A Microsphere-Based Sensor for Point-of-Care and Non-Invasive Acetone Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Colorimetric Acetone Detection
2.3. Microsphere Fabrication
2.4. Microsphere Characterization
2.5. Sensor Design
2.5.1. Microsphere Sensor Fabrication
2.5.2. Planar Sensor Fabrication
2.6. Detection Setup
2.7. Samples
2.7.1. Simulated Samples
2.7.2. Human Subject Breath Samples
2.8. Solid-Phase Microextraction (SPME) Coupled with GC-MS
2.8.1. Modification of SPME Fibers
2.8.2. Measurement of Acetone in Breath and Simulated Samples
3. Results
3.1. Comparative Sensor Response
3.2. Microsphere Physical Characteristics
3.3. Microsphere Sensor Response to Acetone and Carbon Dioxide
3.4. Continuous and Non-Invasive Acetone Monitoring with a Microsphere-Based Sensor
3.5. Microsphere Sensor Performance Evaluation: Reproducibility, Stability, and Accuracy
3.6. Microsphere Sensor for Continuous Acetone Monitoring in Type 1 Diabetes Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AcAc | Acetoacetate |
% v/v | Percent Volume per Volume |
°C | Celsius Degree |
µL/h | Microliter per Hour |
µm | Micrometer |
a.u. | Arbitrary Units |
B | Blue |
BHB | β-Hydroxybutyrate |
c | Constant = Initial Absorbance at Time Zero |
C3H6O | Acetone |
CMOS | Complementary Metal Oxide Semiconductor |
CO2 | Carbon Dioxide |
CV | Coefficient of Variation |
EBT | Exhaled Breath Temperature |
G | Green |
g/min | Grams per Minute |
GC-MS | Gas Chromatography–Mass Spectrometry |
HA | Hydroxylamine Sulfate |
HA-TB | Sensing Probe (Hydroxylamine Sulfate and Thymol Blue) |
HPLC | High-Performance Liquid Chromatography |
I | Intensity |
IR | Intensity of the R, G, or B components in the Reference Area |
IRB | Institutional Review Board |
Is | Intensity of the R, G, or B components in the Sensing Area |
k | Reaction Rate Coefficient |
LED | Light-Emitting Diode |
LOD | Limit of Detection |
LOQ | Limit of Quantification |
min | Minutes |
mL | Milliliter |
MSD | Mass Selective Detector |
N | Number |
PDMS | Polydimethylsiloxane |
PET | Polyethylene Terephthalate |
PFBHA | o-2,3,4,5,6-(Pentafluorobenzyl)Hydroxylamine Hydrochloride |
ppm | Part-Per-Million |
PTFE | Polytetrafluoroethylene |
PVA | Polyvinyl Alcohol |
QR | Quick Response (A Type of Two-Dimensional Barcode) |
R | Red |
r.t. | Room Temperature |
RGB | Red–Green–Blue |
RH | Relative Humidity |
SIFT-MS | Selected Ion Flow Tube Mass Spectrometry |
SIM | Selected Ion Monitoring Mode |
SPME | Solid Phase Microextraction |
TB | Thymol Blue |
ΔA | Absorbance Change (Final Absorbance − Initial Absorbance) |
ΔAmax | Maximum Absorbance Change |
ΔG/G0 | Green Absorbance of the Sample Related to the Reference |
References
- Zhang, K.; Ma, Y.; Luo, Y.; Song, Y.; Xiong, G.; Ma, Y.; Sun, X.; Kan, C. Metabolic diseases and healthy aging: Identifying environmental and behavioral risk factors and promoting public health. Front. Public Health 2023, 11, 1253506. [Google Scholar] [CrossRef] [PubMed]
- Bovolini, A.; Garcia, J.; Andrade, M.A.; Duarte, J.A. Metabolic syndrome pathophysiology and predisposing factors. Int. J. Sports Med. 2021, 42, 199–214. [Google Scholar] [CrossRef]
- Chen, Y.; Michalak, M.; Agellon, L.B. Importance of Nutrients and Nutrient Metabolism on Human Health. Yale J. Biol. Med. 2018, 91, 95–103. [Google Scholar] [PubMed]
