Ultrasensitive Peptide-Based Electrochemical Biosensor for Universal Diagnostic of Dengue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Patient Samples and Project Approval
2.3. Apparatus and Measurements
2.4. IgG Epitope Mapping
2.5. Solid Phase Peptide Synthesis
2.6. Construction of Biosensor for DENV
2.7. Analytical Construction of the Biosensor Dengue
2.8. Morphology Characterization
3. Results
3.1. Epitope Mapping and Structural Localization of the Biosensor in Detecting DENV
3.2. Biosensor Design
3.3. Operation Analysis Biosensor
3.4. Limit of Detection and Specificity of the Biosensor
3.5. Repeatability and Stability of the Biosensor Response
3.6. Morphological Analysis of the Biosensor
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Mosquito Program. Available online: https://www.worldmosquitoprogram.org/en/learn/mosquito-borne-diseases/dengue (accessed on 28 March 2024).
- Harapan, H.; Michie, A.; Sasmono, R.T.; Imrie, A. Dengue: A minireview. Viruses 2020, 12, 829. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.A.; Zilouchian, H.; Younas, M.A.; Asghar, W. Dengue detection: Advances in diagnostic tools from conventional technology to point of care. Biosensors 2021, 11, 206. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/es/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 7 June 2024).
- Bosch, I.; Puig, H.; Hiley, M.; Carré-Camps, M.; Perdomo-Celis, F.; Narváez, C.F.; Salgado, D.M.; Senthoor, D.; O’Grady, M.; Phillips, E.; et al. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Sci. Transl. Med. 2017, 9, 1589. [Google Scholar] [CrossRef] [PubMed]
- Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Mahmoudi, T.; Chenab, K.K.; Baradaran, B.; Hashemzaei, M.; Radinekiyan, F.; Mokhtarzadeh, A.; Maleki, A. Dengue virus: A review on advances in detection and trends—From conventional methods to novel biosensors. Mikrochim. Acta 2019, 186, 329. [Google Scholar] [CrossRef] [PubMed]
- Yrad, F.M.; Castañares, J.M.; Alocilja, E.C. Visual detection of dengue-1 RNA using gold nanoparticle-based lateral flow biosensor. Diagnostics 2019, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Crowe, J.E.; Wang, W.K.; Harris, E.; de Silva, A.M. Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera. PLoS Pathog. 2014, 10, e1004386. [Google Scholar] [CrossRef]
- Mansfield, K.L.; Horton, D.L.; Johnson, N.; Li, L.; Barrett, A.D.T.; Smith, D.J.; Galbraith, S.E.; Solomon, T.; Fooks, A.R. Flavivirus-induced antibody cross-reactivity. J. Gen. Virol. 2011, 92, 2821–2829. [Google Scholar] [CrossRef] [PubMed]
- Priyamvada, L.; Hudson, W.; Ahmed, R.; Wrammert, J. Humoral cross-reactivity between zika and dengue viruses: Implications for protection and pathology. Emerg. Microbes Infect. 2017, 6, e33. [Google Scholar] [CrossRef] [PubMed]
- Maeki, T.; Tajima, S.; Ikeda, M.; Kato, F.; Taniguchi, S.; Nakayama, E.; Takasaki, T.; Lim, C.K.; Saijo, M. Analysis of cross-reactivity between flaviviruses with sera of patients with Japanese encephalitis showed the importance of neutralization tests for the diagnosis of Japanese encephalitis. J. Infect. Chemother. 2019, 25, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Maeki, T.; Tajima, S.; Ando, N.; Wakimoto, Y.; Hayakawa, K.; Kutsuna, S.; Kato, F.; Taniguchi, S.; Nakayama, E.; Lim, C.K.; et al. Analysis of cross-reactivity among flaviviruses using sera of patients with dengue showed the importance of neutralization tests with paired serum samples for the correct interpretations of serological test results for dengue. J. Infect. Chemother. 2023, 29, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Sarker, A.; Dhama, N.; Gupta, R.D. Dengue virus neutralizing antibody: A review of targets, cross-reactivity, and antibody-dependent enhancement. Front. Immunol. 2023, 14, 1200195. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, A.; Krishnan, R.A.; Kulathil, D.M.; Haritha, P.R.; Varun, T.N.; Edwin, B.T.; Sarath, K.V.; Paul, J.K.; Kumar, C.S.S.; Vasudevan, D.M. Diagnostic accuracy of dengue NS1 lateral flow immunoassay in comparison to reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. J. Virol. Methods 2024, 329, 114991. [Google Scholar] [CrossRef] [PubMed]
