Recent Advances in Aggregation-Induced Electrochemiluminescent Biosensors
Abstract
1. Introduction
2. ECL Biosensors
2.1. Mechanism of ECL
2.2. ECL Luminophores
2.2.1. Inorganic Luminophores
2.2.2. Organic Luminophores
2.2.3. Luminescent Nanoparticles
3. AIECL Biosensors
3.1. Mechanism of AIEs
3.2. AIECL Luminophores
3.3. Construction Methods of AIECL Biosensors
3.3.1. Structure Design of Enzymes
3.3.2. Ligand–Receptor Specific Interaction
3.3.3. Self-Assembly
3.3.4. Microencapsulation Encapsulation
3.4. Applications of AIECL Biosensors
3.4.1. Small Molecule Detection
3.4.2. DNA and RNA Detection
3.4.3. Protein Marker Analysis
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Bao, G.; Suresh, S. Cell and molecular mechanics of biological materials. Nat. Mater. 2003, 2, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Young, A.P.; Tsung, C.-K. Integration of Biomolecules with Metal–Organic Frameworks. Small 2017, 13, 1700880. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Li, M.; Gao, J.; Zhang, Z.; Ma, S.; Chen, Y. Incorporation of biomolecules in Metal-Organic Frameworks for advanced applications. Coordin. Chem. Rev. 2019, 384, 90–106. [Google Scholar] [CrossRef]
- Mu, J.; He, L.; Huang, P.; Chen, X. Engineering of nanoscale coordination polymers with biomolecules for advanced applications. Coordin. Chem. Rev. 2019, 399, 213039. [Google Scholar] [CrossRef] [PubMed]
- Thome, C.P.; Hoertdoerfer, W.S.; Bendorf, J.R.; Lee, J.G.; Shields, C.W.I.V. Electrokinetic Active Particles for Motion-Based Biomolecule Detection. Nano Lett. 2023, 23, 2379–2387. [Google Scholar] [CrossRef] [PubMed]
- Riviere-Cazaux, C.; Keough, M.B.; Zuccato, J.A.; Kumar, R.; Schulz, S.; Warrington, A.E.; Ruff, M.W.; Ellingson, B.M.; Sanai, N.; Campian, J.L.; et al. A hitchhiker’s guide to cerebrospinal fluid biomarkers for neuro-oncology. Neuro-Oncology 2025, 27, 1165–1179. [Google Scholar] [CrossRef] [PubMed]
- Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, Z.; Li, F. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Cui, Y.; Anderson, C.F.; Zhang, C.; Li, Y.; Wang, R.; Cui, H. Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chem. Soc. Rev. 2018, 47, 3490–3529. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.; Gunasekaran, S.; Eom, K. Atomic force microscopy-based cancer diagnosis by detecting cancer-specific biomolecules and cells. BBA-REV Cancer 2019, 1871, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-L.; Kwon, N.; Yan, K.-C.; Sedgwick, A.C.; Chen, G.-R.; He, X.-P.; James, T.D.; Yoon, J. Bio-Conjugated Advanced Materials for Targeted Disease Theranostics. Adv. Funct. Mater. 2020, 30, 1907906. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.; Guo, J.; Li, L.; Wu, H. Diagnosis and therapy of Alzheimer’s disease: Light-driven heterogeneous redox processes. Adv. Collioid. Interface Sci. 2024, 332, 103253. [Google Scholar] [CrossRef] [PubMed]
- Saini, N.; Kriti; Thakur, A.; Saini, S.; Kaur, N.; Singh, N. Synergizing Machine Learning and fluorescent biomolecules: A new era in sensing platforms. Trac-Trend. Anal. Chem. 2025, 187, 118196. [Google Scholar] [CrossRef]
- Woo, H.-K.; Nam, Y.; Park, H.G.; Lee, H. Bridging laboratory innovation to translational research and commercialization of extracellular vesicle isolation and detection. Biosens. Bioelectron. 2025, 282, 117475. [Google Scholar] [CrossRef] [PubMed]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed]
- Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 2018, 103, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tong, R.-J.; Xia, F.; Peng, Y. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens. Bioelectron. 2019, 142, 111505. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, J. Recent advances on magnetic nanobead based biosensors: From separation to detection. Trac-Trend. Anal. Chem. 2020, 128, 115915. [Google Scholar] [CrossRef]
- Tang, R.; Yang, J.; Shao, C.; Shen, N.; Chen, B.; Gu, Y.; Li, C.; Xu, D.; Guo, C. Two-dimensional nanomaterials-based optical biosensors empowered by machine learning for intelligent diagnosis. Trac-Trend. Anal. Chem. 2025, 185, 118162. [Google Scholar] [CrossRef]
- Zhu, Y.; Cheng, Z.; Wang, X.; Zhang, C.; Li, X.; Wei, Y.; Wang, J.; Fang, Y.; Wang, Y.; Zhang, D. Synergistic optimization strategies for the development of multienzymatic cascade system-based electrochemical biosensors with enhanced performance. Biosens. Bioelectron. 2025, 274, 117222. [Google Scholar] [CrossRef] [PubMed]
- Vacher, M.; Fdez. Galván, I.; Ding, B.-W.; Schramm, S.; Berraud-Pache, R.; Naumov, P.; Ferré, N.; Liu, Y.-J.; Navizet, I.; Roca-Sanjuán, D.; et al. Chemi- and Bioluminescence of Cyclic Peroxides. Chem. Rev. 2018, 118, 6927–6974. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar] [CrossRef] [PubMed]
- Miao, W. Electrogenerated Chemiluminescence and Its Biorelated Applications. Chem. Rev. 2008, 108, 2506–2553. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Tang, L.; Li, J. Graphene-based materials in electrochemistry. Chem. Soc. Rev. 2010, 39, 3157–3180. [Google Scholar] [CrossRef] [PubMed]
- Fosdick, S.E.; Knust, K.N.; Scida, K.; Crooks, R.M. Bipolar Electrochemistry. Angew. Chem. Int. Edit. 2013, 52, 10438–10456. [Google Scholar] [CrossRef] [PubMed]
- Knežević, S.; Han, D.; Liu, B.; Jiang, D.; Sojic, N. Electrochemiluminescence Microscopy. Angew. Chem. Int. Edit. 2024, 63, e202407588. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-X.; Dai, Y.-X.; Chauvin, J.; Zhang, X.-J.; Cosnier, S.; Shan, D. Intermolecular forces and assembly strategies in porphyrin-based electrochemiluminescence: Mechanisms and future prospects. Trac-Trend. Anal. Chem. 2024, 180, 117969. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Li, J.; Chen, R.; Chen, W.; Peng, H. Essential role of electrocatalysis in electrochemiluminescence: Recent advances and perspectives. Trac-Trend. Anal. Chem. 2024, 178, 117812. [Google Scholar] [CrossRef]
