Droplet Generation and Manipulation in Microfluidics: A Comprehensive Overview of Passive and Active Strategies
Abstract
1. Introduction
1.1. Droplet Generation Methods
1.1.1. Droplet Generation by Passive Methods
1.1.2. Co-Flow Geometry
1.1.3. Cross-Flow Geometry (T-Junction)
1.1.4. Flow-Focusing Geometry
1.1.5. Step Emulsification
1.1.6. Droplet Generation by Active Methods
1.1.7. Electrical Method
1.1.8. DC-Controlled Droplet Generation
1.1.9. AC-Controlled Droplet Generation
1.1.10. Magnetic Method
1.1.11. Thermal Method
1.1.12. Piezoelectricity Control
1.1.13. Comparative Assessment of Droplet Generation Techniques
2. Droplet Trapping and Manipulation Techniques
2.1. Passive On-Demand Trapping Techniques
Hydrodynamic Trapping Techniques
2.2. Microfabricated Structures
‘U’ Shaped-Entrapping
2.3. Rails and Anchors—A Different Trapping Technique
2.4. Active On-Demand Trapping Techniques
Comparative Assessment of Droplet Trapping
3. On-Demand Droplet Sorting Techniques
3.1. Electric Control
3.2. Acoustic Control
3.2.1. SAWs
3.2.2. BAWs
3.3. Magnetic Control
3.4. Thermal Control
3.4.1. Resistive Heating
3.4.2. Laser-Based Heating
4. Conclusions and Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DBM | Droplet-based microfluidics |
Ca | Capillary number |
We | Weber number |
Re | Reynolds number |
Bo | Bond number |
DEP | Dialectrophoresis |
EWOD | Electrowetting-on-dielectric |
DLD | Deterministic lateral displacement |
PDMS | Polydimethylsiloxane |
SAW | Surface acoustic waves |
BAW | Bulk acoustic waves |
PCR | Polymerase chain reaction |
iFDA | Inverted floating droplet array |
References
- Wang, Y.; Chen, Z.; Bian, F.; Shang, L.; Zhu, K.; Zhao, Y. Advances of Droplet-Based Microfluidics in Drug Discovery. Expert Opin. Drug Discov. 2020, 15, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Sakai, Y.; Fujii, T. Organ/Body-on-a-Chip Based on Microfluidic Technology for Drug Discovery. Drug Metab. Pharmacokinet. 2018, 33, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Ben-Yakar, A. High-Content and High-Throughput in Vivo Drug Screening Platforms Using Microfluidics. Assay Drug Dev. Technol. 2019, 17, 8–13. [Google Scholar] [CrossRef]
- Elvira, K.S. Microfluidic Technologies for Drug Discovery and Development: Friend or Foe? Trends Pharmacol. Sci. 2021, 42, 518–526. [Google Scholar] [CrossRef]
- Torabinia, M.; Dakarapu, U.S.; Asgari, P.; Jeon, J.; Moon, H. Electrowetting-on-Dielectric (EWOD) Digital Microfluidic Device for in-Line Workup in Organic Reactions: A Critical Step in the Drug Discovery Work Cycle. Sens. Actuators B Chem. 2021, 330, 129252. [Google Scholar] [CrossRef]
- Honrado, C.; Bisegna, P.; Swami, N.S.; Caselli, F. Single-Cell Microfluidic Impedance Cytometry: From Raw Signals to Cell Phenotypes Using Data Analytics. Lab Chip 2021, 21, 22–54. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, T.; Zhang, J.; Wong, S.C.C.; Ritchie, M.; Hou, H.W.; Wang, Y. Single Cell Metabolite Detection Using Inertial Microfluidics-Assisted Ion Mobility Mass Spectrometry. Anal. Chem. 2021, 93, 10462–10468. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Ohnuki, S.; Kondo, N.; Itto-Nakama, K.; Ghanegolmohammadi, F.; Isozaki, A.; Ohya, Y.; Goda, K. Are Droplets Really Suitable for Single-Cell Analysis? A Case Study on Yeast in Droplets. Lab Chip 2021, 21, 3793–3803. [Google Scholar] [CrossRef]
- Kim, Y.; Song, J.; Lee, Y.; Cho, S.; Kim, S.; Lee, S.-R.; Park, S.; Shin, Y.; Jeon, N.L. High-Throughput Injection Molded Microfluidic Device for Single-Cell Analysis of Spatiotemporal Dynamics. Lab Chip 2021, 21, 3150–3158. [Google Scholar] [CrossRef]
- Chai, H.; Feng, Y.; Liang, F.; Wang, W. A Microfluidic Device Enabling Deterministic Single Cell Trapping and Release. Lab Chip 2021, 21, 2486–2494. [Google Scholar] [CrossRef]
- Terada, M.; Ide, S.; Naito, T.; Kimura, N.; Matsusaki, M.; Kaji, N. Label-Free Cancer Stem-like Cell Assay Conducted at a Single Cell Level Using Microfluidic Mechanotyping Devices. Anal. Chem. 2021, 93, 14409–14416. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Briggs, R.G.; Homburg, H.B.; Young, I.M.; Davis, E.J.; Lin, Y.H.; Battiste, J.D.; Sughrue, M.E. Application of Microfluidic Devices for Glioblastoma Study: Current Status and Future Directions. Biomed. Microdevices 2020, 22, 60. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, L.; Zhang, H.; Shen, X.; Zhu, Y.; Chen, H. Novel Wax Valves To Improve Distance-Based Analyte Detection in Paper Microfluidics. Anal. Chem. 2019, 91, 5169–5175. [Google Scholar] [CrossRef] [PubMed]
- Yetisen, A.K.; Akram, M.S.; Lowe, C.R. Paper-Based Microfluidic Point-of-Care Diagnostic Devices. Lab Chip 2013, 13, 2210. [Google Scholar] [CrossRef]
- Zhang, H.; Smith, E.; Zhang, W.; Zhou, A. Inkjet Printed Microfluidic Paper-Based Analytical Device (ΜPAD) for Glucose Colorimetric Detection in Artificial Urine. Biomed. Microdevices 2019, 21, 48. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.; Dai, J.; Zhang, W.; Jiang, Y.; Zhou, A. A Low-Cost Mobile Platform for Whole Blood Glucose Monitoring Using Colorimetric Method. Microchem. J. 2021, 162, 105814. [Google Scholar] [CrossRef]
- Ilkhani, H.; Zhang, H.; Zhou, A. A Novel Three-Dimensional MicroTAS Chip for Ultra-Selective Single Base Mismatched Cryptosporidium DNA Biosensor. Sens. Actuators B Chem. 2019, 282, 675–683. [Google Scholar] [CrossRef]
