One-Pot Detection of miRNA by Dual Rolling Circle Amplification at Ambient Temperature with High Specificity and Sensitivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of ssDNA Rings
2.3. A Dual RCA for Detection of miRNA
2.4. Detection of Serum Samples
3. Results and Discussion
3.1. The Strategy of Dual RCA for Efficient Detection of miRNA
3.2. Highly Pure Circular ssDNA and Low Concentration Template Significantly Suppress the False-Positive Signals
3.3. The Dual RCA for Highly Sensitive miRNA Detection and Its Optimization
3.4. Sensitivity and Universality of Dual RCA for Detecting miRNA
3.5. The Specificity of Dual RCA
3.6. Application in Human Serum Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michael, G.M.; Eric, T.K. The discovery of rolling circle amplification and rolling circle transcription. Acc. Chem. Res. 2016, 49, 2540–2550. [Google Scholar]
- Cao, A.P.; Zhang, C.Y. Sensitive and label-free DNA methylation detection by ligation-mediated hyperbranched rolling circle amplification. Anal. Chem. 2012, 84, 6199–6205. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tian, S.; Tikhonova, E.B.; Karamyshev, A.L.; Wang, J.J.; Zhang, F.; Wang, D. The enrichment of miRNA-targeted mRNAs in translationally less active over more active polysomes. Biology 2023, 12, 1536. [Google Scholar] [CrossRef]
- Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol. 2018, 141, 1202–1207. [Google Scholar] [CrossRef]
- Xu, W.D.; Feng, S.Y.; Huang, A.F. Role of miR-155 in inflammatory autoimmune diseases: A comprehensive review. Inflamm. Res. 2022, 71, 1501–1517. [Google Scholar] [CrossRef] [PubMed]
- Mashima, R. Physiological roles of miR-155. Immunology 2015, 145, 323–333. [Google Scholar] [CrossRef]
- Mattiske, S.; Suetani, R.J.; Neilsen, P.M.; Callen, D.F. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol. Biomark. Prev. 2012, 21, 1236–1243. [Google Scholar] [CrossRef]
- Zhou, H.; Li, J.Y.; Gao, P.; Wang, Q.; Zhang, J. miR-155: A Novel Target in Allergic Asthma. Int. J. Mol. Sci. 2016, 17, 1773. [Google Scholar] [CrossRef]
- Jankauskas, S.S.; Gambardella, J.; Sardu, C.; Lombardi, A.; Santulli, G. Functional role of miR-155 in the pathogenesis of diabetes mellitus and its complications. Non-Coding RNA 2021, 7, 39. [Google Scholar] [CrossRef]
- Koscianska, E.; Starega-Roslan, J.; Sznajder, L.J.; Olejniczak, M.; Galka-Marciniak, P.; Krzyzosiak, W.J. Northern blotting analysis of microRNAs, their precursors and RNA interference triggers. BMC Mol. Biol. 2011, 12, 14. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Qi, X.; Ji, Y.; Li, F.; Chen, X.; Li, K.; Li, L. PCR independent strategy-based biosensors for RNA detection. Biosensors 2024, 14, 200. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhang, J.; Wang, H.J.; Du, Y.Y.; Yang, L.; Zheng, F.Y.; Ma, D. PolyA RT-PCR-based quantification of microRNA by using universal TaqMan probe. Biotechnol. Lett. 2012, 34, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Dean, F.B.; Nelson, J.R.; Giesler, T.L.; Lasken, R.S. Rapid amplification of plasmid and phage DNA using phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 2001, 11, 1095–1099. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef]
- Tan, E.; Erwin, B.; Dames, S.; Ferguson, T.; Buechel, M.; Irvine, B.; Voelkerding, K.; Niemz, A. Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities. Biochemistry 2008, 47, 9987–9999. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.Z.; Li, Y.W.; Qiao, Z.J.; Song, W.L.; Bi, S. Rolling circle replication for biosensing, bioimaging, and biomedicine. Trends Biotechnol. 2021, 39, 1160–1172. [Google Scholar] [CrossRef]
- Tian, W.M.; Li, P.J.; He, W.L.; Liu, C.H.; Li, Z.P. Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs. Biosens. Bioelectron. 2019, 128, 17–22. [Google Scholar] [CrossRef]
- Wang, R.X.; Zhao, X.X.; Chen, X.H.; Qiu, X.P.; Qing, G.C.; Zhang, H.; Zhang, L.; Hu, X.L.; He, Z.Q.; Zhong, D.D.; et al. Rolling circular amplification (RCA)-assisted CRISPR/Cas9 cleavage (RACE) for highly specific detection of multiple extra-cellular vesicle microRNAs. Anal. Chem. 2020, 92, 2176–2185. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhao, C.X.; Yin, N.N.; Wang, X.; Shu, Y.; Wang, J.H. Dual miRNAs imaging platform based on HRCA-Cas12a by replacing PAM with bubble to reduce false positive. Anal. Chem. 2025, 97, 3053–3062. [Google Scholar] [CrossRef]