- Bertoncello, P.; Forster, R.J. Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: Recent advances and future perspectives. Biosens. Bioelectron. 2009, 24, 3191–3200. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Xu, G. Applications and trends in electrochemiluminescence. Chem. Soc. Rev. 2010, 39, 3275–3304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 2014, 9, 132–157. [Google Scholar] [CrossRef]
- Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Farka, Z.; Juřík, T.; Kovář, D.; Trnková, L.; Skládal, P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem. Rev. 2017, 117, 9973–10042. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Teunissen, C.E.; Otto, M.; Piehl, F.; Sormani, M.P.; Gattringer, T.; Barro, C.; Kappos, L.; Comabella, M.; Fazekas, F.; et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018, 14, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Cao, Y.; Gou, X.; Zhu, J.-J. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal. Chem. 2020, 92, 431–454. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Mirasoli, M.; Michelini, E.; Di Fusco, M.; Zangheri, M.; Cevenini, L.; Roda, B.; Simoni, P. Progress in chemical luminescence-based biosensors: A critical review. Biosens. Bioelectron. 2016, 76, 164–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, S.; Li, L.; Zhu, J.-J. Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today 2017, 12, 98–115. [Google Scholar] [CrossRef]
- Jin, H.; Gui, R.; Yu, J.; Lv, W.; Wang, Z. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors. Biosens. Bioelectron. 2017, 91, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Babamiri, B.; Bahari, D.; Salimi, A. Highly sensitive bioaffinity electrochemiluminescence sensors: Recent advances and future directions. Biosens. Bioelectron. 2019, 142, 111530. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Wang, H.; Wang, J. Multi-Mode/Signal Biosensors: Electrochemical Integrated Sensing Techniques. Adv. Funct. Mater. 2024, 34, 2403122. [Google Scholar] [CrossRef]
- Song, K.; Zhao, W.; Zhou, Y.; Liu, D.; Chu, P.K. Innovative strategies in metal-organic frameworks for enhanced electrochemiluminescence biosensors. Coordin. Chem. Rev. 2024, 520, 216161. [Google Scholar] [CrossRef]
- Han, Q.; Wang, C.; Li, Z.; Wu, J.; Liu, P.K.; Mo, F.; Fu, Y. Multifunctional Zinc Oxide Promotes Electrochemiluminescence of Porphyrin Aggregates for Ultrasensitive Detection of Copper Ion. Anal. Chem. 2020, 92, 3324–3331. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Tang, F.; Wang, X.; Li, M.; Gu, X.; Sun, W.; Luan, F.; Tian, C.; Zhuang, X. Electrochemiluminescence sensor based on EuS nanocrystals for ultrasensitive detection of mercury ions in seafood. Sensor Actuat. B-Chem. 2022, 352, 131075. [Google Scholar] [CrossRef]
- Kotopoulou, S.; Zampelas, A.; Magriplis, E. Dietary nitrate and nitrite and human health: A narrative review by intake source. Nutr. Rev. 2022, 80, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, H.; Zhang, J.; Cui, B.; Fang, Y. Determination of nitrite in food based on its sensitizing effect on cathodic electrochemiluminescence of conductive PTH-DPP films. Food Chem. 2022, 397, 133760. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chen, A.-Y.; Huang, D.; Zhuo, Y.; Chai, Y.-Q.; Yuan, R. Cu Nanoclusters: Novel Electrochemiluminescence Emitters for Bioanalysis. Anal. Chem. 2016, 88, 11527–11532. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Hu, F.; Zhao, J.; Yang, G.; Zhang, Y.; Chen, S.; Yuan, R. Bifunctional Moderator-Powered Ratiometric Electrochemiluminescence Enzymatic Biosensors for Detecting Organophosphorus Pesticides Based on Dual-Signal Combined Nanoprobes. Anal. Chem. 2021, 93, 8783–8790. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Liu, W.; Li, X.; Yang, L.; Ma, H.; Wu, R.; Wei, Q. Highly selective electrochemiluminescence aptasensor coupled with mesoporous Fe3O4@Cu@Cu2O as co-reaction accelerator for ATP assay based on target-triggered emitter release. Sensor Actuat. B-Chem. 2021, 346, 130581. [Google Scholar] [CrossRef]
- Sun, Y.; Li, P.; Zhu, Y.; Zhu, X.; Zhang, Y.; Liu, M.; Liu, Y. In situ growth of TiO2 nanowires on Ti3C2 MXenes nanosheets as highly sensitive luminol electrochemiluminescent nanoplatform for glucose detection in fruits, sweat and serum samples. Biosens. Bioelectron. 2021, 194, 113600. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Qian, M.; Huang, H.; Gao, Q.; Zhang, C.; Qi, H. Carboxyl group bearing iridium(III) solvent complex as photoluminescence and electrochemiluminescence probe for the detection of histidine. ElectroAnal. Chem. 2022, 920, 116578. [Google Scholar] [CrossRef]
- Kinoshita, E.; Kinoshita-Kikuta, E.; Takiyama, K.; Koike, T. Phosphate-binding Tag, a New Tool to Visualize Phosphorylated Proteins *. Mol. Cell. Proteomics 2006, 5, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.-X.; Li, Y.; Liang, R.-P.; Cao, S.-P.; Jin, H.-J.; Qiu, J.-D. Gold nanoclusters enhanced electrochemiluminescence of g-C3N4 for protein kinase activity analysis and inhibition. ElectroAnal. Chem. 2020, 856, 113706. [Google Scholar] [CrossRef]
- Li, B.; Huang, X.; Lu, Y.; Fan, Z.; Li, B.; Jiang, D.; Sojic, N.; Liu, B. High Electrochemiluminescence from Ru(bpy)32+ Embedded Metal–Organic Frameworks to Visualize Single Molecule Movement at the Cellular Membrane. Adv. Sci. 2022, 9, 2204715. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, S.; Ju, H. Electrochemiluminescence nanoemitters for immunoassay of protein biomarkers. Bioelectrochemistry 2023, 149, 108281. [Google Scholar] [CrossRef] [PubMed]