- Dai, J.; Zhang, H.; Huang, C.; Chen, Z.; Han, A. A Gel-Based Separation-Free Point-of-Care Device for Whole Blood Glucose Detection. Anal. Chem. 2020, 92, 16122–16129. [Google Scholar] [CrossRef]
- Zhang, H.; Anoop, K.; Huang, C.; Sadr, R.; Gupte, R.; Dai, J.; Han, A. A Circular Gradient-Width Crossflow Microfluidic Platform for High-Efficiency Blood Plasma Separation. Sens. Actuators B Chem. 2022, 354, 131180. [Google Scholar] [CrossRef]
- Kumari, S.; Samara, M.; Ampadi Ramachandran, R.; Gosh, S.; George, H.; Wang, R.; Pesavento, R.P.; Mathew, M.T. A Review on Saliva-Based Health Diagnostics: Biomarker Selection and Future Directions. Biomed. Mater. Devices 2024, 2, 121–138. [Google Scholar] [CrossRef]
- Vinoth, R.; Sangavi, P.; Nakagawa, T.; Jayaraman, M.; Mohan, A.M.V. All-in-One Microfluidic Device with an Integrated Porous Filtration Membrane for on-Site Detection of Multiple Salivary Biomarkers. Sens. Actuators B Chem. 2023, 379, 133214. [Google Scholar] [CrossRef]
- Chen, H.; Cornwell, J.; Zhang, H.; Lim, T.; Resurreccion, R.; Port, T.; Rosengarten, G.; Nordon, R.E. Cardiac-like Flow Generator for Long-Term Imaging of Endothelial Cell Responses to Circulatory Pulsatile Flow at Microscale. Lab Chip 2013, 13, 2999. [Google Scholar] [CrossRef] [PubMed]
- Guenat, O.T.; Berthiaume, F. Incorporating Mechanical Strain in Organs-on-a-Chip: Lung and Skin. Biomicrofluidics 2018, 12, 042207. [Google Scholar] [CrossRef]
- Sugimura, R.; Ohta, R.; Mori, C.; Li, A.; Mano, T.; Sano, E.; Kosugi, K.; Nakahata, T.; Niwa, A.; Saito, M.K.; et al. Biomimetic Aorta-Gonad-Mesonephros-on-a-Chip to Study Human Developmental Hematopoiesis. Biomed. Microdevices 2020, 22, 34. [Google Scholar] [CrossRef]
- Atencia, J.; Beebe, D.J. Controlled Microfluidic Interfaces. Nature 2005, 437, 648–655. [Google Scholar] [CrossRef]
- Stone, H.A.; Stroock, A.D.; Ajdari, A. Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip. Annu. Rev. Fluid. Mech. 2004, 36, 381–411. [Google Scholar] [CrossRef]
- Moragues, T.; Arguijo, D.; Beneyton, T.; Modavi, C.; Simutis, K.; Abate, A.; Baret, J.-C.; Demello, A.; Densmore, D.; Griffiths, A.; et al. Based Microfluidics. Nat. Rev. Methods Primers 2023, 3, 32. [Google Scholar] [CrossRef]
- Thorsen, T.; Roberts, R.W.; Arnold, F.H.; Quake, S.R. Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Phys. Rev. Lett. 2001, 86, 4163–4166. [Google Scholar] [CrossRef]
- Lathia, R.; Nampoothiri, K.N.; Sagar, N.; Bansal, S.; Modak, C.D.; Sen, P. Advances in Microscale Droplet Generation and Manipulation. Langmuir 2023, 39, 2461–2482. [Google Scholar] [CrossRef]
- Chen, Z.; Kheiri, S.; Young, E.W.K.; Kumacheva, E. Trends in Droplet Microfluidics: From Droplet Generation to Biomedical Applications. Langmuir 2022, 38, 6233–6248. [Google Scholar] [CrossRef]
- Amirifar, L.; Besanjideh, M.; Nasiri, R.; Shamloo, A.; Nasrollahi, F.; de Barros, N.R.; Davoodi, E.; Erdem, A.; Mahmoodi, M.; Hosseini, V.; et al. Droplet-Based Microfluidics in Biomedical Applications. Biofabrication 2022, 14, 022001. [Google Scholar] [CrossRef] [PubMed]
- Hassani-Gangaraj, M.; Shamloo, A. Developing an Off-the-Shelf Microfluidic Droplet Generation Device for Cell Encapsulation. Ind. Eng. Chem. Res. 2022, 61, 10689–10699. [Google Scholar] [CrossRef]
- Matuła, K.; Rivello, F.; Huck, W.T.S. Single-Cell Analysis Using Droplet Microfluidics. Adv. Biosyst. 2020, 4, e1900188. [Google Scholar] [CrossRef]
- He, Y.; Yin, J.; Wu, W.; Liang, H.; Zhu, F.; Mu, Y.; Fan, H.; Zhang, T. Rapid In Situ Photoimmobilization of a Planar Droplet Array for Digital PCR. Anal. Chem. 2020, 92, 8530–8535. [Google Scholar] [CrossRef]
- Amadeh, A.; Ghazimirsaeed, E.; Shamloo, A.; Dizani, M. Improving the Performance of a Photonic PCR System Using TiO2 Nanoparticles. J. Ind. Eng. Chem. 2021, 94, 195–204. [Google Scholar] [CrossRef]
- O’Keefe, C.M.; Kaushik, A.M.; Wang, T.-H. Highly Efficient Real-Time Droplet Analysis Platform for High-Throughput Interrogation of DNA Sequences by Melt. Anal. Chem. 2019, 91, 11275–11282. [Google Scholar] [CrossRef]
- Li, H.-T.; Wang, H.-F.; Wang, Y.; Pan, J.-Z.; Fang, Q. A Minimalist Approach for Generating Picoliter to Nanoliter Droplets Based on an Asymmetrical Beveled Capillary and Its Application in Digital PCR Assay. Talanta 2020, 217, 120997. [Google Scholar] [CrossRef]
- Sabhachandani, P.; Sarkar, S.; Mckenney, S.; Ravi, D.; Evens, A.M.; Konry, T. Microfluidic Assembly of Hydrogel-Based Immunogenic Tumor Spheroids for Evaluation of Anticancer Therapies and Biomarker Release. J. Control. Release 2019, 295, 21–30. [Google Scholar] [CrossRef]
- Besanjideh, M.; Shamloo, A.; Hannani, S.K. Evaluating the Reliability of Tumour Spheroid-on-Chip Models for Replicating Intratumoural Drug Delivery: Considering the Role of Microfluidic Parameters. J. Drug Target. 2023, 31, 179–193. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Zhang, Y.; Liu, H.; Han, L. Recent Methods of Droplet Microfluidics and Their Applications in Spheroids and Organoids. Lab Chip 2023, 23, 1080–1096. [Google Scholar] [CrossRef]
- Ghazimirsaeed, E.; Madadelahi, M.; Dizani, M.; Shamloo, A. Secondary Flows, Mixing, and Chemical Reaction Analysis of Droplet-Based Flow inside Serpentine Microchannels with Different Cross Sections. Langmuir 2021, 37, 5118–5130. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.M.; Hsieh, K.; Wang, T. Droplet Microfluidics for High-sensitivity and High-throughput Detection and Screening of Disease Biomarkers. WIREs Nanomed. Nanobiotechnol. 2018, 10, e1522. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Wang, L. Passive and Active Droplet Generation with Microfluidics: A Review. Lab Chip 2017, 17, 34–75. [Google Scholar] [CrossRef]
