All-in-One Sustainable Thread Biosensor for Chemiluminescence Smartphone Detection of Lactate in Sweat
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Fabrication of the Thread-Based Analytical Device
2.3. Horseradish Peroxidase (HRP)/Luminol/H2O2 Reaction
2.4. Optimization of the Lactate Oxidase (LOx) and Horseradish Peroxidase (HRP) Coupled Enzymatic Reaction
2.5. Analytical Assay Procedure for Lactate Monitoring in Artificial Sweat
2.6. Chemiluminescence Signal Acquisition and Data Analysis
2.7. Selectivity and Stability Studies
3. Results and Discussion
3.1. Design and Fabrication of the CL Thread-Based Biosensor
3.2. Optimization of Thread-Based Device for Lactate Detection
3.3. Detection of Lactate in Spiked Artificial Sweat and Recovery Studies
3.4. Biosensor Interference and Stability Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Wang, Y.; Zheng, Z.; Feng, Y.; Feng, S.; Zhang, Y.; Miao, Y.; Liu, C. Thymine-Capped Mesoporous Silica Nanoparticles as Ion-Responsive Release System: A Paper-Based Colorimetric Sensing Platform for Rapid and Selective Mercuric Identification. Biosens. Bioelectron. 2025, 272, 117101. [Google Scholar] [CrossRef]
- Noviana, E.; Carrão, D.B.; Pratiwi, R.; Henry, C.S. Emerging Applications of Paper-Based Analytical Devices for Drug Analysis: A Review. Anal. Chim. Acta 2020, 1116, 70–90. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, R.A.; Gonzalez, J.L.; Vazquez-Alvarado, M.; Martinez, N.W.; Martinez, A.W. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer. Anal. Chem. 2022, 94, 8833–8837. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Kang, Y.; Guo, Q.; Peng, B.; Jiang, H. Recent Advances in Thread-Based Microfluidics for Diagnostic Applications. Biosens. Bioelectron. 2019, 132, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ghiasvand, A.; Paull, B. Applications of Thread-Based Microfluidics: Approaches and Options for Detection. TrAC Trends Anal. Chem. 2023, 161, 117001. [Google Scholar] [CrossRef]
- Tomimuro, K.; Tenda, K.; Ni, Y.; Hiruta, Y.; Merkx, M.; Citterio, D. Thread-Based Bioluminescent Sensor for Detecting Multiple Antibodies in a Single Drop of Whole Blood. ACS Sens. 2020, 5, 1786–1794. [Google Scholar] [CrossRef]
- Li, X.; Tian, J.; Shen, W. Thread as a Versatile Material for Low-Cost Microfluidic Diagnostics. ACS Appl. Mater. Interfaces 2010, 2, 1–6. [Google Scholar] [CrossRef]
- Guan, W.; Liu, M.; Zhang, C. Electrochemiluminescence Detection in Microfluidic Cloth-Based Analytical Devices. Biosens. Bioelectron. 2016, 75, 247–253. [Google Scholar] [CrossRef]
- Shankar, S.; Kumar, Y.; Chauhan, D.; Sharma, N.; Chandra, R.; Kumar, S. Nanodot Zirconium Trisulfide Modified Conducting Thread: A Smart Substrate for Fabrication of next Generation Biosensor. Biosens. Bioelectron. 2023, 242, 115722. [Google Scholar] [CrossRef]
- Zhao, C.; Li, X.; Wu, Q.; Liu, X. A Thread-Based Wearable Sweat Nanobiosensor. Biosens. Bioelectron. 2021, 188, 113270. [Google Scholar] [CrossRef]
- Wu, L.; Xiong, J.; Xiao, G.; Ju, J.; Sun, W.; Wang, W.; Ma, Y.; Ran, R.; Qiao, Y.; Li, C.; et al. Smart Salt-Responsive Thread for Highly Sensitive Microfluidic Glucose Detection in Sweat. Lab Chip 2024, 24, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Brasier, N.; Wang, J.; Gao, W.; Sempionatto, J.R.; Dincer, C.; Ates, H.C.; Güder, F.; Olenik, S.; Schauwecker, I.; Schaffarczyk, D.; et al. Applied Body-Fluid Analysis by Wearable Devices. Nature 2024, 636, 57–68. [Google Scholar] [CrossRef]
- Luo, D.; Sun, H.; Li, Q.; Niu, X.; He, Y.; Liu, H. Flexible Sweat Sensors: From Films to Textiles. ACS Sens. 2023, 8, 465–481. [Google Scholar] [CrossRef]