- Croce, C.M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 2009, 10, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Gregory, R.I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 2015, 15, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhou, X.; Liu, W.; Yang, X.; Xing, D. Paper-Based Bipolar Electrode Electrochemiluminescence Switch for Label-Free and Sensitive Genetic Detection of Pathogenic Bacteria. Anal. Chem. 2016, 88, 10191–10197. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-L.; Tang, Z.-L.; Zhang, J.-Q.; Chai, Y.-Q.; Zhuo, Y.; Yuan, R. Morphology-Controlled 9,10-Diphenylanthracene Nanoblocks as Electrochemiluminescence Emitters for MicroRNA Detection with One-Step DNA Walker Amplification. Anal. Chem. 2018, 90, 5298–5305. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.-F.; Zhao, K.-R.; Liu, Z.-J.; Wang, L.; Ye, S.-Y.; Liang, G.-X. Cas12a-based electrochemiluminescence biosensor for target amplification-free DNA detection. Biosens. Bioelectron. 2021, 176, 112954. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Chen, M.; Wu, G.; Zhang, Y.; Shen, Y. Recent advances of functional nucleic acids-based electrochemiluminescent sensing. Biosens. Bioelectron. 2021, 191, 113462. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fei, Y.; Yang, T.; Luo, Z.; Xu, Y.; Su, B.; Lin, X. Nanotechnology for ultrafast nucleic acid amplification. Nano Today 2023, 48, 101749. [Google Scholar] [CrossRef]
- Dolci, L.S.; Zanarini, S.; Ciana, L.D.; Paolucci, F.; Roda, A. Development of a New Device for Ultrasensitive Electrochemiluminescence Microscopy Imaging. Anal. Chem. 2009, 81, 6234–6241. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ma, G.; Chen, Y.; Fang, D.; Jiang, D.; Chen, H.-Y. Electrochemiluminescence Imaging for Parallel Single-Cell Analysis of Active Membrane Cholesterol. Anal. Chem. 2015, 87, 8138–8143. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ma, C.; Jin, B.-K.; Chen, Z.; Zhu, J.-J. Direct Electrochemiluminescence Imaging of a Single Cell on a Chitosan Film Modified Electrode. Anal. Chem. 2018, 90, 4801–4806. [Google Scholar] [CrossRef] [PubMed]
- Voci, S.; Goudeau, B.; Valenti, G.; Lesch, A.; Jović, M.; Rapino, S.; Paolucci, F.; Arbault, S.; Sojic, N. Surface-Confined Electrochemiluminescence Microscopy of Cell Membranes. J. Am. Chem. Soc. 2018, 140, 14753–14760. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Guo, W.; Su, B. Imaging Cell-Matrix Adhesions and Collective Migration of Living Cells by Electrochemiluminescence Microscopy. Angew. Chem. Int. Edit. 2020, 59, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Zhou, P.; Fu, W.; Ding, L.; Guo, W.; Su, B. Spatially Selective Imaging of Cell–Matrix and Cell–Cell Junctions by Electrochemiluminescence. Angew. Chem. Int. Edit. 2021, 60, 11769–11773. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, H.; Li, B.; Liu, J.; Jiang, D.; Liu, B.; Sojic, N. Single Biomolecule Imaging by Electrochemiluminescence. J. Am. Chem. Soc. 2021, 143, 17910–17914. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Ding, H.; Zhou, P.; Xi, L.; Su, B. Surface-Sensitive Imaging Analysis of Cell–Microenvironment Interactions by Electrochemiluminescence Microscopy. Anal. Chem. 2022, 94, 10885–10892. [Google Scholar] [CrossRef] [PubMed]
- Descamps, J.; Colin, C.; Tessier, G.; Arbault, S.; Sojic, N. Ultrasensitive Imaging of Cells and Sub-Cellular Entities by Electrochemiluminescence. Angew. Chem. Int. Edit. 2023, 62, e202218574. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Feng, J. Electrochemiluminescence from Single Molecule to Imaging. Anal. Chem. 2023, 95, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Gou, X.; Xing, Z.; Ma, C.; Zhu, J.-J. A Close Look at Mechanism, Application, and Opportunities of Electrochemiluminescence Microscopy. CBMI 2023, 1, 414–433. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Huang, X.; Wang, S.; Li, B.; Liu, B. Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules. ACS Nano 2023, 17, 3809–3817. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Ding, L.; Yan, Y.; Wang, Y.; Su, B. Recent advances in label-free imaging of cell–matrix adhesions. Chem. Commun. 2023, 59, 2341–2351. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Dong, J.; Ruan, G.; Zhou, Y.; Feng, J. Quantitative Single-Molecule Electrochemiluminescence Bioassay. Angew. Chem. Int. Edit. 2023, 62, e202214419. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Min, X.; Zhang, X.; Zhang, F.; Lu, S.; Xu, L.-P.; Lou, X.; Xia, F.; Zhang, X.; Wang, S. AIE-based superwettable microchips for evaporation and aggregation induced fluorescence enhancement biosensing. Biosens. Bioelectron. 2018, 111, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, Z.; Chen, Z.; Zhang, Q. Organic Cocrystals: Beyond Electrical Conductivities and Field-Effect Transistors (FETs). Angew. Chem. Int. Edit. 2019, 58, 9696–9711. [Google Scholar] [CrossRef] [PubMed]
- Habenicht, S.H.; Kupfer, S.; Nowotny, J.; Schramm, S.; Weiß, D.; Beckert, R.; Görls, H. Highly fluorescent single crystals of a 4-ethoxy-1,3-thiazole. Dyes Pigments 2018, 149, 644–651. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741. [Google Scholar] [CrossRef] [PubMed]