- Huang, C.; Wippold, J.A.; Stratis-Cullum, D.; Han, A. Eliminating Air Bubble in Microfluidic Systems Utilizing Integrated In-Line Sloped Microstructures. Biomed. Microdevices 2020, 22, 76. [Google Scholar] [CrossRef]
- Zhang, H.; Guzman, A.R.; Wippold, J.A.; Li, Y.; Dai, J.; Huang, C.; Han, A. An Ultra High-Efficiency Droplet Microfluidics Platform Using Automatically Synchronized Droplet Pairing and Merging. Lab Chip 2020, 20, 3948–3959. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, H.; Han, S.-I.; Han, A. Cell Washing and Solution Exchange in Droplet Microfluidic Systems. Anal. Chem. 2021, 93, 8622–8630. [Google Scholar] [CrossRef]
- Zhang, P.; Chang, K.C.; Abate, A.R. Precision Ejection of Microfluidic Droplets into Air with a Superhydrophobic Outlet. Lab Chip 2021, 21, 1484–1491. [Google Scholar] [CrossRef]
- Gencturk, E.; Yurdakul, E.; Celik, A.Y.; Mutlu, S.; Ulgen, K.O. Cell Trapping Microfluidic Chip Made of Cyclo Olefin Polymer Enabling Two Concurrent Cell Biology Experiments with Long Term Durability. Biomed. Microdevices 2020, 22, 20. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, Y.; Xu, Q.; Sun, X.; Meng, F. Recent Advances on Sorting Methods of High-Throughput Droplet-Based Microfluidics in Enzyme Directed Evolution. Front. Chem. 2021, 9, 666867. [Google Scholar] [CrossRef]
- Zhong, R.; Yang, S.; Ugolini, G.S.; Naquin, T.; Zhang, J.; Yang, K.; Xia, J.; Konry, T.; Huang, T.J. Acoustofluidic Droplet Sorter Based on Single Phase Focused Transducers. Small 2021, 17, e2103848. [Google Scholar] [CrossRef]
- Clark, I.C.; Thakur, R.; Abate, A.R. Concentric Electrodes Improve Microfluidic Droplet Sorting. Lab Chip 2018, 18, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yu, Z.; Wu, M.; Lan, Y.; Jia, C.; Zhao, J. Single-Cell Sorting Using Integrated Pneumatic Valve Droplet Microfluidic Chip. Talanta 2023, 253, 124044. [Google Scholar] [CrossRef]
- Banerjee, U.; Jain, S.K.; Sen, A.K. Particle Encapsulation in Aqueous Ferrofluid Drops and Sorting of Particle-Encapsulating Drops from Empty Drops Using a Magnetic Field. Soft Matter 2021, 17, 6020–6028. [Google Scholar] [CrossRef]
- Yap, Y.-F.; Tan, S.-H.; Nguyen, N.-T.; Murshed, S.M.S.; Wong, T.-N.; Yobas, L. Thermally Mediated Control of Liquid Microdroplets at a Bifurcation. J. Phys. D Appl. Phys. 2009, 42, 065503. [Google Scholar] [CrossRef]
- Gerlt, M.S.; Haidas, D.; Ratschat, A.; Suter, P.; Dittrich, P.S.; Dual, J. Manipulation of Single Cells inside Nanoliter Water Droplets Using Acoustic Forces. Biomicrofluidics 2020, 14, 064112. [Google Scholar] [CrossRef]
- Hu, S.; Wang, Y.; Wang, Y.; Chen, X.; Tong, R. Dielectrophoretic Separation and Purification: From Colloid and Biological Particles to Droplets. J. Chromatogr. A 2024, 1731, 465155. [Google Scholar] [CrossRef]
- Baroud, C.N.; Gallaire, F.; Dangla, R. Dynamics of Microfluidic Droplets. Lab Chip 2010, 10, 2032. [Google Scholar] [CrossRef]
- Collins, D.J.; Neild, A.; deMello, A.; Liu, A.-Q.; Ai, Y. The Poisson Distribution and beyond: Methods for Microfluidic Droplet Production and Single Cell Encapsulation. Lab Chip 2015, 15, 3439–3459. [Google Scholar] [CrossRef]
- Casadevall i Solvas, X.; deMello, A. Droplet Microfluidics: Recent Developments and Future Applications. Chem. Commun. 2011, 47, 1936–1942. [Google Scholar] [CrossRef]
- Cho, S.K.; Moon, H.; Kim, C.-J. Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits. J. Microelectromech. Syst. 2003, 12, 70–80. [Google Scholar] [CrossRef]
- Guo, M.T.; Rotem, A.; Heyman, J.A.; Weitz, D.A. Droplet Microfluidics for High-Throughput Biological Assays. Lab Chip 2012, 12, 2146. [Google Scholar] [CrossRef] [PubMed]
- Takinoue, M.; Takeuchi, S. Droplet Microfluidics for the Study of Artificial Cells. Anal. Bioanal. Chem. 2011, 400, 1705–1716. [Google Scholar] [CrossRef] [PubMed]
- Baret, J.-C. Surfactants in Droplet-Based Microfluidics. Lab Chip 2012, 12, 422–433. [Google Scholar] [CrossRef]
- Seemann, R.; Brinkmann, M.; Pfohl, T.; Herminghaus, S. Droplet Based Microfluidics. Rep. Prog. Phys. 2012, 75, 016601. [Google Scholar] [CrossRef]
- Day, P.; Manz, A.; Zhang, Y. Microdroplet Technology; Day, P., Manz, A., Zhang, Y., Eds.; Springer New York: New York, NY, USA, 2012; ISBN 978-1-4614-3264-7. [Google Scholar]
- Ling, S.D.; Geng, Y.; Chen, A.; Du, Y.; Xu, J. Enhanced Single-Cell Encapsulation in Microfluidic Devices: From Droplet Generation to Single-Cell Analysis. Biomicrofluidics 2020, 14, 061508. [Google Scholar] [CrossRef]
- Christopher, G.F.; Anna, S.L. Microfluidic Methods for Generating Continuous Droplet Streams. J. Phys. D Appl. Phys. 2007, 40, R319–R336. [Google Scholar] [CrossRef]
- De Menech, M.; Garstecki, P.; Jousse, F.; Stone, H.A. Transition from Squeezing to Dripping in a Microfluidic T-Shaped Junction. J. Fluid. Mech. 2008, 595, 141–161. [Google Scholar] [CrossRef]
- Yazdanparast, S.; Rezai, P.; Amirfazli, A. Microfluidic Droplet-Generation Device with Flexible Walls. Micromachines 2023, 14, 1770. [Google Scholar] [CrossRef]
- Utada, A.S.; Fernandez-Nieves, A.; Stone, H.A.; Weitz, D.A. Dripping to Jetting Transitions in Coflowing Liquid Streams. Phys. Rev. Lett. 2007, 99, 094502. [Google Scholar] [CrossRef]
- Shi, Z.; Lai, X.; Sun, C.; Zhang, X.; Zhang, L.; Pu, Z.; Wang, R.; Yu, H.; Li, D. Step Emulsification in Microfluidic Droplet Generation: Mechanisms and Structures. Chem. Commun. 2020, 56, 9056–9066. [Google Scholar] [CrossRef]
