Biological Sensing Using Vertical MoS2-Graphene Heterostructure-Based Field-Effect Transistor Biosensors
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Fabrication of FET Devices
2.3. Functionalization
2.4. Optical and Electrochemical Characterization
3. Results and Discussion
3.1. Materials Characterizations
3.2. BioFunctionalization
3.3. Biosensing Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoon, J.; Lim, J.; Shin, M.; Lee, S.-N.; Choi, J.-W. Graphene/MoS2 Nanohybrid for Biosensors. Materials 2021, 14, 518. [Google Scholar] [CrossRef] [PubMed]
- Pham, P.V.; Bodepudi, S.C.; Shehzad, K.; Liu, Y.; Xu, Y.; Yu, B.; Duan, X. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem. Rev. 2022, 122, 6514–6613. [Google Scholar] [CrossRef] [PubMed]
- Azadmanjiri, J.; Srivastava, V.K.; Kumar, P.; Sofer, Z.; Min, J.; Gong, J. Graphene-Supported 2D Transition Metal Dichalcogenide van Der Waals Heterostructures. Appl. Mater. Today 2020, 19, 100600. [Google Scholar] [CrossRef]
- Yoon, H.H.; Fernandez, H.A.; Nigmatulin, F.; Cai, W.; Yang, Z.; Cui, H.; Ahmed, F.; Cui, X.; Uddin, M.G.; Minot, E.D.; et al. Miniaturized Spectrometers with a Tunable van Der Waals Junction. Science 2022, 378, 296–299. [Google Scholar] [CrossRef]
- Alam, T.I.; Hani, S.U.; Guo, Z.; Ahmed, S.; Saleque, A.M.; Ivan, M.N.A.S.; Saha, S.; Tsang, Y.H. Synergistically Engineered All Van Der Waals GaS–WSe2 Photodiodes: Approaching Near-Unity Polychromatic Linearity for Multifunctional Optoelectronics. Small 2025, 21, 2410841. [Google Scholar] [CrossRef]
- Chen, W.Y.; Lai, S.-N.; Yen, C.-C.; Jiang, X.; Peroulis, D.; Stanciu, L.A. Surface Functionalization of Ti3C2Tx MXene with Highly Reliable Superhydrophobic Protection for Volatile Organic Compounds Sensing. ACS Nano 2020, 14, 11490–11501. [Google Scholar] [CrossRef]
- Yu, Y.-J.; Zhao, Y.; Ryu, S.; Brus, L.E.; Kim, K.S.; Kim, P. Tuning the Graphene Work Function by Electric Field Effect. Nano Lett. 2009, 9, 3430–3434. [Google Scholar] [CrossRef]
- Kim, T.; Fan, S.; Lee, S.; Joo, M.-K.; Lee, Y.H. High-Mobility Junction Field-Effect Transistor via Graphene/MoS2 Heterointerface. Sci. Rep. 2020, 10, 13101. [Google Scholar] [CrossRef]
- Pham, T.; Ramnani, P.; Villarreal, C.C.; Lopez, J.; Das, P.; Lee, I.; Neupane, M.R.; Rheem, Y.; Mulchandani, A. MoS2-Graphene Heterostructures as Efficient Organic Compounds Sensing 2D Materials. Carbon 2019, 142, 504–512. [Google Scholar] [CrossRef]
- Ignatova, T.; Pourianejad, S.; Li, X.; Schmidt, K.; Aryeetey, F.; Aravamudhan, S.; Rotkin, S.V. Multidimensional Imaging Reveals Mechanisms Controlling Multimodal Label-Free Biosensing in Vertical 2DM-Heterostructures. ACS Nano 2022, 16, 2598–2607. [Google Scholar] [CrossRef]
- Stergiou, A.; Tagmatarchis, N. Molecular Functionalization of Two-Dimensional MoS2 Nanosheets. Chem. Eur. J. 2018, 24, 18246–18257. [Google Scholar] [CrossRef] [PubMed]
- Presolski, S.; Pumera, M. Covalent Functionalization of MoS2. Mater. Today 2016, 19, 140–145. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Qiu, Q.; Wen, Q.; Zhang, Q.; Yang, W.; Yuwen, L.; Weng, L.; Wang, L. Efficient Biofunctionalization of MoS2 Nanosheets with Peptides as Intracellular Fluorescent Biosensor for Sensitive Detection of Caspase-3 Activity. J. Colloid Interface Sci. 2019, 543, 96–105. [Google Scholar] [CrossRef]
- Martin, H.J.; Schulz, K.H.; Bumgardner, J.D.; Walters, K.B. An XPS Study on the Attachment of Triethoxsilylbutyraldehyde to Two Titanium Surfaces as a Way to Bond Chitosan. Appl. Surf. Sci. 2008, 254, 4599–4605. [Google Scholar] [CrossRef]