- Carrara, S.; Aliprandi, A.; Hogan, C.F.; De Cola, L. Aggregation-Induced Electrochemiluminescence of Platinum(II) Complexes. J. Am. Chem. Soc. 2017, 139, 14605–14610. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhu, M.-J.; Yan, H.; Lu, C.; Xu, J.-J. Recent Advances in Aggregation-Induced Electrochemiluminescence. Chem. Eur. J. 2019, 25, 12671–12683. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Li, Y.; Cui, B.; Fang, Y.; Wang, L. Electrochemiluminescent sensor based on an aggregation-induced emission probe for bioanalytical detection. Analyst 2022, 147, 2338–2354. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Alcántar, G.; Aliprandi, A.; De Cola, L. Aggregation-Induced Emission in Electrochemiluminescence: Advances and Perspectives. In Aggregation-Induced Emission; Tang, Y., Tang, B.Z., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 65–90. [Google Scholar]
- Dong, Z.; Du, F.; Zhang, W.; Tian, Y.; Xu, G. Recent advances in Tetraphenylethylene-based aggregation-induced electrochemiluminescence for biosensing applications. Curr. Opin. Electrochem. 2025, 49, 101627. [Google Scholar] [CrossRef]
- Deng, M.-Z.; Zhong, M.-Y.; Li, M.-L.; Huang, G.-Q.; He, H.; Xiao, X.; Bai, R.-B.; Ukwatta, R.H.; Mi, L.; Zhang, T.-T.; et al. Research progress on electrochemiluminescence nanomaterials and their applications in biosensors—A review. Anal. Chim. Acta 2025, 1361, 344148. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wan, R.; Tang, Y.; Sun, S.; Chen, H.; Li, L.; Chen, J.; Wei, J.; Chi, Z.; Li, H. Aggregation-induced emission materials-based Electrochemiluminescence emitters for sensing applications: Progress, challenges and perspectives. Coordin. Chem. Rev. 2025, 531, 216520. [Google Scholar] [CrossRef]
- Zhang, D.; Li, C.; Xiang, T.; Yu, Y.; Xu, R.; Zhang, Y. Classification and research progress of aggregation-induced electrochemiluminescence materials for sensoring application. Microchem. J. 2025, 212, 113241. [Google Scholar] [CrossRef]
- Dufford, R.T.; Nightingale, D.; Gaddum, L.W. Luminescence of Grignard Compounds in Electric and Magnetic Fields, and Related Electrical Phenomena. J. Am. Chem. Soc. 1927, 49, 1858–1864. [Google Scholar] [CrossRef]
- Harvey, N. Luminescence during Electrolysis. J. Phys. Chem. C 1929, 33, 1456–1459. [Google Scholar] [CrossRef]
- Hercules, D.M. Chemiluminescence Resulting from Electrochemically Generated Species. Science 1964, 145, 808–809. [Google Scholar] [CrossRef] [PubMed]
- Tokel, N.E.; Bard, A.J. Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2′-bipyridine)ruthenium(II) dichloride. J. Am. Chem. Soc. 1972, 94, 2862–2863. [Google Scholar] [CrossRef]
- Noffsinger, J.B.; Danielson, N.D. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2′-bipyridine)ruthenium(III). Anal. Chem. 1987, 59, 865–868. [Google Scholar] [CrossRef]
- Schramm, S.; Karothu, D.P.; Lui, N.M.; Commins, P.; Ahmed, E.; Catalano, L.; Li, L.; Weston, J.; Moriwaki, T.; Solntsev, K.M.; et al. Thermochemiluminescent peroxide crystals. Nat. Commun. 2019, 10, 997. [Google Scholar] [CrossRef] [PubMed]
- Moroni, G.; Calabria, D.; Quintavalla, A.; Lombardo, M.; Mirasoli, M.; Roda, A.; Gioiello, A. Thermochemiluminescence-Based Sensitive Probes: Synthesis and Photophysical Characterization of Acridine-Containing 1,2-Dioxetanes Focusing on Fluorophore Push-Pull Effects. ChemPhotoChem 2022, 6, e202100152. [Google Scholar] [CrossRef]
- Fleet, B.; Keliher, P.N.; Kirkbright, G.F.; Pickford, C.J. Some observations on the analytical usefulness of electrochemiluminescence for the determination of microgram amounts of aromatic hydrocarbons. Analyst 1969, 94, 847–854. [Google Scholar] [CrossRef]
- Knight, A.W.; Greenway, G.M. Electrogenerated chemiluminescent determination of pyruvate using tris(2,2′-bipyridine)ruthenium(II). Analyst 1995, 120, 2543–2547. [Google Scholar] [CrossRef]
- Gross, E.M.; Anderson, J.D.; Slaterbeck, A.F.; Thayumanavan, S.; Barlow, S.; Zhang, Y.; Marder, S.R.; Hall, H.K.; Nabor, M.F.; Wang, J.F.; et al. Electrogenerated Chemiluminescence from Derivatives of Aluminum Quinolate and Quinacridones: Cross-Reactions with Triarylamines Lead to Singlet Emission through Triplet-Triplet Annihilation Pathways. J. Am. Chem. Soc. 2000, 122, 4972–4979. [Google Scholar] [CrossRef]
- Kerr, E.; Doeven, E.H.; Barbante, G.J.; Hogan, C.F.; Bower, D.J.; Donnelly, P.S.; Connell, T.U.; Francis, P.S. Annihilation electrogenerated chemiluminescence of mixed metal chelates in solution: Modulating emission colour by manipulating the energetics. Chem. Sci. 2015, 6, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Feng, Y.; Chi, Y. Yellow electrochemiluminescence emission from hydrophilic poly[(9,9-di-(2-ethylhexyl)-9H-fluorene-2,7-vinylene)-co-(1-methoxy-4-(2-ethylhe-xyloxy)-2,5-phenylenevinylene)] (PFV) conjugated polymer dots capped with Triton X-100 in aqueous solution. ElectroAnal. Chem. 2016, 779, 47–54. [Google Scholar] [CrossRef]
- Chu, K.; Adsetts, J.R.; He, S.; Zhan, Z.; Yang, L.; Wong, J.M.; Love, D.A.; Ding, Z. Electrogenerated Chemiluminescence and Electroluminescence of N-Doped Graphene Quantum Dots Fabricated from an Electrochemical Exfoliation Process in Nitrogen-Containing Electrolytes. Chem. Eur. J. 2020, 26, 15892–15900. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Su, Y.; Zhang, L.; Song, H.; Lv, Y. The development of electrochemiluminescent probes: Mechanism and application. Mircochem. J. 2025, 212, 113216. [Google Scholar] [CrossRef]
- Sobhanie, E.; Salehnia, F.; Xu, G.; Hamidipanah, Y.; Arshian, S.; Firoozbakhtian, A.; Hosseini, M.; Ganjali, M.R.; Hanif, S. Recent trends and advancements in electrochemiluminescence biosensors for human virus detection. Trac-Trend. Anal. Chem. 2022, 157, 116727. [Google Scholar] [CrossRef] [PubMed]
