Multi-Parametric Electrochemical Sensing Platform: Applications in Animal Welfare
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.3. Methods
2.3.1. IrOx Functionalization
2.3.2. Flexible Gold Electrode Modification
2.3.3. Electrode Characterization
2.3.4. pH Measurements
2.3.5. Nitrate and Nitrite Measurements
2.3.6. Real-World Proof of Concept
3. Results and Discussion
3.1. Electrode Fabrication/ Modification
3.2. pH Measurements in ISF
3.2.1. Repeatability
3.2.2. Interferences
3.2.3. pH Staircase
3.3. Nitrate Detection
3.4. Nitrite Detection
3.5. Real World Proof of Concept
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
APP | application |
BRD | bovine respiratory disease |
CA | chronoamperometry |
CE | counter electrode |
CV | cyclic voltammetry |
DI | deionized |
GHG | greenhouse gas |
IrOx | iridium oxide |
ISF | interstitial fluid |
LOD | limit of detection |
NPG | nanoporous gold |
OCP | open circuit potentiometry |
PBS | phosphate buffered saline |
PULSE | portable unit for lab-on-site electrochemistry |
RE | reference electrode |
SARA | subacute ruminal acidosis |
SD | standard deviation |
SEM | scanning electron microscope |
SPE | screen-printed electrode |
WE | working electrode |
Appendix A. Electrochemical Setup
Appendix B. Nitrate Detection
References
- Clay, N.; Garnett, T.; Lorimer, J. Dairy intensification: Drivers, impacts and alternatives. Ambio 2020, 49, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.B.; Bhakar, V.; Gaurav, G.; Khandelwal, C.; Sarkar, P.; Singh, H.; Dangayach, G.S. Environmental sustainability of milk production: A comparative environmental impact analysis and sustainability evaluation. Front. Sustain. 2024, 5, 1352572. [Google Scholar] [CrossRef]
- Statista. Global Dairy Industry—Statistics and Facts. 2023. Available online: https://www.statista.com/topics/4649/dairy-industry (accessed on 22 February 2024).
- LeBlanc, S.; Lissemore, K.; Kelton, D.; Duffield, T.; Leslie, K. Major advances in disease prevention in dairy cattle. J. Dairy Sci. 2006, 89, 1267–1279. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, V.E.; Barrientos-Blanco, J.A.; Delgado, H.; Fadul-Pacheco, L. Symposium review: Real-time continuous decision making using big data on dairy farms. J. Dairy Sci. 2020, 103, 3856–3866. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- CowManager. 24/7 Control over Your Cows. Available online: https://www.cowmanager.com/en-us/ (accessed on 23 February 2024).
- Afimilk. Automating Dairy Farms. Available online: https://www.afimilk.com/ (accessed on 23 February 2024).
- Dairymaster. Dairymaster Moonmonitor+. Available online: https://www.dairymaster.com/products/moomonitor/ (accessed on 23 February 2024).
- Cowlar. Smart Neck Collars for Dairy Cows. Available online: https://www.dairy.cowlar.com/ (accessed on 23 February 2024).
- Ferreira, C.; Todorovic, M.; Sugrue, P.; Teixeira, S.; Galvin, P. Emerging Sensors and Instrumentation Systems for Bovine Health Monitoring. Animal 2025, 101527. [Google Scholar] [CrossRef]
- eCow. Rumen Sensors & Insights That Maximise Farm Profits. Available online: https://www.dairymaster.com/ (accessed on 23 February 2024).
- smaXtec. Be Successful with Healthy Dairy Cows. Available online: https://smaxtec.com/en/ (accessed on 23 February 2024).