- Sen, A.; Shim, J.; Bala, A.; Park, H.; Kim, S. Boosting Sensitivity and Reliability in Field-Effect Transistor-Based Biosensors with Nanoporous MoS 2 Encapsulated by Non-Planar Al2O3. Adv. Funct. Mater. 2023, 33, 2301919. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, Z.; Luo, F.; Lan, K.; Chen, R.; Qin, G. Sensitive and Quantitative Detection of SARS-CoV-2 Antibodies from Vaccinated Serum by MoS2-Field Effect Transistor. 2D Mater. 2022, 9, 015030. [Google Scholar] [CrossRef]
- Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156–6214. [Google Scholar] [CrossRef]
- Islam, K.; Suhail, A.; Pan, G. A Label-Free and Ultrasensitive Immunosensor for Detection of Human Chorionic Gonadotrophin Based on Graphene FETs. Biosensors 2017, 7, 27. [Google Scholar] [CrossRef]
- Kwong Hong Tsang, D.; Lieberthal, T.J.; Watts, C.; Dunlop, I.E.; Ramadan, S.; Del Rio Hernandez, A.E.; Klein, N. Chemically Functionalised Graphene FET Biosensor for the Label-Free Sensing of Exosomes. Sci. Rep. 2019, 9, 13946. [Google Scholar] [CrossRef]
- Maidin, N.N.M.; Rahim, R.A.; Halim, N.H.A.; Abidin, A.S.Z.; Ahmad, N.A.; Lockman, Z. Interaction of Graphene Electrolyte Gate Field-Effect Transistor for Detection of Cortisol Biomarker; AIP Publishing: Bandung, Indonesia, 2018; p. 020022. [Google Scholar]
- Shooshtari, M. Ammonia Gas Sensors Based on Multi-Wall Carbon Nanofiber Field Effect Transistors by Using Gate Modulation. Colloids Surf. Physicochem. Eng. Asp. 2025, 704, 135563. [Google Scholar] [CrossRef]
- Jin, Q.; Men, K.; Li, G.; Ou, T.; Lian, Z.; Deng, X.; Zhao, H.; Zhang, Q.; Ming, A.; Wei, Q.; et al. Ultrasensitive Graphene Field-Effect Biosensors Based on Ferroelectric Polarization of Lithium Niobate for Breast Cancer Marker Detection. ACS Appl. Mater. Interfaces 2024, 16, 28896–28904. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, M.; Zhao, Y.; Chen, Y.; Noureen, B.; Du, L.; Wu, C. Functional Organic Electrochemical Transistor-Based Biosensors for Biomedical Applications. Chemosensors 2024, 12, 236. [Google Scholar] [CrossRef]
- Smaani, B.; Nafa, F.; Benlatrech, M.S.; Mahdi, I.; Akroum, H.; Walid Azizi, M.; Harrar, K.; Kanungo, S. Recent Progress on Field-Effect Transistor-Based Biosensors: Device Perspective. Beilstein J. Nanotechnol. 2024, 15, 977–994. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.I.; Mousazadehkasin, M.; Ghosh, S.; Tsavalas, J.G.; Song, E. An Integrated Microfluidic Platform for Selective and Real-Time Detection of Thrombin Biomarkers Using a Graphene FET. Analyst 2020, 145, 4494–4503. [Google Scholar] [CrossRef]
- Lan, Y.-W.; Hong, C.-J.; Chen, P.-C.; Lin, Y.-Y.; Yang, C.-H.; Chu, C.-J.; Li, M.-Y.; Li, L.-J.; Su, C.-J.; Wu, B.-W.; et al. Nonvolatile Molecular Memory with the Multilevel States Based on MoS2 Nanochannel Field Effect Transistor through Tuning Gate Voltage to Control Molecular Configurations. Nanotechnology 2020, 31, 275204. [Google Scholar] [CrossRef]
- Chen, Y.; Pham, T.; Mulchandani, A. 2D MoS2-Based Flexible Optoelectronic for Biosensing. Sens. Actuators B Chem. 2025, 439, 137848. [Google Scholar] [CrossRef]
- Zhan, Y.; Liu, Z.; Najmaei, S.; Ajayan, P.M.; Lou, J. Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate. Small 2012, 8, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.-G.; Withers, F.; Cao, Y.; Hu, S.; Yu, G.; Casiraghi, C. Raman Modes of MoS2 Used as Fingerprint of van Der Waals Interactions in 2-D Crystal-Based Heterostructures. ACS Nano 2014, 8, 9914–9924. [Google Scholar] [CrossRef]
- Zhao, M.; Song, P.; Teng, J. Electrically and Optically Tunable Responses in Graphene/Transition-Metal-Dichalcogenide Heterostructures. ACS Appl. Mater. Interfaces 2018, 10, 44102–44108. [Google Scholar] [CrossRef]