- Factor, B.; Muegge, B.; Workman, S.; Bolton, E.; Bos, J.; Richter, M.M. Surfactant Chain Length Effects on the Light Emission of Tris(2,2‘-bipyridyl)ruthenium(II)/Tripropylamine Electrogenerated Chemiluminescence. Anal. Chem. 2001, 73, 4621–4624. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, T.; Noda, T.; Ohtake, H.; Ohtake, T.; Toyama, S.; Ikariyama, Y. Classification of DNA-binding mode of antitumor and antiviral agents by the electrochemiluminescence of ruthenium complex. Anal. Biochem. 2003, 314, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Herbert, M.B.; Marx, V.M.; Pederson, R.L.; Grubbs, R.H. Concise Syntheses of Insect Pheromones Using Z-Selective Cross Metathesis. Angew. Chem. Int. Edit. 2013, 52, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, Y.; Chen, J.; Zhuo, S.; Lin, Z.; Chen, J. A highly sensitive homogeneous electrochemiluminescence biosensor for flap endonuclease 1 based on branched hybridization chain reaction amplification and ultrafiltration separation. Bioelectrochemistry 2022, 147, 108189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, X.; Liu, D.; Jie, G. Versatile electrochemiluminescence sensor for dual-potential “off” and “on” detection of double targets based on a novel terbium organic gel and multifunctional DNA network probes. Sensor Actuat. B-Chem. 2022, 362, 131740. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Z.-G.; Qi, B.-P.; Liu, C.; Tang, B.; Zhang, Z.-L.; Liu, S.-L.; Pang, D.-W. Carboxyl groups on carbon nanodots as co-reactant sites for anodic electrochemiluminescence of tris(2,2-bipyridine)ruthenium(II). J. Colloid. Interface Sci. 2024, 653, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Adamson, N.S.; Blom, S.J.; Doeven, E.H.; Connell, T.U.; Hadden, C.; Knežević, S.; Sojic, N.; Fracassa, A.; Valenti, G.; Paolucci, F.; et al. Electrochemiluminescence Enhanced by a Non-Emissive Dual Redox Mediator. Angew. Chem. Int. Edit. 2024, 63, e202412097. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Hernández, J.M.; Ladouceur, S.; Shen, Y.; Iordache, A.; Wang, X.; Donato, L.; Gallagher-Duval, S.; de Anda Villa, M.; Slinker, J.D.; De Cola, L.; et al. Blue light emitting electrochemical cells incorporating triazole-based luminophores. J. Mater. Chem. 2013, 1, 7440–7452. [Google Scholar] [CrossRef]
- Barbante, G.J.; Doeven, E.H.; Kerr, E.; Connell, T.U.; Donnelly, P.S.; White, J.M.; Lópes, T.; Laird, S.; Wilson, D.J.D.; Barnard, P.J.; et al. Understanding Electrogenerated Chemiluminescence Efficiency in Blue-Shifted Iridium(III)-Complexes: An Experimental and Theoretical Study. Chem. Eur. J. 2014, 20, 3322–3332. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Kuang, G.; Zhang, G.; Guo, J.; Fu, Y. New luminescent hydrophilic iridium(III) nanoflower at low potential for electrochemiluminescence immunosensing. Chem. Eng. J. 2023, 472, 144923. [Google Scholar] [CrossRef]
- Dai, C.; Mao, Z.; Xu, Y.; Jia, J.; Tang, H.; Zhao, Y.; Zhou, Y. Bis-tridentate Iridium(III) Complex with the N-Heterocyclic Carbene Ligand as a Novel Efficient Electrochemiluminescence Emitter for the Sandwich Immunoassay of the HHV-6A Virus. Anal. Chem. 2024, 96, 7311–7320. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Xu, Y.; Ke, L.; Zhu, M.; Deng, R.; Wang, X.; Zhou, Y. Multiple-Signal Amplification Strategy to Fabricate an Ultrasensitive Electrochemiluminescence Magnetic Immunosensor for Detecting Biomarkers of Alzheimer’s Disease via Iridium-Based Self-Enhancing Nanoemitters. ACS Sens. 2025, 10, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Xiuhua, W.; Chao, L.; Yifeng, T. Microemulsion-enhanced electrochemiluminescence of luminol-H2O2 for sensitive flow injection analysis of antioxidant compounds. Talanta 2012, 94, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Fereja, T.H.; Wang, C.; Liu, F.; Guan, Y.; Xu, G. A high-efficiency cathodic sodium nitroprusside/luminol/H2O2 electrochemiluminescence system in neutral media for the detection of sodium nitroprusside, glucose, and glucose oxidase. Analyst 2020, 145, 6649–6655. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ding, F.; Yin, W.; Ma, J.; Wang, B.; Nie, A.; Han, H. From Electrochemistry to Electroluminescence: Development and Application in a Ratiometric Aptasensor for Aflatoxin B1. Anal. Chem. 2017, 89, 7578–7585. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.-J.; Zhao, W.; Xu, J.-J.; Chen, H.-Y. Visual electrochemiluminescence ratiometry on bipolar electrode for bioanalysis. Biosens. Bioelectron. 2018, 102, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jia, Y.; Wu, D.; Zhang, Y.; Ju, H.; Du, Y.; Ma, H.; Wei, Q. Synthesis and Application of CeO2/SnS2 Heterostructures as a Highly Efficient Coreaction Accelerator in the Luminol–Dissolved O2 System for Ultrasensitive Biomarkers Immunoassay. Anal. Chem. 2019, 91, 14066–14073. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-H.; Liu, J.-L.; Zhang, X.-L.; Zhu, X.-C.; Yuan, R.; Chai, Y.-Q. Ultrasensitive Electrochemiluminescence Biosensor Based on 2D Co3O4 Nanosheets as a Coreaction Accelerator and Highly Ordered Rolling DNA Nanomachine as a Signal Amplifier for the Detection of MicroRNA. Anal. Chem. 2023, 95, 4131–4137. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, J.; Zhu, L.; Liu, Y.; He, Y.; Li, Y. Ultrastable Luminol–OH–-(Ni-WOx-CNT) ECL System with High Strength and Its Applications in Sensing. Anal. Chem. 2024, 96, 9953–9960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, X.; Zhu, L.; Zhu, J.; Zheng, Q.; Yuan, J.; Xu, W.; Cao, J. Target responsive-regulated CRISPR/Cas12a electrochemiluminescence sensing of salmonella typhimurium integrating ultrafine Pt NCs-anchored MXenes-boosted luminol/O2 system. Biosens. Bioelectron. 2025, 283, 117558. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Quinn, B.M.; Haram, S.K.; Pell, L.E.; Korgel, B.A.; Bard, A.J. Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots. Science 2002, 296, 1293–1297. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Ding, Z. Enhancing image quality of scanning electrochemical microscopy by improved probe fabrication and displacement. Can. J. Chem. 2005, 83, 1779–1791. [Google Scholar] [CrossRef]