- Mohteshamuddin, K.; Kim, H.; Lee, S.; Kang, H.; Estrada, L.M.; Nadeem, M.F.; Hamad, M.E.; Dakheel, A. A pilot study on the advancement of livestock healthcare bio-capsules and development of customized long-range network in the United Arab Emirates. Smart Agric. Technol. 2023, 3, 100082. [Google Scholar] [CrossRef]
- Hajnal, É.; Kovács, L.; Vakulya, G. Dairy Cattle Rumen Bolus Developments with Special Regard to the Applicable Artificial Intelligence (AI) Methods. Sensors 2022, 22, 6812. [Google Scholar] [CrossRef]
- Krause, K.M.; Oetzel, G.R. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed Sci. Technol. 2006, 126, 215–236. [Google Scholar] [CrossRef]
- Erickson, P.S.; Kalscheur, K.F. Chapter 9—Nutrition and feeding of dairy cattle. In Animal Agriculture; Bazer, F.W., Lamb, G.C., Wu, G., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 157–180. [Google Scholar] [CrossRef]
- Adams, A.; Olea-Popelka, F.; Roman-Muniz, I. Using temperature-sensing reticular boluses to aid in the detection of production diseases in dairy cows. J. Dairy Sci. 2013, 96, 1549–1555. [Google Scholar] [CrossRef]
- Kim, H.; Min, Y.; Choi, B. Real-time temperature monitoring for the early detection of mastitis in dairy cattle: Methods and case researches. Comput. Electron. Agric. 2019, 162, 119–125. [Google Scholar] [CrossRef]
- AlZahal, O.; Kebreab, E.; France, J.; Froetschel, M.; McBride, B. Ruminal Temperature May Aid in the Detection of Subacute Ruminal Acidosis. J. Dairy Sci. 2008, 91, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Timsit, E.; Assié, S.; Quiniou, R.; Seegers, H.; Bareille, N. Early detection of bovine respiratory disease in young bulls using reticulo-rumen temperature boluses. Vet. J. 2011, 190, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Scharf, B.; Johnson, J.; Weaber, R.; Spiers, D. Utilizing laboratory and field studies to determine physiological responses of cattle to multiple environmental stressors. J. Therm. Biol. 2012, 37, 330–338. [Google Scholar] [CrossRef]
- Bewley, J.; Grott, M.; Einstein, M.; Schutz, M. Impact of Intake Water Temperatures on Reticular Temperatures of Lactating Dairy Cows. J. Dairy Sci. 2008, 91, 3880–3887. [Google Scholar] [CrossRef]
- Lee, C.; Beauchemin, K.A. A review of feeding supplementary nitrate to ruminant animals: Nitrate toxicity, methane emissions, and production performance. Can. J. Anim. Sci. 2014, 94, 557–570. [Google Scholar] [CrossRef]
- Hall, J.O. Nitrate-and nitrite-accumulating plants. In Veterinary Toxicology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 941–946. [Google Scholar]
- Hall, J.O. Chapter 65—Nitrate- and Nitrite-Accumulating Plants. In Veterinary Toxicology, 3rd ed.; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 941–946. [Google Scholar] [CrossRef]
- Hovingh, E. Abortions in Dairy Cattle I: Common Causes of Abortions; Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2009. [Google Scholar]
- Wang, R.; Wang, M.; Ungerfeld, E.M.; Zhang, X.M.; Long, D.L.; Mao, H.X.; Deng, J.P.; Bannink, A.; Tan, Z.L. Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet. J. Dairy Sci. 2018, 101, 9789–9799. [Google Scholar] [CrossRef]
- Bačėninaitė, D.; Džermeikaitė, K.; Antanaitis, R. Global warming and dairy cattle: How to control and reduce methane emission. Animals 2022, 12, 2687. [Google Scholar] [CrossRef]
- FAO. Pathways Towards Lower Emissions—A Global Assessment of the Greenhouse Gas Emissions and Mitigation Options from Livestock Agrifood Systems; Technical report; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Nolan, J.V.; Godwin, I.; de Raphélis-Soissan, V.; Hegarty, R. Managing the rumen to limit the incidence and severity of nitrite poisoning in nitrate-supplemented ruminants. Anim. Prod. Sci. 2016, 56, 1317–1329. [Google Scholar] [CrossRef]
- Tan, J.F.; Anastasi, A.; Chandra, S. Electrochemical detection of nitrate, nitrite and ammonium for on-site water quality monitoring. Curr. Opin. Electrochem. 2022, 32, 100926. [Google Scholar] [CrossRef]
- Lal, K.; Jaywant, S.A.; Arif, K.M. Electrochemical and Optical Sensors for Real-Time Detection of Nitrate in Water. Sensors 2023, 23, 7099. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.; Barry, F.; Todorović, M.; Sugrue, P.; Teixeira, S.R.; Galvin, P. PULSE: A Fast Portable Unit for Lab-on-Site Electrochemistry. Sensors 2025, 25, 762. [Google Scholar] [CrossRef] [PubMed]