- Ursem, R.F.R.; Steijlen, A.; Parrilla, M.; Bastemeijer, J.; Bossche, A.; De Wael, K. Worth Your Sweat: Wearable Microfluidic Flow Rate Sensors for Meaningful Sweat Analytics. Lab Chip 2025, 25, 1296–1315. [Google Scholar] [CrossRef]
- Zheng, X.T.; Goh, W.P.; Yu, Y.; Sutarlie, L.; Chen, D.Y.; Tan, S.C.L.; Jiang, C.; Zhao, M.; Ba, T.; Li, H.; et al. Skin-Attachable Ink-Dispenser-Printed Paper Fluidic Sensor Patch for Colorimetric Sweat Analysis. Adv. Heal. Mater. 2024, 13, 2302173. [Google Scholar] [CrossRef]
- Poletti, F.; Zanfrognini, B.; Favaretto, L.; Quintano, V.; Sun, J.; Treossi, E.; Melucci, M.; Palermo, V.; Zanardi, C. Continuous Capillary-Flow Sensing of Glucose and Lactate in Sweat with an Electrochemical Sensor Based on Functionalized Graphene Oxide. Sens. Actuators B Chem. 2021, 344, 130253. [Google Scholar] [CrossRef]
- Hartel, M.C.; Lee, D.; Weiss, P.S.; Wang, J.; Kim, J. Resettable Sweat-Powered Wearable Electrochromic Biosensor. Biosens. Bioelectron. 2022, 215, 114565. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Carrilho, E.; Thomas, S.W.; Sindi, H.; Whitesides, G.M. Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis. Anal. Chem. 2008, 10, 3699–3707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, Y.; Jiang, N.; Yetisen, A.K. Wearable Artificial Intelligence Biosensor Networks. Biosens. Bioelectron. 2023, 219, 114825. [Google Scholar] [CrossRef]
- Lopreside, A.; Montali, L.; Wang, B.; Tassoni, A.; Ferri, M.; Calabretta, M.M.; Michelini, E. Orthogonal Paper Biosensor for Mercury (II) Combining Bioluminescence and Colorimetric Smartphone Detection. Biosens. Bioelectron. 2021, 194, 113569. [Google Scholar] [CrossRef]
- Dutta, C.; Citterio, D.; Nath, P. Present and Future of Smartphone-Coupled Chemiluminescence and Electrochemiluminescence Assays: A Mini-Review. Analyst 2025, 150, 1033–1047. [Google Scholar] [CrossRef]
- Schramm, S.; Weiß, D. Bioluminescence-The Vibrant Glow of Nature and Its Chemical Mechanisms. ChemBioChem 2024, 25, e202400106. [Google Scholar] [CrossRef] [PubMed]
- Vacher, M.; Galván, I.; Ding, B.W.; Schramm, S.; Berraud-Pache, R.; Naumov, P.; Ferré, N.; Liu, Y.J.; Navizet, I.; Roca-Sanjuán, D.; et al. Chemi-and Bioluminescence of Cyclic Peroxides. Chem. Rev. 2018, 118, 6927–6974. [Google Scholar] [CrossRef]
- Shimazu, R.; Tomimuro, K.; Ni, Y.; Malegori, C.; Hamedpour, V.; Hiruta, Y.; Oliveri, P.; Merkx, M.; Citterio, D. Microfluidic Thread-Based Analytical Devices for Point-of-Care Detection of Therapeutic Antibody in Blood. Sens. Actuators B Chem. 2022, 352, 131002. [Google Scholar] [CrossRef]
- Guan, W.; Zhang, C.; Liu, F.; Liu, M. Chemiluminescence Detection for Microfluidic Cloth-Based Analytical Devices (ΜCADs). Biosens. Bioelectron. 2015, 72, 114–120. [Google Scholar] [CrossRef]
- Liu, M.; Liu, R.; Wang, D.; Liu, C.; Zhang, C. A Low-Cost, Ultraflexible Cloth-Based Microfluidic Device for Wireless Electrochemiluminescence Application. Lab Chip 2016, 16, 2860–2870. [Google Scholar] [CrossRef] [PubMed]
- Muiña, S.R.; Gajjala, R.K.R.; Martín, E.F.; del Campo, F.J. Gamma Correction and Color Space Transformations for Quantitative Analysis of Electrochemiluminescence Images Using Smartphone Cameras. Chem. Biomed. Imaging 2025. [Google Scholar] [CrossRef]
- Priye, A.; Ball, C.S.; Meagher, R.J. Colorimetric-Luminance Readout for Quantitative Analysis of Fluorescence Signals with a Smartphone CMOS Sensor. Anal. Chem. 2018, 90, 12385–12389. [Google Scholar] [CrossRef]
- Dou, M.; Sanjay, S.T.; Benhabib, M.; Xu, F.; Li, X. Low-Cost Bioanalysis on Paper-Based and Its Hybrid Microfluidic Platforms. Talanta 2015, 145, 43–54. [Google Scholar] [CrossRef]
- Seki, Y.; Nakashima, D.; Shiraishi, Y.; Ryuzaki, T.; Ikura, H.; Miura, K.; Suzuki, M.; Watanabe, T.; Nagura, T.; Matsumato, M.; et al. A Novel Device for Detecting Anaerobic Threshold Using Sweat Lactate during Exercise. Sci. Rep. 2021, 11, 4929. [Google Scholar] [CrossRef]