- Lu, C.; Zhou, J.; Lipson, R.H.; Ding, Z. Simple method to fabricate large scale quantum dot architectures. Mater. Lett. 2009, 63, 563–565. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, H.; Wang, F.; Simpson, T.; Sham, T.-K.; Sun, X.; Ding, Z. An electrochemical approach to fabricating honeycomb assemblies from multiwall carbon nanotubes. Carbon 2013, 59, 130–139. [Google Scholar] [CrossRef]
- Sun, H.; Cao, Z.; Qin, H.; Peng, X.; Su, B. Ligand-controlled electrochemiluminescence generation from CdSe/CdS/ZnS core/shell/shell quantum dots. Nano Res. 2024, 17, 7776–7785. [Google Scholar] [CrossRef]
- Gao, X.; Tian, Z.; Ren, X.; Ai, Y.; Zhang, B.; Zou, G. Silver Nanocluster-Tagged Electrochemiluminescence Immunoassay with a Sole and Narrow Triggering Potential Window. Anal. Chem. 2024, 96, 1700–1706. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-L.; Xiang, L.; Chai, Y.-Q.; Yuan, R. Confinement-enhanced electrochemiluminescence of copper nanoclusters on 3D layered double hydroxide for ultrasensitive detection of GFAP. Biosens. Bioelectron. 2024, 265, 116685. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; He, B.; Tang, B. Aggregation-induced emission of siloles. Chem. Sci. 2015, 6, 5347–5365. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Q.; Alam, P.; Bai, H.; Bhalla, V.; Bryce, M.R.; Cao, M.; Chen, C.; Chen, S.; Chen, X.; et al. Aggregation-Induced Emission (AIE), Life and Health. ACS Nano 2023, 17, 14347–14405. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Nie, Y.; Li, Z.; Ma, Q. The controllable assembly of Cu nanocluster-based aggregation induced ECL strategy for miRNA detection. Anal. Chim. Acta 2023, 1238, 340607. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Nie, Y.; Wang, P.; Ma, Q. In situ synthesis of Cu nanoclusters/CeO2 nanorod as aggregated induced ECL probe for triple-negative breast cancer detection. Talanta 2023, 258, 124400. [Google Scholar] [CrossRef] [PubMed]
- Hesari, M.; Workentin, M.S.; Ding, Z. Highly efficient electrogenerated chemiluminescence of Au38 Nanoclusters. ACS Nano 2014, 8, 8543–8553. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Yang, Y.; Guo, Y.; Chai, Y.; Liu, J.; Ruo, Y. Zn2+-induced gold cluster aggregation enhanced electrochemiluminescence for ultrasensitive detection of microRNA-21. Anal. Chem. 2023, 95, 5568–5574. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.-H.; Li, S.-K.; Zhong, X.; Liang, W.-B.; Chai, Y.-Q.; Zhuo, Y.; Yuan, R. Electrochemiluminescence Enhanced by Restriction of Intramolecular Motions (RIM): Tetraphenylethylene Microcrystals as a Novel Emitter for Mucin 1 Detection. Anal. Chem. 2019, 91, 3710–3716. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Hu, G.-B.; Yao, L.-Y.; Yang, Y.; Liang, W.-B.; Yuan, R.; Xiao, D.-R. Matrix Coordination-Induced Electrochemiluminescence Enhancement of Tetraphenylethylene-Based Hafnium Metal–Organic Framework: An Electrochemiluminescence Chromophore for Ultrasensitive Electrochemiluminescence Sensor Construction. Anal. Chem. 2020, 92, 3380–3387. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Hu, S.; Qin, D.; Nong, C.; Yang, L.; Deng, B. Aggregation-induced electrochemiluminescence enhancement of Ag-MOG for amyloid β 42 sensing. Anal. Chim. Acta 2023, 1281, 341898. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yao, L.; Huang, W.; Yang, Y.; Liang, W.; Yuan, R.; Xiao, D. Overcoming aggregation-induced quenching by metal-organic framework for electrochemiluminescence (ECL) enhancement: Zn-PTC as a new ECL emitter for ultrasensitive micrornas detection. ACS Appl. Mater. Interfaces 2021, 13, 44079. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zhang, D.; Li, C.; Zhao, J.; Feng, R.; Zhang, Y.; Xu, R.; Wei, Q. Europium metal-organic framework with a tetraphenylethylene-based ligand: A dual-mechanism quenching immunosensor for enhanced electrochemiluminescence via the coordination trigger. Anal. Chem. 2024, 96, 3898. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Gao, X.; Dong, S.; Jia, J.; Xu, Y.; Wang, D.; Zou, G. Coreactant-Free and Direct Electrochemiluminescence from Dual-Stabilizer-Capped InP/ZnS Nanocrystals: A New Route Involving n-Type Luminophore. Anal. Chem. 2022, 94, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Kan, X. Multiquenching-Based Aggregation-Induced Electrochemiluminescence Sensing for Highly Sensitive Detection of the SARS-CoV-2 N Protein. Langmuir 2024, 40, 16484–16491. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wang, Y.; He, L.; Lian, Z.; Wang, Y.; Niu, Y.; Li, N.; Ye, J.; Ma, Y. Platinum(II) complex with excellent electrochemiluminescence properties for the sensitive detection of glutathione and glutathione reductase activities. Microchem. J. 2025, 212, 113308. [Google Scholar] [CrossRef]
- Jiang, H.; Qin, Z.; Zheng, Y.; Liu, L.; Wang, X. Aggregation-Induced Electrochemiluminescence by Metal-Binding Protein Responsive Hydrogel Scaffolds. Small 2019, 15, 1901170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Nie, Y.; Yang, Z.; Yuan, R.; Wang, H.; Chai, Y. Highly Efficient Aggregation-Induced Electrochemiluminescence of Al(III)-Cbatpy Metal–Organic Gels Obtained by Ultrarapid Self-Assembly for a Biosensing Application. Anal. Chem. 2022, 94, 12196–12203. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Shen, W.; Zhao, J.; Yang, G.; Yuan, R.; Chen, S. Conjugated polymer-encapsulation-manipulated aggregation-induced electrochemiluminescence of tetraphenylethylene for sensitive malathion analysis. Sensor Actuat. B-Chem. 2024, 418, 136218. [Google Scholar] [CrossRef]
