, 12, e0172771. [Google Scholar] [CrossRef]
- Dunford, E.C.; Au, J.S.; Devries, M.C.; Phillips, S.M.; MacDonald, M.J. Cardiovascular Aging and the Microcirculation of Skeletal Muscle: Using Contrast-Enhanced Ultrasound. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, 1194–1199. [Google Scholar] [CrossRef]
- Gao, D.; Wang, Y.; Fu, P.; Qiu, J.; Li, H. Modeling and Parameter Analysis of Basic Single Channel Neuron Mass Model for SSVEP. Sensors 2025, 25, 1706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; Xu, H.; Song, Z.; Xie, P.; Wei, P.; Zhao, G. Neural Mass Modeling in the Cortical Motor Area and the Mechanism of Alpha Rhythm Changes. Sensors 2025, 25, 56. [Google Scholar] [CrossRef] [PubMed]
Parameters | Calorimeter S1 | Calorimeter S2 | Units | |||
---|---|---|---|---|---|---|
Mean | ±std | Mean | ±std | |||
RC model | C10 | 2.31 | ±0.07 | 2.31 | ±0.07 | J/K |
C1 | 4.02 | ±0.09 | 3.91 | ±0.09 | J/K | |
C2 | 3.8 | ±0.2 | 3.7 | ±0.3 | J/K | |
P1 | 0.029 | ±0.002 | 0.029 | ±0.002 | W/K | |
P2 | 0.057 | ±0.005 | 0.055 | ±0.005 | W/K | |
P12 | 0.092 | ±0.008 | 0.089 | ±0.009 | W/K | |
k | 23.7 | ±1.1 | 23.0 | ±1.4 | mV/K | |
Cooling system | α | 13.6 | 17.4 | °C/A | ||
β | −83.5 | −83.8 | °C/A | |||
RMSE values | εy | 16.5 | ±2.5 | 16.2 | ±2.4 | µV |
εT2 | 3.9 | ±2.0 | 3.8 | ±2.0 | mK |
Exercise | Recovery phase | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T2 °C | A0 mW | A1 mW | A2 mW/min | τ min | A0 mW | A1 mW | A2 mW/min | τ min | RMSE μW | ||
28 | 125.2 | 63.7 | −21.0 | 5.7 | 185.6 | −57.20 | 11.5 | 9.3 | 85.4 | ||
30 | 143.4 | 111.5 | −34.3 | 5.3 | 251.7 | −108.7 | −0.02 | 11.6 | 78.3 | ||
32 | 86.10 | 103.0 | −41.1 | 5.3 | 185.2 | −72.19 | 8.90 | 8.7 | 67.3 | ||
34 | 35.40 | 85.7 | −26.5 | 5.2 | 118.7 | −48.35 | 20.0 | 7.2 | 102.9 | ||
36 | 61.50 | 75.4 | −33.5 | 5.6 | 132.9 | −42.91 | 4.40 | 12.0 | 83.6 | ||
38 | −24.53 | 29.8 | −17.0 | 6.7 | 0.200 | 29.66 | 21.7 | 6.3 | 105.7 |
Exercise | Recovery phase | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T2 °C | A0 °C | A1 °C | A2 °C/min | τ min | A0 °C | A1 °C | A2 °C/min | τ min | RMSE mK | ||
28 | 33.15 | 2.61 | −0.99 | 5.7 | 35.61 | −2.27 | 0.56 | 9.2 | 3.56 | ||
30 | 35.00 | 4.45 | −1.53 | 5.4 | 39.30 | −4.39 | 0.00 | 13.8 | 3.01 | ||
32 | 33.75 | 3.96 | −1.63 | 5.4 | 37.54 | −2.58 | 0.42 | 8.5 | 2.54 | ||
34 | 33.52 | 3.05 | −1.06 | 5.2 | 36.48 | −1.62 | 0.79 | 7.3 | 3.84 | ||
36 | 35.71 | 2.46 | −1.23 | 5.7 | 38.01 | −1.30 | 0.22 | 10.7 | 2.73 | ||
38 | 34.05 | 0.82 | −0.56 | 6.7 | 34.71 | 1.25 | 0.72 | 6.5 | 3.35 |
Measurement (cm2) | Thickness (mm) | Sensitivity (mV/W) | |
---|---|---|---|
Film Heat flux HFS-4 [47] | 10.0 | 0.18 | 2.1 |
Film Heat flux HFS-5 [48] | 6.3 | 0.36 | 2.2 |
Film Heat flux FHF05 [49] | 1.0 | 0.40 | 10.0 |
Film Heat flux FHF05 [49] | 4.5 | 0.40 | 6.6 |
Heat flux plate HFP01 [49] | 8.0 | 5.40 | 75.0 |
Skin Calorimeter (this work) | 4.0 | 2.20 | 195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez de Rivera, P.J.; Rodríguez de Rivera, M.; Socorro, F.; Rodríguez de Rivera, M. Case Study on Skin Calorimetry: Modeling Localized Muscle Heat Transfer During Exercise. Biosensors 2025, 15, 567. https://doi.org/10.3390/bios15090567
Rodríguez de Rivera PJ, Rodríguez de Rivera M, Socorro F, Rodríguez de Rivera M. Case Study on Skin Calorimetry: Modeling Localized Muscle Heat Transfer During Exercise. Biosensors. 2025; 15(9):567. https://doi.org/10.3390/bios15090567
Chicago/Turabian StyleRodríguez de Rivera, Pedro Jesús, Miriam Rodríguez de Rivera, Fabiola Socorro, and Manuel Rodríguez de Rivera. 2025. "Case Study on Skin Calorimetry: Modeling Localized Muscle Heat Transfer During Exercise" Biosensors 15, no. 9: 567. https://doi.org/10.3390/bios15090567
APA StyleRodríguez de Rivera, P. J., Rodríguez de Rivera, M., Socorro, F., & Rodríguez de Rivera, M. (2025). Case Study on Skin Calorimetry: Modeling Localized Muscle Heat Transfer During Exercise. Biosensors, 15(9), 567. https://doi.org/10.3390/bios15090567