- Adelino, T.É.R.; Pedroso, S.H.S.P.; Lima, M.; Tomé, L.M.R.; Guimarães, N.R.; Fonseca, V.; Silva, P.E.S.D.; Moreno, K.M.F.; Silva, A.C.A.E.; Pinheiro, N.R.; et al. Exploring dengue infection in a vaccinated individual: Preliminary molecular diagnosis and sequencing insights. Viruses 2024, 16, 1603. [Google Scholar] [CrossRef]
- Wang, J.; Xia, Q.; Wu, J.; Lin, Y.; Ju, H. A sensitive electrochemical method for rapidly detecting dengue virus by CRISPR/ Cas13a-assisted catalytic hairpin assembly. Anal. Chim. Acta 2021, 1187, 339131. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Tan, J.; Liu, B.; Xiao, M.; Xia, Q. Field-deployable viral diagnostic tools for dengue virus based on Cas13a and Cas12a. Anal. Chim. Acta 2024, 1316, 342838. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Zourob, M. Ultrasensitive peptide-based multiplexed electrochemical biosensor for the simultaneous detection of Listeria monocytogenes and Staphylococcus aureus. Mikrochim. Acta 2020, 187, 486. [Google Scholar] [CrossRef] [PubMed]
- Sfragano, P.S.; Moro, G.; Polo, F.; Palchetti, I. The role of peptides in the design of electrochemical biosensors for clinical diagnostics. Biosensors 2021, 11, 246. [Google Scholar] [CrossRef]
- Negahdary, M.; Angnes, L. Electrochemical nanobiosensors equipped with peptides: A review. Mikrochim. Acta 2022, 189, 94. [Google Scholar] [CrossRef]
- Campuzano, S.; Pedrero, M.; Barderas, R.; Pingarrón, J.M. Breaking barriers in electrochemical biosensing using bioinspired peptide and phage probes. Anal. Bioanal. Chem. 2024, 416, 7225–7247. [Google Scholar] [CrossRef]
- Karimzadeh, A.; Hasanzadeh, M.; Shadjou, N.; De la Guardia, M. Peptide based biosensors. Trends Anal. Chem. 2018, 107, 1–20. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Boyd, B.J. Peptide-based biosensors. Talanta 2015, 136, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Vanova, V.; Mitrevska, K.; Milosavljevic, V.; Hynek, D.; Richtera, L.; Adam, V. Peptide-bases electrochemical biossensor utilized for protein detection. Biosen. Biolectron. 2021, 180, 113087. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Xia, N.; Tian, L.; Sun, Z.; Liu, L. Progress in the development of biosensors based on peptide-copper coordination interaction. Biosensors 2022, 12, 809. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, L.; Fang, Z.; Zou, Z.; Zhao, J.; Zuo, X.; Li, G. Application of functional peptides in the electrochemical and optical biosensing of cancer biomarkers. Chem. Commun. 2023, 59, 3383–3398. [Google Scholar] [CrossRef] [PubMed]
- Hanoglu, S.B.; Harmanci, D.; Evran, S.; Timur, S. Detection strategies of infectious diseases via peptide-based electrochemical biosensors. Bioelectrochemistry 2024, 160, 108784. [Google Scholar] [CrossRef]
- Wen, J.; Shresta, S. Antigenic cross-reactivity between zika and dengue viruses: Is it time to develop a universal vaccine? Curr. Opin. Immunol. 2019, 59, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Stiasny, K.; Malafa, S.; Aberle, S.W.; Medits, I.; Tsouchnikas, G.; Aberle, J.H.; Holzmann, H.; Heinz, F.X. Different cross-reactivities of IgM responses in dengue, zika and tick-borne encephalitis virus infections. Viruses 2021, 13, 596. [Google Scholar] [CrossRef] [PubMed]
- Varghese, J.; De Silva, I.; Millar, D.S. Latest advances in arbovirus diagnostics. Microorganisms 2023, 11, 1159. [Google Scholar] [CrossRef]
- Monteiro, M.E.; Lechuga, G.C.; Napoleão-Pego, P.; Carvalho, J.P.R.S.; Gomes, L.R.; Morel, C.M.; Provance, D.W., Jr.; De-Simone, S.G. Humoral immune response to SARS-CoV-2 Spike protein receptor-binding motif linear epitopes. Vaccines 2024, 12, 342. [Google Scholar] [CrossRef]