- Yoo, H.S.; Jeong, S.H.; Oh, K.T.; Lee, S.; Sohn, Y.H.; Ye, B.S.; Yun, M.; Lee, P.H. Interrelation of striatal dopamine, brain metabolism and cognition in dementia with Lewy bodies. Brain 2022, 145, 4448–4458. [Google Scholar] [CrossRef] [PubMed]
- Frankle, W.G.; Himes, M.; Mason, N.S.; Mathis, C.A.; Narendran, R. Prefrontal and Striatal Dopamine Release Are Inversely Correlated in Schizophrenia. Biol. Psychiat. 2022, 92, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Shao, M.; Liu, Z.; Ren, X.; Gao, M.; Ma, H.; Zhang, N.; Wei, Q. Ultrasensitive aggregation-induced electrochemiluminescence sensor for dopamine detection in polymer hydrogel system. Sensor Actuat. B-Chem. 2024, 398, 134781. [Google Scholar] [CrossRef]
- Vasenko, O.; Zinchenko, I.; Tsytlishvili, K.; Bikasov, V. Research of methods of inactivation of the antibiotic cyprofloxacin in order to prevent environmental pollution and protect human health. Sci. Horiz. 2020, 7, 19–25. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhu, K.D.; Zhu, J.; Ding, S.N. Photonic Crystal of Polystyrene Nanomembrane: Signal Amplification and Low Triggered Potential Electrochemiluminescence for Tetracycline Detection. Anal. Chem. 2021, 93, 2959–2967. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Pang, C.; Ma, X.; Wu, Y.; Wang, M.; Xu, Z.; Luo, J. Aggregation-induced electrochemiluminescence and molecularly imprinted polymer based sensor with Fe3O4@Pt nanoparticle amplification for ultrasensitive ciprofloxacin detection. Mircochem. J. 2022, 178, 107345. [Google Scholar] [CrossRef]
- Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Curry, W.T.; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 2008, 10, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Cassiday, L.A.; Maher, L.J. In Vivo Recognition of an RNA Aptamer by Its Transcription Factor Target. Biochemistry 2001, 40, 2433–2438. [Google Scholar] [CrossRef] [PubMed]
- Jenison, R.D.; Gill, S.C.; Pardi, A.; Polisky, B. High-Resolution Molecular Discrimination by RNA. Science 1994, 263, 1425–1429. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhang, L.; Miao, W.; Wang, X.; Guo, G. Aggregation-Induced Electrochemiluminescence of the Dichlorobis(1,10-phenanthroline)ruthenium(II) (Ru(phen)2Cl2)/Tri-n-propylamine (TPrA) System in H2O–MeCN Mixtures for Identification of Nucleic Acids. Anal. Chem. 2020, 92, 9613–9619. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Tan, X.; He, Y.; Yuan, R.; Wang, S.; Chen, S. Host–Guest Recognition-Mediated Supramolecular Aggregation-Induced Electrochemiluminescence of Iridium(III) Complexes for Nucleic Acid Bioassay. Anal. Chem. 2024, 96, 6218–6227. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ming, W.; Zhang, J.; Zhou, X.; Qin, Y.; Wu, L. Aggregation-induced electrochemiluminescence based on intramolecular charge transfer and twisted molecular conformation for label-free Immunoassay. Anal. Chim. Acta 2024, 1320, 342994. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, J.; Niu, Y.; He, L.; Wang, Y.; Ma, Y.; Yao, Y.; Ye, J. Tetraphenylethene-Based Multicomponent Platinum (II) Metallacages with Tunable Luminescence and Aggregation-Induced Electrochemiluminescence Properties. Adv. Opt. Mater. 2023, 11, 2202940. [Google Scholar] [CrossRef]
- Jia, D.; Hua, Y.; Wu, T.; Ren, X.; Gao, X.; Yang, L.; Wei, Q. Facile preparation of iridium-based AIE polymer dots for sensitive electrochemiluminescence immunoassay of CD44 protein. Anal. Chim. Acta 2025, 1341, 343639. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, J.; Geng, B.; Yang, X.; Song, Z.; Li, Z.; Ding, B.; Zhang, J.; Lin, W.; Yan, M. TPE based electrochemiluminescence for ALP selective rapid one-step detection applied in vitro. Microchem. J. 2021, 164, 106041. [Google Scholar] [CrossRef]
- Yang, L.; Sun, X.; Wei, D.; Ju, H.; Du, Y.; Ma, H.; Wei, Q. Aggregation-Induced Electrochemiluminescence Bioconjugates of Apoferritin-Encapsulated Iridium(III) Complexes for Biosensing Application. Anal. Chem. 2021, 93, 1553–1560. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Feng, W.; Du, P.; Zhang, R.; Liu, J.; Liu, Y.; Wang, Z.; Lu, X. Aggregation-Induced Electrochemiluminescence of Tetraphenylbenzosilole Derivatives in an Aqueous Phase System for Ultrasensitive Detection of Hexavalent Chromium. Anal. Chem. 2020, 92, 14838–14845. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ma, X.; Pang, C.; Wang, M.; Yin, G.; Xu, Z.; Li, J.; Luo, J. Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification. Biosens. Bioelectron. 2021, 176, 112944. [Google Scholar] [CrossRef] [PubMed]
- Saremi, M.; Amini, A.; Heydari, H. An aptasensor for troponin I based on the aggregation-induced electrochemiluminescence of nanoparticles prepared from a cyclometallated iridium(III) complex and poly(4-vinylpyridine-co-styrene) deposited on nitrogen-doped graphene. Microchim. Acta 2019, 186, 254. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jia, H.; Ren, X.; Li, Y.; Liu, L.; Feng, R.; Ma, H.; Wei, Q. Dumbbell Plate-Shaped AIEgen-Based Luminescent MOF with High Quantum Yield as Self-Enhanced ECL Tags: Mechanism Insights and Biosensing Application. Small 2022, 18, 2106567. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Feng, S.; Yu, L.; Xue, Y.; Huang, J.; Yang, X. Label-free immunosensor for cardiac troponin I detection based on aggregation-induced electrochemiluminescence of a distyrylarylene derivative. Biosens. Bioelectron. 2021, 192, 113532. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Yang, L.; Du, Y.; Ren, Y.; Ren, X.; Ma, H.; Wu, D.; Ju, H.; Li, Y.; Wei, Q. Electrochemiluminescence sensing platform based on functionalized poly-(styrene-co-maleicanhydride) nanocrystals and iron doped hydroxyapatite for CYFRA 21-1 immunoassay. Sensor Actuat. B-Chem. 2020, 321, 128454. [Google Scholar] [CrossRef]