- Xie, J.; Chen, J.; Zhang, Y.; Li, C.H.; Liu, P.; Duan, W.J.; Chen, J.X.; Chen, J.; Dai, Z.; Li, M.M. A dual-signal amplification strategy based on rolling circle amplification and APE1-assisted amplification for highly sensitive and specific miRNA analysis for early diagnosis of alzheimer’s disease. Talanta 2024, 272, 125747. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.H.; Hu, K.L.; Liu, M.Q.; Luo, J.; An, R.; Liang, X.G. Facile splint-free circularization of ssDNA with T4 DNA ligase by redesigning the linear substrate to form an intramolecular dynamic nick. Biomolecules 2024, 14, 1027. [Google Scholar] [CrossRef]
- Li, J.S.; Deng, T.; Chu, X.; Yang, R.H.; Jiang, J.H.; Shen, G.L.; Yu, R.Q. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Anal. Chem. 2010, 82, 2811–2816. [Google Scholar] [CrossRef] [PubMed]
- Di Giusto, D.; King, G.C. Single base extension (SBE) with proof-reading polymerases and phosphorothioate primers: Improved fidelity in single-substrate assays. Nucleic Acids Res. 2003, 31, e7. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Sumaoka, J.; Komiyama, M. Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification. Nucleic Acids Res. 2009, 37, e19. [Google Scholar] [CrossRef]
- Lagunavicius, A.; Kiveryte, Z.; Zimbaite-Ruskuliene, V.; Radzvilavicius, T.; Janulaitis, A. Duality of polynucleotide substrates for phi29 DNA polymerase: 3′→5′ RNase activity of the enzyme. RNA 2008, 14, 503–513. [Google Scholar] [CrossRef]
- Garmendia, C.; Bernad, A.; Esteban, J.A.; Blanco, L.; Salas, M. The bacteriophage phi29 DNA polymerase, a proofreading enzyme. J. Biol. Chem. 1992, 267, 2594–2599. [Google Scholar] [CrossRef]
- Jet, T.; Gines, G.; Rondelez, Y.; Taly, V. Advances in multiplexed techniques for the detection and quantification of microRNAs. Chem. Soc. Rev. 2021, 50, 4141–4161. [Google Scholar] [CrossRef]
- Williams, Z.; Ben-Dov, I.Z.; Elias, R.; Mihailovic, A.; Brown, M.; Rosenwaks, Z.; Tuschl, T. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc. Natl. Acad. Sci. USA 2013, 110, 4255–4260. [Google Scholar] [CrossRef]
- Deng, R.J.; Zhang, K.X.; Li, J.H. Isothermal amplification for microRNA detection: From the test tube to the cell. Acc. Chem. Res. 2017, 50, 1059–1068. [Google Scholar] [CrossRef]
- Ye, J.W.; Xu, M.C.; Tian, X.K.; Cai, S.; Zeng, S. Research advances in the detection of miRNA. J. Pharm. Anal. 2019, 9, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.F. Circulating miRNAs: Roles in cancer diagnosis, prognosis and therapy. Adv. Drug Deliv. Rev. 2015, 81, 75–93. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ba, Y.; Ma, L.J.; Cai, X.; Yin, Y.; Wang, K.H.; Guo, J.G.; Zhang, Y.J.; Chen, J.N.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef]
Add (pM) | Found (pM) | Recovery (%) | RSD (%) (n = 3) | F | p-Value |
---|---|---|---|---|---|
100 | 100.9 ± 3.5 | 100.9 | 3.45 | 2228 | <0.001 |
10 | 10.33 ± 0.84 | 103.3 | 8.13 | ||
1 | 0.879 ± 0.051 | 87.9 | 5.80 | ||
0.1 | 0.115 ± 0.003 | 115 | 2.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Hu, K.; Song, Z.; An, R.; Liang, X. One-Pot Detection of miRNA by Dual Rolling Circle Amplification at Ambient Temperature with High Specificity and Sensitivity. Biosensors 2025, 15, 317. https://doi.org/10.3390/bios15050317
Sun W, Hu K, Song Z, An R, Liang X. One-Pot Detection of miRNA by Dual Rolling Circle Amplification at Ambient Temperature with High Specificity and Sensitivity. Biosensors. 2025; 15(5):317. https://doi.org/10.3390/bios15050317
Chicago/Turabian StyleSun, Wenhua, Kunling Hu, Ziting Song, Ran An, and Xingguo Liang. 2025. "One-Pot Detection of miRNA by Dual Rolling Circle Amplification at Ambient Temperature with High Specificity and Sensitivity" Biosensors 15, no. 5: 317. https://doi.org/10.3390/bios15050317
APA StyleSun, W., Hu, K., Song, Z., An, R., & Liang, X. (2025). One-Pot Detection of miRNA by Dual Rolling Circle Amplification at Ambient Temperature with High Specificity and Sensitivity. Biosensors, 15(5), 317. https://doi.org/10.3390/bios15050317