- Currano, L.J.; Sage, F.C.; Hagedon, M.; Hamilton, L.; Patrone, J.; Gerasopoulos, K. Wearable Sensor System for Detection of Lactate in Sweat. Sci. Rep. 2018, 8, 15890. [Google Scholar] [CrossRef]
- Tenda, K.; van Gerven, B.; Arts, R.; Hiruta, Y.; Merkx, M.; Citterio, D. Paper-Based Antibody Detection Devices Using Bioluminescent BRET-Switching Sensor Proteins. Angew. Chem. 2018, 130, 15595–15599. [Google Scholar] [CrossRef]
- Ji, W.; Zhu, J.; Wu, W.; Wang, N.; Wang, J.; Wu, J.; Wu, Q.; Wang, X.; Yu, C.; Wei, G.; et al. Wearable Sweat Biosensors Refresh Personalized Health/Medical Diagnostics. Research 2021, 2021, 9757126. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Hung, V.W.S.; Jia, W.; Valdés-Ramírez, G.; Windmiller, J.R.; Martinez, A.G.; Ramírez, J.; Chan, G.; Kerman, K.; Wang, J. Tattoo-Based Potentiometric Ion-Selective Sensors for Epidermal PH Monitoring. Analyst 2013, 138, 123–128. [Google Scholar] [CrossRef]
- Kulthong, K.; Srisung, S.; Boonpavanitchakul, K.; Kangwansupamonkon, W.; Maniratanachote, R. Determination of Silver Nanoparticle Release from Antibacterial Fabrics into Artificial Sweat. Part Fibre Toxicol 2010, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Bandodkar, A.J.; Valdés-Ramírez, G.; Windmiller, J.R.; Yang, Z.; Ramírez, J.; Chan, G.; Wang, J. Electrochemical Tattoo Biosensors for Real-Time Noninvasive Lactate Monitoring in Human Perspiration. Anal. Chem. 2013, 85, 6553–6560. [Google Scholar] [CrossRef]
- Kumar, N.; Lin, Y.J.; Huang, Y.C.; Liao, Y.T.; Lin, S.P. Detection of Lactate in Human Sweat via Surface-Modified, Screen-Printed Carbon Electrodes. Talanta 2023, 265, 124888. [Google Scholar] [CrossRef] [PubMed]
- Berkheimer, Z.A.; Tahir, A.; Nordin, G.P.; Paixão, T.R.L.C.; Woolley, A.T.; do Nascimento, G.H.M.; de Araujo, W.R.; Pradela-Filho, L.A. Extruded Filament Electrodes for Lactate Biosensing in Continuous-Injection Paper-Based Microfluidic Devices. Biosens. Bioelectron. 2025, 278, 117390. [Google Scholar] [CrossRef]
- Nowak, P.M.; Wietecha-Posłuszny, R.; Pawliszyn, J. White Analytical Chemistry: An Approach to Reconcile the Principles of Green Analytical Chemistry and Functionality. TrAC Trends Anal. Chem. 2021, 138, 116223. [Google Scholar] [CrossRef]
- Roda, A.; Guardigli, M.; Calabria, D.; Calabretta, M.M.; Cevenini, L.; Michelini, E. A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat. Analyst 2014, 139, 6494–6501. [Google Scholar] [CrossRef]
- Xuan, X.; Pérez-Ràfols, C.; Chen, C.; Cuartero, M.; Crespo, G.A. Lactate Biosensing for Reliable On-Body Sweat Analysis. ACS Sens. 2021, 6, 2763–2771. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiorano, E.; Calabretta, M.M.; Lunedei, E.; Michelini, E. All-in-One Sustainable Thread Biosensor for Chemiluminescence Smartphone Detection of Lactate in Sweat. Biosensors 2025, 15, 530. https://doi.org/10.3390/bios15080530
Maiorano E, Calabretta MM, Lunedei E, Michelini E. All-in-One Sustainable Thread Biosensor for Chemiluminescence Smartphone Detection of Lactate in Sweat. Biosensors. 2025; 15(8):530. https://doi.org/10.3390/bios15080530
Chicago/Turabian StyleMaiorano, Emanuela, Maria Maddalena Calabretta, Eugenio Lunedei, and Elisa Michelini. 2025. "All-in-One Sustainable Thread Biosensor for Chemiluminescence Smartphone Detection of Lactate in Sweat" Biosensors 15, no. 8: 530. https://doi.org/10.3390/bios15080530
APA StyleMaiorano, E., Calabretta, M. M., Lunedei, E., & Michelini, E. (2025). All-in-One Sustainable Thread Biosensor for Chemiluminescence Smartphone Detection of Lactate in Sweat. Biosensors, 15(8), 530. https://doi.org/10.3390/bios15080530