- Haeberle, S.; Zengerle, R.; Ducrée, J. Centrifugal Generation and Manipulation of Droplet Emulsions. Microfluid. Nanofluidics 2006, 3, 65–75. [Google Scholar] [CrossRef]
- Aghajanloo, B.; Ejeian, F.; Frascella, F.; Marasso, S.L.; Cocuzza, M.; Tehrani, A.F.; Nasr Esfahani, M.H.; Inglis, D.W. Pumpless Deterministic Lateral Displacement Separation Using a Paper Capillary Wick. Lab Chip 2023, 23, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Khanjani, E.; Fergola, A.; López Martínez, J.A.; Nazarnezhad, S.; Casals Terre, J.; Marasso, S.L.; Aghajanloo, B. Capillary Microfluidics for Diagnostic Applications: Fundamentals, Mechanisms, and Capillarics. Front. Lab Chip Technol. 2025, 4, 1502127. [Google Scholar] [CrossRef]
- Huang, H.; Yu, Y.; Hu, Y.; He, X.; Berk Usta, O.; Yarmush, M.L. Generation and Manipulation of Hydrogel Microcapsules by Droplet-Based Microfluidics for Mammalian Cell Culture. Lab Chip 2017, 17, 1913–1932. [Google Scholar] [CrossRef]
- Umbanhowar, P.B.; Prasad, V.; Weitz, D.A. Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream. Langmuir 2000, 16, 347–351. [Google Scholar] [CrossRef]
- Čech, J.; Přibyl, M.; Šnita, D. Three-Phase Slug Flow in Microchips Can Provide Beneficial Reaction Conditions for Enzyme Liquid-Liquid Reactions. Biomicrofluidics 2013, 7, 054103. [Google Scholar] [CrossRef]
- Abate, A.R.; Weitz, D.A. Air-Bubble-Triggered Drop Formation in Microfluidics. Lab Chip 2011, 11, 1713. [Google Scholar] [CrossRef]
- Xu, J.H.; Luo, G.S.; Li, S.W.; Chen, G.G. Shear Force Induced Monodisperse Droplet Formation in a Microfluidic Device by Controlling Wetting Properties. Lab Chip 2006, 6, 131–136. [Google Scholar] [CrossRef]
- Dangla, R.; Fradet, E.; Lopez, Y.; Baroud, C.N. The Physical Mechanisms of Step Emulsification. J. Phys. D Appl. Phys. 2013, 46, 114003. [Google Scholar] [CrossRef]
- Garstecki, P.; Stone, H.A.; Whitesides, G.M. Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions. Phys. Rev. Lett. 2005, 94, 164501. [Google Scholar] [CrossRef]
- Link, D.R.; Grasland-Mongrain, E.; Duri, A.; Sarrazin, F.; Cheng, Z.; Cristobal, G.; Marquez, M.; Weitz, D.A. Electric Control of Droplets in Microfluidic Devices. Angew. Chem. Int. Ed. 2006, 45, 2556–2560. [Google Scholar] [CrossRef] [PubMed]
- Chong, Z.Z.; Tan, S.H.; Gañán-Calvo, A.M.; Tor, S.B.; Loh, N.H.; Nguyen, N.-T. Active Droplet Generation in Microfluidics. Lab Chip 2016, 16, 35–58. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Luo, D.; Link, D.; Weitz, D.A.; Marquez, M.; Cheng, Z. Controlled Production of Emulsion Drops Using an Electric Field in a Flow-Focusing Microfluidic Device. Appl. Phys. Lett. 2007, 91, 133106. [Google Scholar] [CrossRef]
- Malloggi, F.; Vanapalli, S.A.; Gu, H.; van den Ende, D.; Mugele, F. Electrowetting-Controlled Droplet Generation in a Microfluidic Flow-Focusing Device. J. Phys. Condens. Matter 2007, 19, 462101. [Google Scholar] [CrossRef]
- Yan, Q.; Xuan, S.; Ruan, X.; Wu, J.; Gong, X. Magnetically Controllable Generation of Ferrofluid Droplets. Microfluid. Nanofluidics 2015, 19, 1377–1384. [Google Scholar] [CrossRef]
- Tan, S.-H.; Nguyen, N.-T.; Yobas, L.; Kang, T.G. Formation and Manipulation of Ferrofluid Droplets at a Microfluidic T -Junction. J. Micromech. Microeng. 2010, 20, 045004. [Google Scholar] [CrossRef]
- Nguyen, N.-T.; Ting, T.-H.; Yap, Y.-F.; Wong, T.-N.; Chai, J.C.-K.; Ong, W.-L.; Zhou, J.; Tan, S.-H.; Yobas, L. Thermally Mediated Droplet Formation in Microchannels. Appl. Phys. Lett. 2007, 91, 084102. [Google Scholar] [CrossRef]
- Baroud, C.N.; Delville, J.-P.; Gallaire, F.; Wunenburger, R. Thermocapillary Valve for Droplet Production and Sorting. Phys. Rev. E 2007, 75, 046302. [Google Scholar] [CrossRef]
- Xu, J.; Attinger, D. Drop on Demand in a Microfluidic Chip. J. Micromech. Microeng. 2008, 18, 065020. [Google Scholar] [CrossRef]
- Bransky, A.; Korin, N.; Khoury, M.; Levenberg, S. A Microfluidic Droplet Generator Based on a Piezoelectric Actuator. Lab Chip 2009, 9, 516–520. [Google Scholar] [CrossRef]
- Oktavianty, O.; Ishii, Y.; Haruyama, S.; Kyoutani, T.; Darmawan, Z.; Swara, S.E. Controlling Droplet Behaviour and Quality of DoD Inkjet Printer by Designing Actuation Waveform for Multi-Drop Method. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1034, 012091. [Google Scholar] [CrossRef]
- Maenaka, H.; Yamada, M.; Yasuda, M.; Seki, M. Continuous and Size-Dependent Sorting of Emulsion Droplets Using Hydrodynamics in Pinched Microchannels. Langmuir 2008, 24, 4405–4410. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.-C.; Fisher, J.S.; Lee, A.I.; Cristini, V.; Lee, A.P. Design of Microfluidic Channel Geometries for the Control of Droplet Volume, Chemical Concentration, and Sorting. Lab Chip 2004, 4, 292. [Google Scholar] [CrossRef] [PubMed]
- Kadivar, E.; Herminghaus, S.; Brinkmann, M. Droplet Sorting in a Loop of Flat Microfluidic Channels. J. Phys. Condens. Matter 2013, 25, 285102. [Google Scholar] [CrossRef]
- Wang, W.; Yang, C.; Li, C.M. On-Demand Microfluidic Droplet Trapping and Fusion for on-Chip Static Droplet Assays. Lab Chip 2009, 9, 1504. [Google Scholar] [CrossRef]
- Rambach, R.W.; Linder, K.; Heymann, M.; Franke, T. Droplet Trapping and Fast Acoustic Release in a Multi-Height Device with Steady-State Flow. Lab Chip 2017, 17, 3422–3430. [Google Scholar] [CrossRef]