- Agrawal, R.; Ansari, M.A.; Anand, R.S.; Sneha, S.; Mehrotra, R. (Eds.) Computational Intelligence in Healthcare Applications; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Spriet, L.L. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014, 44, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Alkedeh, O.; Priefer, R. The Ketogenic Diet: Breath Acetone Sensing Technology. Biosensors 2021, 11, 26–36. [Google Scholar] [CrossRef]
- Smink, F.R.; Van Hoeken, D.; Hoek, H.W. Epidemiology of Eating Disorders: Incidence, Prevalence and Mortality Rates. Curr. Psychiatry Rep. 2012, 14, 406–414. [Google Scholar] [CrossRef]
- Dressler, A.; Reithofer, E.; Trimmel-Schwahofer, P.; Klebermasz, K.; Prayer, D.; Kasprian, G.; Rami, B.; Schober, E.; Feucht, M. Type 1 diabetes and epilepsy: Efficacy and safety of the ketogenic diet. Epilepsia 2010, 51, 1086–1089. [Google Scholar] [CrossRef]
- LeCheminant, J.D.; Smith, B.K.; Westman, E.C.; Vernon, M.C.; Donnelly, J.E. Comparison of a reduced carbohydrate and reduced fat diet for LDL, HDL, and VLDL subclasses during 9-months of weight maintenance subsequent to weight loss. Lipids Health Dis. 2010, 9, 54. [Google Scholar] [CrossRef]
- Schmidt, M.; Pfetzer, N.; Schwab, M.; Strauss, I.; Kämmerer, U. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial. Nutr. Metab. 2011, 8, 54. [Google Scholar] [CrossRef]
- Poplawski, M.M.; Mastaitis, J.W.; Isoda, F.; Grosjean, F.; Zheng, F.; Mobbs, C.V. Reversal of diabetic nephropathy by a ketogenic diet. PLoS ONE 2011, 6, e18604. [Google Scholar] [CrossRef]
- Henderson, S.T. Ketone bodies as a therapeutic for Alzheimer’s disease. Neurotherapeutics 2008, 5, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Brega, A.; Villa, P.; Quadrini, G.; Quadri, A.; Lucarelli, C. High-performance liquid chromatographic determination of acetone in blood and urine in the clinical diagnostic laboratory. J. Chromatogr. A 1991, 553, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Storer, M.; Dummer, J.; Lunt, H.; Scotter, J.; McCartin, F.; Cook, J.; Swanney, M.; Kendall, D.; Logan, F.; Epton, M. Measurement of breath acetone concentrations by selected ion flow tube mass spectrometry in type 2 diabetes. J. Breath Res. 2011, 5, 046011. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.A.; Eroglu, E.I.; Rooney, K.; Harper, C.; McClintock, S.; Franklin, J.; Markovic, T.P.; Seimon, R.V.; Sainsbury, A. Urine dipsticks are not accurate for detecting mild ketosis during a severely energy restricted diet. Obes. Sci. Pract. 2020, 6, 544–551. [Google Scholar] [CrossRef]
- Brooke, J.; Stiell, M.; Ojo, O. Evaluation of the accuracy of capillary hydroxybutyrate measurement compared with other measurements in the diagnosis of diabetic ketoacidosis: A systematic review. Int. J. Environ. Res. Public Health 2016, 13, 837. [Google Scholar] [CrossRef]
- Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I. Nanostructured metal oxide-based acetone gas sensors: A review. Sensors 2020, 20, 3096. [Google Scholar] [CrossRef]
- Ito, K.; Kawamura, N.; Suzuki, Y.; Maruo, Y.Y. Colorimetric detection of gaseous acetone based on a reaction between acetone and 4-nitrophenylhydrazine in porous glass. Microchem. J. 2020, 159, 105428. [Google Scholar] [CrossRef]
- Yu, J.; Wang, D.; Tipparaju, V.V.; Jung, W.; Xian, X. Detection of transdermal biomarkers using gradient-based colorimetric array sensor. Biosens. Bioelectron. 2022, 195, 113650. [Google Scholar] [CrossRef]