- Lechuga, G.C.; Temerozo, J.R.; Napoleão-Pêgo, P.; Carvalho, J.P.R.S.; Gomes, L.R.; Bou-Habib, D.C.; Morel, C.M.; Provance, D.W., Jr.; Souza, T.M.L.; De-Simone, S.G. Enhanced assessment of cross-reactive antigenic determinants within the Spike protein. Int. J. Mol. Sci. 2024, 25, 8180. [Google Scholar] [CrossRef]
- Puiu, M.; Bala, C. Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays. Bioelectrochemistry 2018, 120, 66–75. [Google Scholar] [CrossRef]
- Arvand, M.; Sanayeei, M.; Hemmati, S. Label-free electrochemical DNA biosensor for guanine and adenine by ds-DNA/poly(L-cysteine)/Fe3O4 nanoparticles-graphene oxide nanocomposite modified electrode. Biosens. Bioelectron. 2018, 102, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Sangili, A.; Kalyani, T.; Chen, S.-M.; Rajendran, K.; Jana, S.M. Label-free electrochemical immunosensor based on L-cysteine-functionalized AuNP on reduced graphene oxide for the detection of dengue virus E-protein in dengue blood serum. Compos. Part B Eng. 2022, 238, 109876. [Google Scholar] [CrossRef]
- Kader, M.A.; Azmi, N.S.; Kafi, A.K.M. Recent advances in gold nanoparticles modified electrodes in electrochemical nonenzymatic sensing of chemical and biological compounds. Inorg. Chem. Comm. 2023, 153, 110767. [Google Scholar] [CrossRef]
- López-Gallego, F.; Guisan, J.M.; Betancor, L. Immobilization of enzymes on supports activated with glutaraldehyde: A very simple immobilization protocol. Methods Mol. Biol. 2020, 2100, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Holler, F.J.; Skoog, D.A.; Crouch, S.R. Princípios de Análise Instrumental, 6th ed.; Bookman: Porto Alegre, Brazil, 2009; pp. 643–759. ISBN 9780495012016. [Google Scholar]
- Fisher, R.; Lustig, Y.; Sklan, E.H.; Schwartz, E. The role of NS1 protein in the diagnosis of flavivirus infections. Viruses 2023, 15, 572. [Google Scholar] [CrossRef] [PubMed]
- De-Simone, S.G.; Napoleão-Pego, P.; Teixeira-Pinto, L.A.; Santos, J.D.; De-Simone, T.S.; Melgarejo, A.R.; Aguiar, A.S.; Marchi-Salvador, D.P. Linear B-cell epitopes in BthTX-1, BthTX-II and BthA-1, phospholipase A2’s from Bothrops jararacussu snake venom, recognized by therapeutically neutralizing commercial horse antivenom. Toxicon 2013, 72, 90–101. [Google Scholar] [CrossRef]
- De-Simone, S.G.; Gomes, L.R.; Napoleão-Pêgo, P.; Lechuga, G.C.; de Pina, J.S.; da Silva, F.R. Epitope mapping of the diphtheria toxin and development of an ELISA-specific diagnostic assay. Vaccines 2021, 9, 313. [Google Scholar] [CrossRef]
- Ralph, T.R.; Hitchman, M.L.; Millington, J.P.; Walsh, F.C. Review: The electrochemistry of l-cystine and l-cysteine: Part 1: Thermodynamic and kinetic studies. J. Electroanal. Chem. 1994, 375, 1–15. [Google Scholar] [CrossRef]
- Dutta, A.; Hasan, M.M.; Miah, M.R.; Nagao, Y.; Hasnat, M.A. Efficient sensing of hydrogen peroxide via electrocatalytic oxidation reactions using polycrystalline Au electrode modified with controlled thiol group immobilization. Electrochim. Acta 2021, 395, 139217. [Google Scholar] [CrossRef]
- Hage, F.S.; Radtke, G.; Kepaptsoglou, D.M.; Lazzeri, M.; Ramasse, Q.M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 2020, 367, 1124–1127. [Google Scholar] [CrossRef] [PubMed]
- Tavares, S.S.M.; Sampaio, M.T.G.; Perez, G.; Almeida, B.B.; Ponzio, E.A. DL-EPR and AFM study of sensitization of a 17% Cr multiphase stainless steel. Mat. Corros. 2022, 73, 866–875. [Google Scholar] [CrossRef]
- Singh, R.K.; Tiwai, A.; Satone, P.D.; Priya, T.; Meshram, R.J. Updates in the management of dengue shock syndrome: A copreensive review. Cureus 2023, 15, e46713. [Google Scholar] [CrossRef]
- Martins, V.E.; Alencar, C.H.; Kamimura, M.T.; de Carvalho Araújo, F.M.; De Simone, S.G.; Dutra, R.F.; Guedes, M.I. Occurrence of natural vertical transmission of dengue-2 and dengue-3 viruses in Aedes aegypti and Aedes albopictus in Fortaleza, Ceará, Brazil. PLoS ONE 2012, 7, e41386. [Google Scholar] [CrossRef]