- Tan, W.-H.; Takeuchi, S. A Trap-and-Release Integrated Microfluidic System for Dynamic Microarray Applications. Proc. Natl. Acad. Sci. USA 2007, 104, 1146–1151. [Google Scholar] [CrossRef]
- Wink, K.; van der Loh, M.; Hartner, N.; Polack, M.; Dusny, C.; Schmid, A.; Belder, D. Quantification of Biocatalytic Transformations by Single Microbial Cells Enabled by Tailored Integration of Droplet Microfluidics and Mass Spectrometry. Angew. Chem. Int. Ed. 2022, 61, e202204098. [Google Scholar] [CrossRef]
- Sart, S.; Ronteix, G.; Jain, S.; Amselem, G.; Baroud, C.N. Cell Culture in Microfluidic Droplets. Chem. Rev. 2022, 122, 7061–7096. [Google Scholar] [CrossRef]
- Simon, M.G.; Lin, R.; Fisher, J.S.; Lee, A.P. A Laplace Pressure Based Microfluidic Trap for Passive Droplet Trapping and Controlled Release. Biomicrofluidics 2012, 6, 014110. [Google Scholar] [CrossRef]
- Bithi, S.S.; Vanapalli, S.A. Behavior of a Train of Droplets in a Fluidic Network with Hydrodynamic Traps. Biomicrofluidics 2010, 4, 044110. [Google Scholar] [CrossRef] [PubMed]
- Dewan, A.; Kim, J.; McLean, R.H.; Vanapalli, S.A.; Karim, M.N. Growth Kinetics of Microalgae in Microfluidic Static Droplet Arrays. Biotechnol. Bioeng. 2012, 109, 2987–2996. [Google Scholar] [CrossRef] [PubMed]
- Courtney, M.; Chen, X.; Chan, S.; Mohamed, T.; Rao, P.P.N.; Ren, C.L. Droplet Microfluidic System with On-Demand Trapping and Releasing of Droplet for Drug Screening Applications. Anal. Chem. 2017, 89, 910–915. [Google Scholar] [CrossRef]
- Besanjideh, M.; Rezaeian, M.; Shamloo, A.; Hannani, S.K. Simple Method for On-Demand Droplet Trapping in a Microfluidic Device Based on the Concept of Hydrodynamic Resistance. Langmuir 2024, 40, 9406–9413. [Google Scholar] [CrossRef]
- Yu, L.; Chen, M.C.W.; Cheung, K.C. Droplet-Based Microfluidic System for Multicellular Tumor Spheroid Formation and Anticancer Drug Testing. Lab Chip 2010, 10, 2424. [Google Scholar] [CrossRef]
- Huebner, A.; Bratton, D.; Whyte, G.; Yang, M.; deMello, A.J.; Abell, C.; Hollfelder, F. Static Microdroplet Arrays: A Microfluidic Device for Droplet Trapping, Incubation and Release for Enzymatic and Cell-Based Assays. Lab Chip 2009, 9, 692–698. [Google Scholar] [CrossRef]
- Kleine-Brüggeney, H.; van Vliet, L.D.; Mulas, C.; Gielen, F.; Agley, C.C.; Silva, J.C.R.; Smith, A.; Chalut, K.; Hollfelder, F. Long-Term Perfusion Culture of Monoclonal Embryonic Stem Cells in 3D Hydrogel Beads for Continuous Optical Analysis of Differentiation. Small 2019, 15, e1804576. [Google Scholar] [CrossRef]
- Dangla, R.; Lee, S.; Baroud, C.N. Trapping Microfluidic Drops in Wells of Surface Energy. Phys. Rev. Lett. 2011, 107, 124501. [Google Scholar] [CrossRef]
- Taylor, G.; Saffman, P.G. A note on the motion of bubbles in a Hele-Shaw cell and porous medium. Q. J. Mech. Appl. Math. 1959, 12, 265–279. [Google Scholar] [CrossRef]
- Maruvada, S.R.K.; Park, C.-W. Retarded Motion of Bubbles in Hele–Shaw Cells. Phys. Fluids 1996, 8, 3229–3233. [Google Scholar] [CrossRef]
- Lee, J.S.; Fung, Y.C. Stokes Flow around a Circular Cylindrical Post Confined between Two Parallel Plates. J. Fluid. Mech. 1969, 37, 657–670. [Google Scholar] [CrossRef]
- Abbyad, P.; Dangla, R.; Alexandrou, A.; Baroud, C.N. Rails and Anchors: Guiding and Trapping Droplet Microreactors in Two Dimensions. Lab Chip 2011, 11, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Duchamp, M.; Arnaud, M.; Bobisse, S.; Coukos, G.; Harari, A.; Renaud, P. Microfluidic Device for Droplet Pairing by Combining Droplet Railing and Floating Trap Arrays. Micromachines 2021, 12, 1076. [Google Scholar] [CrossRef]
- Sart, S.; Tomasi, R.F.-X.; Amselem, G.; Baroud, C.N. Multiscale Cytometry and Regulation of 3D Cell Cultures on a Chip. Nat. Commun. 2017, 8, 469. [Google Scholar] [CrossRef]
- Segaliny, A.I.; Li, G.; Kong, L.; Ren, C.; Chen, X.; Wang, J.K.; Baltimore, D.; Wu, G.; Zhao, W. Functional TCR T Cell Screening Using Single-Cell Droplet Microfluidics. Lab Chip 2018, 18, 3733–3749. [Google Scholar] [CrossRef]
- Xu, J.; Ahn, B.; Lee, H.; Xu, L.; Lee, K.; Panchapakesan, R.; Oh, K.W. Droplet-Based Microfluidic Device for Multiple-Droplet Clustering. Lab Chip 2012, 12, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Labanieh, L.; Nguyen, T.; Zhao, W.; Kang, D.-K. Floating Droplet Array: An Ultrahigh-Throughput Device for Droplet Trapping, Real-Time Analysisand Recovery. Micromachines 2015, 6, 1469–1482. [Google Scholar] [CrossRef]
- de Ruiter, R.; Pit, A.M.; de Oliveira, V.M.; Duits, M.H.G.; van den Ende, D.; Mugele, F. Electrostatic Potential Wells for On-Demand Drop Manipulation in Microchannels. Lab Chip 2014, 14, 883. [Google Scholar] [CrossRef]
- Jung, J.H.; Destgeer, G.; Park, J.; Ahmed, H.; Park, K.; Sung, H.J. On-Demand Droplet Capture and Release Using Microwell-Assisted Surface Acoustic Waves. Anal. Chem. 2017, 89, 2211–2215. [Google Scholar] [CrossRef]
- Teste, B.; Jamond, N.; Ferraro, D.; Viovy, J.-L.; Malaquin, L. Selective Handling of Droplets in a Microfluidic Device Using Magnetic Rails. Microfluid. Nanofluidics 2015, 19, 141–153. [Google Scholar] [CrossRef]
- Fornell, A.; Johannesson, C.; Searle, S.S.; Happstadius, A.; Nilsson, J.; Tenje, M. An Acoustofluidic Platform for Non-Contact Trapping of Cell-Laden Hydrogel Droplets Compatible with Optical Microscopy. Biomicrofluidics 2019, 13, 044101. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Li, P.; Lin, S.-C.S.; Stratton, Z.S.; Nama, N.; Guo, F.; Slotcavage, D.; Mao, X.; Shi, J.; Costanzo, F.; et al. Surface Acoustic Wave Microfluidics. Lab Chip 2013, 13, 3626. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Li, P.; French, J.B.; Mao, Z.; Zhao, H.; Li, S.; Nama, N.; Fick, J.R.; Benkovic, S.J.; Huang, T.J. Controlling Cell–Cell Interactions Using Surface Acoustic Waves. Proc. Natl. Acad. Sci. USA 2015, 112, 43–48. [Google Scholar] [CrossRef]