- Chen, C.-F.; Park, C.-H.; Boudouris, B.W.; Horng, J.; Geng, B.; Girit, C.; Zettl, A.; Crommie, M.F.; Segalman, R.A.; Louie, S.G.; et al. Controlling Inelastic Light Scattering Quantum Pathways in Graphene. Nature 2011, 471, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.K.; Waghmare, U.V.; Novoselov, K.S.; Krishnamurthy, H.R.; Geim, A.K.; Ferrari, A.C.; et al. Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nat. Nanotechnol. 2008, 3, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Adesina, A.; Mashazi, P. Oriented Antibody Covalent Immobilization for Label-Free Impedimetric Detection of C-Reactive Protein via Direct and Sandwich Immunoassays. Front. Chem. 2021, 9, 587142. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, L.; Yang, M.; Zheng, Y.; Li, L.; Gao, L.; Nerngchamnong, N.; Nai, C.T.; Sangeeth, C.S.S.; Feng, Y.P.; et al. Giant Enhancement in Vertical Conductivity of Stacked CVD Graphene Sheets by Self-Assembled Molecular Layers. Nat. Commun. 2014, 5, 5461. [Google Scholar] [CrossRef] [PubMed]
- To, T.D.; Nguyen, A.T.; Phan, K.N.T.; Truong, A.T.T.; Doan, T.C.D.; Dang, C.M. Modification of Silicon Nitride Surfaces with GOPES and APTES for Antibody Immobilization: Computational and Experimental Studies. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 045006. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, Y.; Song, K.; Kong, X.; Aalders, M.C.G.; Zhang, H. Enhancement of Sensitivity and Specificity of the Fluoroimmunoassay of Hepatitis B Virus Surface Antigen through “Flexible” Coupling between Quantum Dots and Antibody. Talanta 2009, 80, 307–312. [Google Scholar] [CrossRef]
- Forsyth, R.; Devadoss, A.; Guy, O. Graphene Field Effect Transistors for Biomedical Applications: Current Status and Future Prospects. Diagnostics 2017, 7, 45. [Google Scholar] [CrossRef]
- Li, J.; Song, E.; Chiang, C.-H.; Yu, K.J.; Koo, J.; Du, H.; Zhong, Y.; Hill, M.; Wang, C.; Zhang, J.; et al. Conductively Coupled Flexible Silicon Electronic Systems for Chronic Neural Electrophysiology. Proc. Natl. Acad. Sci. USA 2018, 115, E9542–E9549. [Google Scholar] [CrossRef]
- Pham, T.; Li, G.; Bekyarova, E.; Itkis, M.E.; Mulchandani, A. MoS2-Based Optoelectronic Gas Sensor with Sub-Parts-per-Billion Limit of NO2 Gas Detection. ACS Nano 2019, 13, 3196–3205. [Google Scholar] [CrossRef]
- Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M.A.; Kim, S. Two-Dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules. Sci. Rep. 2014, 4, 7352. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Wong, J.I.; Palacios, T.; Kong, J.; Yang, H.Y. Functionalized MoS2 Nanosheet-Based Field-Effect Biosensor for Label-Free Sensitive Detection of Cancer Marker Proteins in Solution. Small 2014, 10, 1101–1105. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Han, G.; Lee, S.W.; Lee, H.; Jeong, S.H.; Naqi, M.; AlMutairi, A.; Kim, Y.J.; Lee, J.; Kim, W.; et al. Label-Free and Recalibrated Multilayer MoS2 Biosensor for Point-of-Care Diagnostics. ACS Appl. Mater. Interfaces 2017, 9, 43490–43497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, D.; Xu, Y.; Yin, Z.; Dou, W.; Habiba, U.E.; Pan, C.; Zhang, Z.; Mou, H.; Deng, H.; et al. DNA-Based Functionalization of Two-Dimensional MoS2 FET Biosensor for Ultrasensitive Detection of PSA. Appl. Surf. Sci. 2021, 548, 149169. [Google Scholar] [CrossRef]
- Song, P.; Ou, P.; Wang, Y.; Yuan, H.; Duan, S.; Chen, L.; Fu, H.; Song, J.; Liu, X. An Ultrasensitive FET Biosensor Based on Vertically Aligned MoS2 Nanolayers with Abundant Surface Active Sites. Anal. Chim. Acta 2023, 1252, 341036. [Google Scholar] [CrossRef]