- Zende, A.V.; Shinde, Y.A.; Sonwalkar, R.R.; Parekar, P.B. A Comprehensive review article on dengue fever. South. Asian Res. J. Pharm. Sci. 2024, 6, 2664–6749. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Prodromidis, M. Electrochemical immunosensors: Critical survey of different architectures and transduction strategies. Trends Anal. Chem. 2016, 79, 88–105. [Google Scholar] [CrossRef]
- Liu, J.Q.; Cheng, H.; He, D.G.; He, X.X.; Wang, K.M.; Liu, Q.Q.; Zhao, S.Q.; Yang, X.D. Label-free homogeneous electrochemical sensing platform for protein kinase assay based on carboxypeptidase Y-assisted peptide cleavage and vertically ordered mesoporous silica films. Anal. Chem. 2017, 89, 9062–9068. [Google Scholar] [CrossRef] [PubMed]
- Zaitouna, A.J.; Maben, A.J.; Lai, R.Y. Incorporation of extra amino acids in peptide recognition probe to improve specificity and selectivity of an electrochemical peptide-based sensor. Anal. Chim. Acta 2015, 886, 157–164. [Google Scholar] [CrossRef]
- Serafin, V.; Torrente-Rodriguez, R.M.; Gonzalez-Cortes, A.; de Frutos, P.G.; Sabate, M.; Campuzano, S.; Yanez-Sedeno, P.; Pingarron, J.M. An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry. Talanta 2018, 179, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Jing, R.; Qi, H.L.; Gao, Q.; Zhang, C.X. Label-free electrochemical impedance peptide-based biosensor for the detection of cardiac troponin I incorporating gold nanoparticles modified carbon electrode. J. Electroanal. Chem. 2016, 781, 212–217. [Google Scholar] [CrossRef]
- Prado, I.C.; Chino, M.E.T.A.; Santos, A.L.; Souza, A.L.A.; Pinho, L.G.; Lemos, E.R.S.; De-Simone, S.G. Development of an electrochemical immunosensor for the diagnostic testing of spotted fever using synthetic peptides. Biosen. Bioelectron. 2018, 100, 115–121. [Google Scholar] [CrossRef]
Protein | Electrode + Modification | Peptide Sequence | Method | Signal Probe | LOD | Ref. |
---|---|---|---|---|---|---|
Casein Kinase II | MSFS/ITO | NH2- RRRRRRRRRRRADDSDDDDD-COOH | DPV | Ferrocene | 0.095 U mL−1 | [50] |
Anti-p24 | AuE/SAM | HS–(CH2)11-EAAEWDRVHP-K-MB HS–(CH2)11-SGSGSGEAAEWDRVH P–K-MB HS–(CH2)11EKEKEKEAAEWDRVHP-K-MB | CV | Methylene blue | 0.5 nM 1 nM 1 nM | [51] |
Cardiovascular biomarker B-type | SPCE/4- Aminothiophenol + AuNPs | H2N-Phe-SPCE | EIS, CV | Horseradish peroxidase | 4 pg mL−1 | [52] |
Cardiac troponin I | GCE + AuNPs + PEG/SAM | CFYSHSFHENWPS | EIS– signal-on | Label-free | 3.4 pg mL−1 | [53] |
OMPA_RICRI (H6PGA4) | SPCE/SAM+ anti-huIgG-AP | 846ANVVLFNDAVQLTQ859 | CV | Hydroquinone diphosphate | 0.01 µg mL−1 | [54] |
NS1-DENV-3 | SPGE/L-Cys + GL | SFIIDGPNTEPEK | CV, DPV | Potassium ferrocyanide/ferricyanide | 1.21 ng mL−1 0.43 ng mL−1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado, I.C.; Carvalho, J.P.R.d.S.; Araujo, A.S.; Napoleão-Pêgo, P.; De-Simone, S.G. Ultrasensitive Peptide-Based Electrochemical Biosensor for Universal Diagnostic of Dengue. Biosensors 2025, 15, 236. https://doi.org/10.3390/bios15040236
Prado IC, Carvalho JPRdS, Araujo AS, Napoleão-Pêgo P, De-Simone SG. Ultrasensitive Peptide-Based Electrochemical Biosensor for Universal Diagnostic of Dengue. Biosensors. 2025; 15(4):236. https://doi.org/10.3390/bios15040236
Chicago/Turabian StylePrado, Isis Campos, João Pedro Rangel da Silva Carvalho, André Souza Araujo, Paloma Napoleão-Pêgo, and Salvatore Giovanni De-Simone. 2025. "Ultrasensitive Peptide-Based Electrochemical Biosensor for Universal Diagnostic of Dengue" Biosensors 15, no. 4: 236. https://doi.org/10.3390/bios15040236
APA StylePrado, I. C., Carvalho, J. P. R. d. S., Araujo, A. S., Napoleão-Pêgo, P., & De-Simone, S. G. (2025). Ultrasensitive Peptide-Based Electrochemical Biosensor for Universal Diagnostic of Dengue. Biosensors, 15(4), 236. https://doi.org/10.3390/bios15040236