- Lin, S.-C.S.; Mao, X.; Huang, T.J. Surface Acoustic Wave (SAW) Acoustophoresis: Now and Beyond. Lab Chip 2012, 12, 2766. [Google Scholar] [CrossRef]
- Sesen, M.; Alan, T.; Neild, A. Microfluidic On-Demand Droplet Merging Using Surface Acoustic Waves. Lab Chip 2014, 14, 3325–3333. [Google Scholar] [CrossRef]
- Franke, T.; Abate, A.R.; Weitz, D.A.; Wixforth, A. Surface Acoustic Wave (SAW) Directed Droplet Flow in Microfluidics for PDMS Devices. Lab Chip 2009, 9, 2625. [Google Scholar] [CrossRef]
- Sesen, M.; Alan, T.; Neild, A. Microfluidic Plug Steering Using Surface Acoustic Waves. Lab Chip 2015, 15, 3030–3038. [Google Scholar] [CrossRef]
- Jung, J.H.; Destgeer, G.; Ha, B.; Park, J.; Sung, H.J. On-Demand Droplet Splitting Using Surface Acoustic Waves. Lab Chip 2016, 16, 3235–3243. [Google Scholar] [CrossRef]
- Tan, Y.-C.; Ho, Y.L.; Lee, A.P. Microfluidic Sorting of Droplets by Size. Microfluid. Nanofluidics 2008, 4, 343–348. [Google Scholar] [CrossRef]
- Hatch, A.C.; Patel, A.; Beer, N.R.; Lee, A.P. Passive Droplet Sorting Using Viscoelastic Flow Focusing. Lab Chip 2013, 13, 1308. [Google Scholar] [CrossRef]
- Xi, H.-D.; Zheng, H.; Guo, W.; Gañán-Calvo, A.M.; Ai, Y.; Tsao, C.-W.; Zhou, J.; Li, W.; Huang, Y.; Nguyen, N.-T.; et al. Active Droplet Sorting in Microfluidics: A Review. Lab Chip 2017, 17, 751–771. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Ji, X.-H.; Liu, K.; He, R.-X.; Zhao, L.-B.; Guo, Z.-X.; Liu, W.; Guo, S.-S.; Zhao, X.-Z. Droplet Electric Separator Microfluidic Device for Cell Sorting. Appl. Phys. Lett. 2010, 96, 193701. [Google Scholar] [CrossRef]
- Agresti, J.J.; Antipov, E.; Abate, A.R.; Ahn, K.; Rowat, A.C.; Baret, J.-C.; Marquez, M.; Klibanov, A.M.; Griffiths, A.D.; Weitz, D.A. Ultrahigh-Throughput Screening in Drop-Based Microfluidics for Directed Evolution. Proc. Natl. Acad. Sci. USA 2010, 107, 4004–4009. [Google Scholar] [CrossRef] [PubMed]
- Watson, B.; Friend, J.; Yeo, L. Piezoelectric Ultrasonic Micro/Milli-Scale Actuators. Sens. Actuators A Phys. 2009, 152, 219–233. [Google Scholar] [CrossRef]
- Bi, F.; Barber, B. Bulk Acoustic Wave RF Technology. IEEE Microw. Mag. 2008, 9, 65–80. [Google Scholar] [CrossRef]
- Nyborg, W.L.M. Acoustic Streaming. In Nonlinear Acoustics; Springer: Cham, Switzerland, 1965; pp. 265–331. [Google Scholar]
- Westervelt, P.J. Acoustic Radiation Pressure. J. Acoust. Soc. Am. 1957, 29, 26–29. [Google Scholar] [CrossRef]
- Milsom, R.F.; Reilly, N.H.C.; Redwood, M. Analysis of Generation and Detection of Surface and Bulk Acoustic Waves by Interdigital Transducers. IEEE Trans. Sonics Ultrason. 1977, 24, 147–166. [Google Scholar] [CrossRef]
- Wiklund, M.; Günther, C.; Lemor, R.; Jäger, M.; Fuhr, G.; Hertz, H.M. Ultrasonic Standing Wave Manipulation Technology Integrated into a Dielectrophoretic Chip. Lab Chip 2006, 6, 1537–1544. [Google Scholar] [CrossRef]
- Lee, C.; Lee, J.; Kim, H.H.; Teh, S.-Y.; Lee, A.; Chung, I.-Y.; Park, J.Y.; Shung, K.K. Microfluidic Droplet Sorting with a High Frequency Ultrasound Beam. Lab Chip 2012, 12, 2736. [Google Scholar] [CrossRef]
- Raj, K.; Moskowitz, B.; Casciari, R. Advances in Ferrofluid Technology. J. Magn. Magn. Mater. 1995, 149, 174–180. [Google Scholar] [CrossRef]
- Gijs, M.A.M. Magnetic Bead Handling On-Chip: New Opportunities for Analytical Applications. Microfluid. Nanofluidics 2004, 1, 22–40. [Google Scholar] [CrossRef]
- Surenjav, E.; Priest, C.; Herminghaus, S.; Seemann, R. Manipulation of Gel Emulsions by Variable Microchannel Geometry. Lab Chip 2009, 9, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liang, Q.; Ma, S.; Mu, X.; Hu, P.; Wang, Y.; Luo, G. On-Chip Manipulation of Continuous Picoliter-Volume Superparamagnetic Droplets Using a Magnetic Force. Lab Chip 2009, 9, 2992. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Z.; Huang, X.; Nguyen, N.-T.; Abgrall, P. Thermocapillary Actuation of Droplet in a Planar Microchannel. Microfluid. Nanofluidics 2008, 5, 205–214. [Google Scholar] [CrossRef]
- Savino, R.; Monti, R.; Alterio, G. Drops Pushing by Marangoni Forces. Phys. Fluids 2001, 13, 1513–1516. [Google Scholar] [CrossRef]
- Sohel Murshed, S.M.; Tan, S.-H.; Nguyen, N.-T. Temperature Dependence of Interfacial Properties and Viscosity of Nanofluids for Droplet-Based Microfluidics. J. Phys. D Appl. Phys. 2008, 41, 085502. [Google Scholar] [CrossRef]
- Fuerstman, M.J.; Garstecki, P.; Whitesides, G.M. Coding/Decoding and Reversibility of Droplet Trains in Microfluidic Networks. Science (1979) 2007, 315, 828–832. [Google Scholar] [CrossRef]
- Delville, J.-P.; Robert de Saint Vincent, M.; Schroll, R.D.; Chraïbi, H.; Issenmann, B.; Wunenburger, R.; Lasseux, D.; Zhang, W.W.; Brasselet, E. Laser Microfluidics: Fluid Actuation by Light. J. Opt. A Pure Appl. Opt. 2009, 11, 034015. [Google Scholar] [CrossRef]
- Robert de Saint Vincent, M.; Wunenburger, R.; Delville, J.-P. Laser Switching and Sorting for High Speed Digital Microfluidics. Appl. Phys. Lett. 2008, 92, 154105. [Google Scholar] [CrossRef]