- Ji, Z.; Wei, J.; Luo, F.; Liu, Z.; Lu, H.; Chen, R.; Wang, Y.; Qin, G. Investigating on Sensing Mechanism of MoS2-FET Biosensors in Response to Proteins. Nanotechnology 2023, 34, 435503. [Google Scholar] [CrossRef]
- Kanai, Y.; Ohmuro-Matsuyama, Y.; Tanioku, M.; Ushiba, S.; Ono, T.; Inoue, K.; Kitaguchi, T.; Kimura, M.; Ueda, H.; Matsumoto, K. Graphene Field Effect Transistor-Based Immunosensor for Ultrasensitive Noncompetitive Detection of Small Antigens. ACS Sens. 2020, 5, 24–28. [Google Scholar] [CrossRef]
- Shahdeo, D.; Chauhan, N.; Majumdar, A.; Ghosh, A.; Gandhi, S. Graphene-Based Field-Effect Transistor for Ultrasensitive Immunosensing of SARS-CoV-2 Spike S1 Antigen. ACS Appl. Bio Mater. 2022, 5, 3563–3572. [Google Scholar] [CrossRef]
- Cui, T.-R.; Qiao, Y.-C.; Gao, J.-W.; Wang, C.-H.; Zhang, Y.; Han, L.; Yang, Y.; Ren, T.-L. Ultrasensitive Detection of COVID-19 Causative Virus (SARS-CoV-2) Spike Protein Using Laser Induced Graphene Field-Effect Transistor. Molecules 2021, 26, 6947. [Google Scholar] [CrossRef]
- Kang, H.; Wang, X.; Guo, M.; Dai, C.; Chen, R.; Yang, L.; Wu, Y.; Ying, T.; Zhu, Z.; Wei, D.; et al. Ultrasensitive Detection of SARS-CoV-2 Antibody by Graphene Field-Effect Transistors. Nano Lett. 2021, 21, 7897–7904. [Google Scholar] [CrossRef]
- Mao, S.; Yu, K.; Chang, J.; Steeber, D.A.; Ocola, L.E.; Chen, J. Direct Growth of Vertically-Oriented Graphene for Field-Effect Transistor Biosensor. Sci. Rep. 2013, 3, 1696. [Google Scholar] [CrossRef]
Materials | Antibody Type | Detection Range | LOD or Detection Limit | Reference |
---|---|---|---|---|
MoS2 | prostate-specific antigen (PSA) | 10−3 to 10 ng/mL | [40] | |
Multilayer MoS2 | PSA | 3.75 nM to 375 fM | [41] | |
Multilayer MoS2 | PSA | 10−5 to 1 ng/mL | 100 fg/mL | [42] |
Few-layer MoS2 | PSA | 10−6 to 100 ng/mL | 1 fg/mL | [43] |
Multilayer MoS2 | SARS-CoV-2 spike protein | 10−6 to 1 ng/mL | [16] | |
Vertically aligned MoS2 | PSA | 10−2 to 10 ng/mL | 800 fg/mL | [44] |
Multilayer MoS2 | IgG | 10−3 to 10−1 ng/mL | [45] | |
Graphene | Bone gla protein | 10−5 to 102 ng/mL | 100 fg/mL (in 0.5% serum) | [46] |
Graphene | SARS-CoV-2 Spike S1 antigen | 1 fM to 1 μM | 10 fM | [47] |
Porous graphene | SARS-CoV-2 virus | 1 to 106 pg/mL | 1 pg/mL (1 ng/mL in human serum) | [48] |
Monolayer graphene | SARS-CoV-2 antibody | 5 aM to 5 pM | 0.39 fg/mL | [49] |
Vertically oriented graphene | HIgG | 2 to 20 ng/mL | 2 ng/mL | [50] |
GM | HIgG | 10−4 to 106 ng/mL | 12.4 fg/mL | This work |
MG | HIgG | 10−4 to 106 ng/mL | 26.4 fg/mL | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Vicente, N.; Pham, T.; Mulchandani, A. Biological Sensing Using Vertical MoS2-Graphene Heterostructure-Based Field-Effect Transistor Biosensors. Biosensors 2025, 15, 373. https://doi.org/10.3390/bios15060373
Chen Y, Vicente N, Pham T, Mulchandani A. Biological Sensing Using Vertical MoS2-Graphene Heterostructure-Based Field-Effect Transistor Biosensors. Biosensors. 2025; 15(6):373. https://doi.org/10.3390/bios15060373
Chicago/Turabian StyleChen, Ying, Nataly Vicente, Tung Pham, and Ashok Mulchandani. 2025. "Biological Sensing Using Vertical MoS2-Graphene Heterostructure-Based Field-Effect Transistor Biosensors" Biosensors 15, no. 6: 373. https://doi.org/10.3390/bios15060373
APA StyleChen, Y., Vicente, N., Pham, T., & Mulchandani, A. (2025). Biological Sensing Using Vertical MoS2-Graphene Heterostructure-Based Field-Effect Transistor Biosensors. Biosensors, 15(6), 373. https://doi.org/10.3390/bios15060373