- Hu, C.; Cao, L.; Wu, X.; Chen, G.; Li, Y.; Wang, J.; Huang, C.; Zhan, L. Coreactant-free aggregation-induced electrochemiluminescence system based on the novel zinc-luminol metal-organic gel for ultrasensitive detection of PiRNA-823. Biosens. Bioelectron. 2024, 255, 116263. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, L.; Wang, Z.; Lu, L. Aggregation-Induced Electrochemiluminescence and Nitric Oxide Recognition by Halogen Bonding with a Ruthenium(II) Complex. ChemPlusChem 2023, 88, e202200421. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, H.; Li, S.; Xiao, Y.; Xiong, C.; Wen, W.; Wang, S.; Zhang, X.; Chen, M.-M. Coordinative interaction-enhanced aggregation-induced electrochemiluminescence signal enables ultrasensitive aflatoxin B1 sensing in corn. Food Chem. 2025, 475, 143246. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-J.; Qin, N.; Yuan, R.; Wang, H.-J. Solvent Regulation Enhanced Aggregation-Induced Electrochemiluminescence of Piperazine-Functionalized Carbon Dot Aggregates for Ultrasensitive Detection of Deoxynivalenol. Anal. Chem. 2025, 97, 14040–14047. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-J.; Pan, M.-Q.; Cao, W.-W.; Wang, Z.; Yuan, R.; Wang, H.-J. Solvent Regulation Induced Cathode Aggregation-Induced Electrochemiluminescence of Tetraphenylethylene Nanoaggregates for Ultrasensitive Zearalenone Analysis. Anal. Chem. 2024, 96, 9043–9050. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, J.; Wang, Y.; Yuan, R.; Chen, S. Dual emitting aggregation-induced electrochemiluminescence from tetrastyrene derivative for chloramphenicol detection. Food Chem. 2024, 457, 140100. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Sun, Y.; Wang, X.; Du, Y.; Feng, R.; Dong, X.; Liu, X.; Ma, H.; Wei, Q. Protein-confinement synergizes with aggregation-induced-emission enhancement strategy for tetracycline detection. Sensor Actuat. B-Chem. 2025, 442, 138133. [Google Scholar] [CrossRef]
- Zhou, X.; Song, H.; Zhang, X.; Chen, L.; Chen, Y.; Li, Z.; Feng, L. Aggregation-induced Electrochemiluminescence of AgNCs Enhanced with AuNPs@MXene Composites for Ultrasensitive Detection of microRNA. Chem-Asian J. 2025, 20, e202401417. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-L.; Wang, L.; Chen, Y.-F.; Wang, Z.; Yuan, R.; Wang, H.-J. Efficient Al–H3NTB-MOG ECL Emitter with Self-Enhanced and AIECL Performance for Ultrasensitive Sensing of miRNA-141 Combined with a Y-Shaped Multiregion Dual-Drive DNA Walker. Anal. Chem. Anal. Chem. 2025, 97, 9057–9065. [Google Scholar] [CrossRef] [PubMed]
Target Analyte | Sensing Strategies | AIECL Emitters | Linear Range | LOD | Reference |
---|---|---|---|---|---|
ALP | Turn off | Ir(ppy)3@apoFt bioconjugate (TPrA) | 0.1–6.0 U L−1 | 0.037 U L−1 | [164] |
GSH | Turn off | PS-BZIMPY-Pt | 0.1–200 μM | 0.016 μM | [146] |
CYFRA 21-1 | Turn on | Pdots (TPrA) | 1 pg mL−1 to 50 ng mL−1 | 0.43 pg mL−1 | [165] |
Cr(vi) | Turn on | TPBS-C (S2O82−) | 10−12 to 10−4 M | 0.83 pM | [166] |
Chloramphenicol | Turn on | BDT-TPA (TEOA) | 5 × 10−13 to 4 × 10−10 M | 1.18 × 10−13 M | [167] |
TI | Turn on | MOG (S2O82−) | 0.1 pM to 10 nM | 20 fM | [168] |
NSE | Turn off | TP-CCOH NCs (S2O82−) | 0.0001 to 10 ng mL−1 | 52 fg mL−1 | [169] |
cTnI | Turn off | TCPP J-aggregate (S2O82−) | 0-100 µg L−1 | 43 fg mL−1 | [170] |
Cu2+ | ECL-RET | TPE-(NO2)4 (S2O82−) | 1.0 pM to 500 nM | 0.33 pM | [45] |
MUC1 | Turn on | Zr-TCBPE-PEI | 1 fg mL−1 to 1 ng mL−1 | 0.29 fg mL−1 | [139] |
CYFRA 21-1 | Turn off | CIPNPs (TPA) | 10−7 to 500 ng mL−1 | 0.01471 pg mL−1 | [171] |
PiRNA-823 | Turn on | Zn-MOG | 100 aM to 100 pM | 60.0 aM | [172] |
NO | Turn off | [Ru(phen)2(phen–Br2)]2+ | 2 nM to 2 × 105 nM | 2 nM | [173] |
Aflatoxins B1 (AFB1) | Turn on | TH-UiO-66-NH2 | 10 fg mL−1 to 1 μg mL−1 | 1.04 fg mL−1 | [174] |
Malathion | Turn on | poly [2,5-dioctyl-1,4-phenylene] (PDP) | 5.0 fM to 0.5 μM | 0.9 fM | [149] |
Dopamine (DA) and H2O2 | Turn off | [Ir(pbi)2(acac)] | 0.01–100 nmol/mL | 2.0 pmol/mL | [151] |
Deoxynivalenol (DON) | Turn on | piperazine-functionalized carbon dot aggregates (P-CDAs) | 1 fg/mL to 10 ng/mL | 0.112 fg/mL | [175] |
Zearalenone (ZEN) | Turn on | TPE NAs | 1 fg/mL–100 ng/mL | 0.362 fg/mL | [176] |
Chloramphenicol (CAP) | Turn on | 1,1,2,2-tetrakis(4-(pyridin-4-yl) phenyl)-ethene (TPPE) | 10 fmol·L−1 to 100nmol·L−1 | 1.81 fmol·L−1 | [177] |
Tetracycline | Turn on | tetrakis(4-aminophenyl)ethene (ETTA) | 0.1 pM∼1 μM | 42.6 fM | [178] |
microRNA-21 | Turn on | AuNPs@MXene | 100 aM to 11nM | 31 aM | [179] |
miRNA-141 | Turn on | Al–H3NTB-MOG | 10 aM to 1 nM | 6.48 aM | [180] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Fei, J.; Zhang, S.; Shan, T. Recent Advances in Aggregation-Induced Electrochemiluminescent Biosensors. Biosensors 2025, 15, 471. https://doi.org/10.3390/bios15080471
Zhou L, Fei J, Zhang S, Shan T. Recent Advances in Aggregation-Induced Electrochemiluminescent Biosensors. Biosensors. 2025; 15(8):471. https://doi.org/10.3390/bios15080471
Chicago/Turabian StyleZhou, Likang, Junhao Fei, Suping Zhang, and Tianyu Shan. 2025. "Recent Advances in Aggregation-Induced Electrochemiluminescent Biosensors" Biosensors 15, no. 8: 471. https://doi.org/10.3390/bios15080471
APA StyleZhou, L., Fei, J., Zhang, S., & Shan, T. (2025). Recent Advances in Aggregation-Induced Electrochemiluminescent Biosensors. Biosensors, 15(8), 471. https://doi.org/10.3390/bios15080471