- Guo, K.; Song, Z.; Zhou, J.; Shen, B.; Yan, B.; Gu, Z.; Wang, H. An Artificial Intelligence-Assisted Digital Microfluidic System for Multistate Droplet Control. Microsyst. Nanoeng. 2024, 10, 138. [Google Scholar] [CrossRef]
- Srikanth, S.; Dubey, S.K.; Javed, A.; Goel, S. Droplet Based Microfluidics Integrated with Machine Learning. Sens. Actuators A Phys. 2021, 332, 113096. [Google Scholar] [CrossRef]
- Dubey, S.; Vishwakarma, P.; Ramarao, T.; Dubey, S.K.; Goel, S.; Javed, A. Artificial Intelligence-Based Droplet Size Prediction for Microfluidic System. Int. J. Numer. Methods Heat. Fluid. Flow. 2024, 34, 3045–3078. [Google Scholar] [CrossRef]
- Aladese, A.D.; Jeong, H.-H. Recent Developments in 3D Printing of Droplet-Based Microfluidics. Biochip J. 2021, 15, 313–333. [Google Scholar] [CrossRef]
- Xu, T.; Chakrabarty, K. A Droplet-Manipulation Method for Achieving High-Throughput in Cross-Referencing-Based Digital Microfluidic Biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2008, 27, 1905–1917. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Huang, Q.; He, X. Droplet Manipulation on an Adjustable Closed-Open Digital Microfluidic System Utilizing Asymmetric EWOD. Lab Chip 2024, 24, 8–19. [Google Scholar] [CrossRef]
Dimensionless Number | Formula | Physical Significance |
---|---|---|
Capillary number (Ca) | ||
Reynolds number (Re) | ||
Weber number (We) | ||
Bond number (Bo) |
Main Technology | Innovations/Contributions | Applications | Key Point (Rails and Anchors) | Ref (s) |
---|---|---|---|---|
Microfluidic system for co-encapsulation of two aqueous phases in droplets. | This work combines both passive and active fluid manipulation. Floating traps and a rail system are employed for droplet filtering and pairing. Additionally, electrocoalescence is used for merging with 100% trapping efficiency. | This system enables the generation of dual-content droplets for studying cell–cell interactions and particle–cell dynamics, and creating libraries of droplets with different aqueous compositions. | This system incorporates a floating trap array (FTA) for the efficient pairing of droplets, with optimized rail dimensions based on droplet height and size (e.g., 35 µm). | [114] |
Microfluidic platform for 3D cell cultures and spheroid formation. | This platform enables the geometric manipulation of droplets for guidance and stabilization. Spheroids are suspended in agarose and solidified at low temperatures and can be selectively recovered using a focused IR laser. | Used for high-density 3D cell culture, enabling long-term monitoring and analysis of spheroids for stem cell, organ-on-chip, and oncology research. | Geometric anchors help stabilize and spontaneously position the droplets. Additionally, geometric manipulation rails create confinement gradients for droplet movement. | [115] |
Droplet microfluidics for functional screening and real-time monitoring of TCR T cell activation. | This system enables single-clone tracking with 100% sorting specificity. It uses an inverted floating droplet array (iFDA) for trapping and observing droplets, while sorting is achieved through UV laser-induced cavitation. | Used for functional screening of TCR T cell clones, real-time tracking of T cell activation, and sorting clones for downstream analysis such as RT-PCR and sequencing. | The use of an inverted floating droplet array (iFDA) with 1296 traps allows the precise placement of droplets. The parameters for the traps, including height and diameter, are optimized for effective sorting. | [116] |
Multi-droplet clustering device with sequential trapping and storage. | This technology allows for droplet shape manipulation, enabling trapping in both forward and reverse flows. A 10 × 12 array platform is used for clustering and storage, while buoyancy and interfacial energy effects help store droplets in dedicated chambers. | Suitable for clustering droplets containing different samples for complex chemical and biological reactions, and for studying clustered droplet-based reactions. | This system relies on sequential trapping for droplet clustering, with guiding rails ensuring accurate positioning in storage chambers. It combines interfacial energy and buoyancy effects for permanent droplet storage. | [117] |
Dual-layer microfluidics for floating droplet manipulation. | A dual-layer device is used to manipulate and analyze droplets at ultrahigh throughput. Buoyancy helps trap droplets in hundreds of thousands of wells. The system also allows for the digital quantification of analytes via droplet counting, and real-time analysis of fluorescein diffusion. | This platform is applied for high-throughput droplet analysis, the quantification of analytes, and real-time observation of diffusion processes, such as enzymatic reactions. | The floating droplet array (FDA) traps droplets in high-density wells. Droplet size is controlled for precise clustering within individual wells, typically one to four droplets per well. | [118] |
Active Technique | Description | Applications | Key Features | Ref(s) |
---|---|---|---|---|