- Wang, D.I.; Zhang, F.; Prabhakar, A.; Qin, X.; Forzani, E.S.; Tao, N. Colorimetric Sensor for Online Accurate Detection of Breath Acetone. ACS Sens. 2021, 6, 450–453. [Google Scholar] [CrossRef]
- Park, J.J.; Lee, J.; Kim, G.H.; Kim, J.H.; Lee, H.S.; Lee, W. Breath visualization: Colorimetric detection of acetone gas using ion-pairing dyes based on hollow silica particles. Sens. Actuators B Chem. 2024, 406, 135373. [Google Scholar] [CrossRef]
- Utada, A.S.; Lorenceau, E.; Link, D.R.; Kaplan, P.D.; Stone, H.A.; Weitz, D.A. Monodisperse Double Emulsions Generated from a Microcapillary Device. Science 2005, 308, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Do Nascimento, D.F.; Avendaño, J.A.; Mehl, A.; Moura, M.J.; Carvalho, M.S.; Duncanson, W.J. Flow of tunable elastic microcapsules through constrictions. Sci. Rep. 2017, 7, 11898. [Google Scholar] [CrossRef] [PubMed]
- Osorio Perez, O.; Nguyen, N.A.; Hendricks, A.; Victor, S.; Mora, S.J.; Yu, N.; Xian, X.; Wang, S.; Kulick, D.; Forzani, E. A Novel Acetone Sensor for Body Fluids. Biosensors 2024, 14, 4. [Google Scholar] [CrossRef]
- Wang, R.; Prabhakar, A.; Iglesias, R.A.; Xian, X.; Shan, X.; Tsow, F.; Forzani, E.S.; Tao, N. A microfluidic-colorimetric sensor for continuous monitoring of reactive environmental chemicals. IEEE Sens. J. 2011, 12, 1529–1535. [Google Scholar] [CrossRef]
- Dolan, J. Chromatographic Measurements, Part 5: Determining Lod and Loq Based on the Calibration Curves. Separation Science. 9 February 2021. Available online: https://www.sepscience.com/hplc-solutions-126-chromatographic-measurements-part-5-determining-lod-and-loq-based-on-the-calibration-curve (accessed on 18 June 2025).
Condition | Tapered Tip Diameter (µm) | Liquid Phase Flowrate (µL h−1) | Capsule Diameter (µm) | Capsule Membrane Thickness (µm) | ||
---|---|---|---|---|---|---|
Outer | Middle | Inner | ||||
I | 202 | 1000 | 250 | 70 | 340.8 | 3.3 ± 0.5 |
II | 40 | 300 | 100 | 60 | 241.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osorio Perez, O.; Nguyen, N.A.; Denham, L.; Hendricks, A.; Dominguez, R.E.; Jeong, E.J.; Carvalho, M.S.; Lima, M.; Eshima, J.; Yu, N.; et al. A Microsphere-Based Sensor for Point-of-Care and Non-Invasive Acetone Detection. Biosensors 2025, 15, 429. https://doi.org/10.3390/bios15070429
Osorio Perez O, Nguyen NA, Denham L, Hendricks A, Dominguez RE, Jeong EJ, Carvalho MS, Lima M, Eshima J, Yu N, et al. A Microsphere-Based Sensor for Point-of-Care and Non-Invasive Acetone Detection. Biosensors. 2025; 15(7):429. https://doi.org/10.3390/bios15070429
Chicago/Turabian StyleOsorio Perez, Oscar, Ngan Anh Nguyen, Landon Denham, Asher Hendricks, Rodrigo E. Dominguez, Eun Ju Jeong, Marcio S. Carvalho, Mateus Lima, Jarrett Eshima, Nanxi Yu, and et al. 2025. "A Microsphere-Based Sensor for Point-of-Care and Non-Invasive Acetone Detection" Biosensors 15, no. 7: 429. https://doi.org/10.3390/bios15070429
APA StyleOsorio Perez, O., Nguyen, N. A., Denham, L., Hendricks, A., Dominguez, R. E., Jeong, E. J., Carvalho, M. S., Lima, M., Eshima, J., Yu, N., Smith, B., Wang, S., Kulick, D., & Forzani, E. (2025). A Microsphere-Based Sensor for Point-of-Care and Non-Invasive Acetone Detection. Biosensors, 15(7), 429. https://doi.org/10.3390/bios15070429