- Bretag, A. Synthetic interstial fluid for isolated mammalian tissue. Life Sci. 1969, 8, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Madden, J. Development and Characterisation of Macro-Disc and Micro-Band Electrodes for Electrochemical Sensing Applications. Ph.D. Thesis, University College Cork, Cork, Ireland, 2022. [Google Scholar]
- Nagle, L.C.; Wahl, A.; Ogourstov, V.; Seymour, I.; Barry, F.; Rohan, J.F.; Mac Loughlin, R. Electrochemical discrimination of salbutamol from its excipients in VentolinTM at nanoporous gold microdisc arrays. Sensors 2021, 21, 3975. [Google Scholar] [CrossRef]
- Kumar, A.; Gonçalves, J.M.; Sukeri, A.; Araki, K.; Bertotti, M. Correlating surface growth of nanoporous gold with electrodeposition parameters to optimize amperometric sensing of nitrite. Sens. Actuators B Chem. 2018, 263, 237–247. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Armbruster, D.A.; Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008, 29, S49. [Google Scholar]
- Wu, T.; Alharbi, A.; Kiani, R.; Shahrjerdi, D. Quantitative principles for precise engineering of sensitivity in graphene electrochemical sensors. Adv. Mater. 2019, 31, 1805752. [Google Scholar] [CrossRef]
- Monteiro, M.C.; Koper, M.T. Measuring local pH in electrochemistry. Curr. Opin. Electrochem. 2021, 25, 100649. [Google Scholar] [CrossRef]
- Mohan, C. Buffers a Guide for the Preparation and Use of Buffers in Biological Systems; A Brand of EMD Biosciences, Inc.: Oakdale, MN, USA, 2003. [Google Scholar]
- Li, H.; Wu, G.; Weng, Z.; Sun, H.; Nistala, R.; Zhang, Y. Microneedle-based potentiometric sensing system for continuous monitoring of multiple electrolytes in skin interstitial fluids. ACS Sens. 2021, 6, 2181–2190. [Google Scholar] [CrossRef]
- Shu, L.; Lu, X.; Jegatheesan, V.; Jegatheesan, L. Investigating pH and other electrical properties of potassium salt solutions. Food Chem. Adv. 2023, 2, 100210. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, S.; Wang, F.; He, B.; Wang, X.; Sun, Y.; Ning, C.; Dai, K. Double-edged effects caused by magnesium ions and alkaline environment regulate bioactivities of magnesium-incorporated silicocarnotite in vitro. Regen. Biomater. 2021, 8, rbab016. [Google Scholar]
- Li, Y.; Luo, Z.; Li, G.; Belwal, T.; Li, L.; Xu, Y.; Su, B.; Lin, X. Interference-free detection of caffeine in complex matrices using a nanochannel electrode modified with binary hydrophilic–hydrophobic PDMS. ACS Sens. 2021, 6, 1604–1612. [Google Scholar] [CrossRef] [PubMed]
- Westgard, J.O.; Barry, P.L.; Quam, E.F. Basic Method Validation: Training in Analytical Quality Management for Healthcare Laboratories; Westgard Quality Corporation: Ogunquit, ME, USA, 1999. [Google Scholar]
- McCormac, T.; Fabre, B.; Bidan, G. Part II. Role of pH and the transition metal for the electrocatalytic reduction of nitrite with transition metal substituted Dawson type heteropolyanions. J. Electroanal. Chem. 1997, 427, 155–159. [Google Scholar] [CrossRef]
System | NaCl | KCl | |
---|---|---|---|
Benchtop Inst. | 0.0119 V | 0.0058 V | 0.0156 V |
PULSE | 0.0274 V | 0.0265 V | 0.0316 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, C.; Lynch, E.; O’Herlihy, A.; Barry, F.; Nagle, L.C.; Teixeira, S.R.; Galvin, P. Multi-Parametric Electrochemical Sensing Platform: Applications in Animal Welfare. Biosensors 2025, 15, 304. https://doi.org/10.3390/bios15050304
Ferreira C, Lynch E, O’Herlihy A, Barry F, Nagle LC, Teixeira SR, Galvin P. Multi-Parametric Electrochemical Sensing Platform: Applications in Animal Welfare. Biosensors. 2025; 15(5):304. https://doi.org/10.3390/bios15050304
Chicago/Turabian StyleFerreira, C., E. Lynch, A. O’Herlihy, F. Barry, L. C. Nagle, S. R. Teixeira, and P. Galvin. 2025. "Multi-Parametric Electrochemical Sensing Platform: Applications in Animal Welfare" Biosensors 15, no. 5: 304. https://doi.org/10.3390/bios15050304
APA StyleFerreira, C., Lynch, E., O’Herlihy, A., Barry, F., Nagle, L. C., Teixeira, S. R., & Galvin, P. (2025). Multi-Parametric Electrochemical Sensing Platform: Applications in Animal Welfare. Biosensors, 15(5), 304. https://doi.org/10.3390/bios15050304