Electrostatic potential wells—hybrid (microfluidic + electrostatics) | This paper proposes a new technique for manipulating droplets in microchannels using co-planar electrodes to generate electrostatic potential wells. Electrostatic forces enable operations such as trapping and releasing droplets, based on the balance between electrostatic and hydrodynamic forces. | Droplet manipulation (trapping, release, and guiding) in microchannels and lab-on-a-chip applications | This technique uses co-planar electrodes separated by a narrow gap to generate an electrostatic field for confining and manipulating droplets. The intensity of the electrostatic force is adjustable via the applied voltage, allowing for the modification of the trapping force. Both trapping forces and hydrodynamic forces can be independently adjusted, allowing the precise manipulation of droplets of varying sizes. Applications include the separation, guiding, and manipulation of droplets with cells, which can then be analyzed through techniques such as surface plasmon resonance (SPR). | [119] |
On-demand trapping and fusion of microfluidic droplets—microfluidics (DC electric field) | This paper presents a microfluidic structure using a DC electric field to trap selected droplets in a micro-reservoir and fuse a droplet with the trapped one. This process can introduce reagents into droplets and enable real-time monitoring of chemical reactions without the need for high-speed cameras. | Droplet manipulation for on-chip experiments, chemical and biological studies, rapid reactions, enzyme kinetics, protein folding, and crystallization | This technique uses a dielectrophoretic (DEP) electric field to trap and fuse microfluidic droplets. Devices are made from PDMS and use silicon oil and water as fluid phases. The application of a DC electric field generates a non-uniform electric field that allows precise droplet manipulation. The design enables in situ monitoring of chemical reactions within droplets, facilitating real-time studies without high-speed cameras. | [96] |
Surface acoustic waves (SAW)—acoustofluidics | This work presents an acoustofluidic platform that uses surface acoustic waves (SAW) for easy droplet trapping and release within micro-reservoirs in a microfluidic channel. Acoustic waves push or pull droplets toward the micro-reservoir, enabling selective trapping or release. | Droplet manipulation in microchannels, bioanalysis applications, droplet separation, and fusion | This technique uses the acoustic radiation force (ARF) generated by SAWs to trap and release droplets in micro-reservoirs. The platform is made using a piezoelectric substrate (LiNbO3) and a PDMS microfluidic channel. The device is designed to manipulate droplets precisely by controlling the frequencies of the acoustic waves, which move the SAW beam position and modulate droplet release or trapping. The system is highly biocompatible and non-invasive. | [120] |
Ferromagnetic rails and magnetic force—magnetic (magnetofluidics) | This work proposes a new technology combining ferromagnetic rails and magnetic droplets for precise droplet manipulation in microfluidic devices. When the magnetic field is activated, magnetic droplets follow a determined path, while hydrodynamic drag forces act as transport forces. | Magnetic droplet separation and manipulation, chemical and biological studies, and parallel enzymatic reactions | This technique uses ferromagnetic rails and a magnetic field to manipulate magnetic droplets in a microfluidic device. Manipulation occurs through a combination of hydrodynamic and magnetic forces that guide droplets along a predefined path. The magnetic field can be turned on and off to select and direct individual droplets toward parking areas or perform droplet fusion operations. The technology provides high temporal and spatial resolution for operations such as fusion, parking, and droplet separation. | [121] |
Bulk acoustic waves (BAW)—acoustofluidics | This acoustofluidic platform uses bulk acoustic waves for non-contact trapping of cell-laden hydrogel droplets. Acoustic waves generate a stationary field that traps droplets without physical contact. The system is compatible with optical microscopy, enabling operations like perfusion and reagent addition. | Droplet manipulation with cells, biological and biochemical studies, real-time analysis, and long-term monitoring | This system uses bulk acoustic waves generated by a piezoelectric transducer to trap hydrogel droplets with cells in a continuous fluid configuration. Droplets are positioned in a well-defined location within the capillary, enabling perfusion and analysis through optical microscopy. The technique is label-free, gentle, and well-suited for biological applications. | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fergola, A.; Ballesio, A.; Frascella, F.; Napione, L.; Cocuzza, M.; Marasso, S.L. Droplet Generation and Manipulation in Microfluidics: A Comprehensive Overview of Passive and Active Strategies. Biosensors 2025, 15, 345. https://doi.org/10.3390/bios15060345
Fergola A, Ballesio A, Frascella F, Napione L, Cocuzza M, Marasso SL. Droplet Generation and Manipulation in Microfluidics: A Comprehensive Overview of Passive and Active Strategies. Biosensors. 2025; 15(6):345. https://doi.org/10.3390/bios15060345
Chicago/Turabian StyleFergola, Andrea, Alberto Ballesio, Francesca Frascella, Lucia Napione, Matteo Cocuzza, and Simone Luigi Marasso. 2025. "Droplet Generation and Manipulation in Microfluidics: A Comprehensive Overview of Passive and Active Strategies" Biosensors 15, no. 6: 345. https://doi.org/10.3390/bios15060345
APA StyleFergola, A., Ballesio, A., Frascella, F., Napione, L., Cocuzza, M., & Marasso, S. L. (2025). Droplet Generation and Manipulation in Microfluidics: A Comprehensive Overview of Passive and Active Strategies. Biosensors, 15(6), 345. https://doi.org/10.3390/bios15060345