Optimized Microfluidic Biosensor for Sensitive C-Reactive Protein Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. CRP Detection Using Fluorescent and Gold Nanoparticle Labels
2.2. Microfabrication Technology
3. Results
3.1. CRP Detection Using Gold Nanoparticles
3.1.1. Microfluidic Chip Design
3.1.2. Image Processing on Microfluidic Chip
3.2. CRP Detection Using Fluorescent Labels
3.2.1. Microfluidic Chip Design
3.2.2. Fabrication of Test Line
3.2.3. Controlling Non-Specific Binding
3.2.4. Image Processing for CRP Detection
3.3. Comparative Analysis of Histogram Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BSA | Bovine Serum Albumin |
CRP | C-reactive protein |
ELISA | Enzyme-Linked Immunosorbent Assay |
FOV | Field of view |
IPA | Isopropanol |
LFIA | Lateral flow immunoassay |
NC | Nitrocellulose |
PBS | Phosphate-buffered saline |
PDMS | Polydimethylsiloxane |
PEO | Polyethylene oxide |
POCT | Point-of-care testing |
ROI | Region of interest |
Int | Intensity |
References
- Del Giudice, M.; Gangestad, S.W. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav. Immun. 2018, 70, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Ansar, W.; Ghosh, S.; Ansar, W.; Ghosh, S. Inflammation and inflammatory diseases, markers, and mediators: Role of CRP in some inflammatory diseases. In Biology of C Reactive Protein in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2016; pp. 67–107. [Google Scholar]
- Ticinesi, A.; Lauretani, F.; Nouvenne, A.; Porro, E.; Fanelli, G.; Maggio, M.; Meschi, T. C-reactive protein (CRP) measurement in geriatric patients hospitalized for acute infection. Eur. J. Intern. Med. 2017, 37, 7–12. [Google Scholar] [CrossRef]
- Sohrabi, H.; kholafazad Kordasht, H.; Pashazadeh-Panahi, P.; Nezhad-Mokhtari, P.; Hashemzaei, M.; Majidi, M.R.; Mosafer, J.; Oroojalian, F.; Mokhtarzadeh, A.; de la Guardia, M. Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker. Microchem. J. 2020, 158, 105287. [Google Scholar] [CrossRef]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., III; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- de Ferranti, S.D.; Rifai, N. C-reactive protein: A nontraditional serum marker of cardiovascular risk. Cardiovasc. Pathol. 2007, 16, 14–21. [Google Scholar] [CrossRef]
- Yusa, T.; Tateda, K.; Ohara, A.; Miyazaki, S. New possible biomarkers for diagnosis of infections and diagnostic distinction between bacterial and viral infections in children. J. Infect. Chemother. 2017, 23, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Pfäfflin, A.; Schleicher, E. Inflammation markers in point-of-care testing (POCT). Anal. Bioanal. Chem. 2009, 393, 1473–1480. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.H.; Zick, B.L.; Tsalik, E.L. Host-based diagnostics for acute respiratory infections. Clin. Ther. 2019, 41, 1923–1938. [Google Scholar] [CrossRef]
- Miočević, O.; Cole, C.R.; Laughlin, M.J.; Buck, R.L.; Slowey, P.D.; Shirtcliff, E.A. Quantitative lateral flow assays for salivary biomarker assessment: A review. Front. Public Health 2017, 5, 133. [Google Scholar] [CrossRef]
- Fridley, G.E.; Holstein, C.A.; Oza, S.B.; Yager, P. The evolution of nitrocellulose as a material for bioassays. MRS Bull. 2013, 38, 326–330. [Google Scholar] [CrossRef]
- Waterboer, T.; Sehr, P.; Pawlita, M. Suppression of non-specific binding in serological Luminex assays. J. Immunol. Methods 2006, 309, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Ghosh, S.; Bhuyan, T.; Das, D.; Bandyopadhyay, D. Microfluidic immunosensor for point-of-care-testing of beta-2-microglobulin in tear. ACS Sustain. Chem. Eng. 2020, 8, 9268–9276. [Google Scholar] [CrossRef]
- John, R.V.; Devasiya, T.; VR, N.; Adigal, S.; Lukose, J.; Kartha, V.; Chidangil, S. Cardiovascular biomarkers in body fluids: Progress and prospects in optical sensors. Biophys. Rev. 2022, 14, 1023–1050. [Google Scholar] [CrossRef]
- Vázquez, M.; Anfossi, L.; Ben-Yoav, H.; Diéguez, L.; Karopka, T.; Della Ventura, B.; Abalde-Cela, S.; Minopoli, A.; Di Nardo, F.; Shukla, V.K.; et al. Use of some cost-effective technologies for a routine clinical pathology laboratory. Lab Chip 2021, 21, 4330–4351. [Google Scholar] [CrossRef]
- Vashist, S.K.; Venkatesh, A.; Schneider, E.M.; Beaudoin, C.; Luppa, P.B.; Luong, J.H. Bioanalytical advances in assays for C-reactive protein. Biotechnol. Adv. 2016, 34, 272–290. [Google Scholar] [CrossRef]
- Wu, R.; Zhou, S.; Chen, T.; Li, J.; Shen, H.; Chai, Y.; Li, L.S. Quantitative and rapid detection of C-reactive protein using quantum dot-based lateral flow test strip. Anal. Chim. Acta 2018, 1008, 1–7. [Google Scholar] [CrossRef]
- Mouliou, D.S. C-reactive protein: Pathophysiology, diagnosis, false test results and a novel diagnostic algorithm for clinicians. Diseases 2023, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- António, M.; Nogueira, J.; Vitorino, R.; Daniel-da Silva, A.L. Functionalized gold nanoparticles for the detection of C-reactive protein. Nanomaterials 2018, 8, 200. [Google Scholar] [CrossRef]
- Morioka, K.; Sato, H.; Kuboyama, M.; Yanagida, A.; Shoji, A. Quantification of CRP in human serum using a handheld fluorescence detection system for capillary-based ELISA. Talanta 2021, 224, 121725. [Google Scholar] [CrossRef]
- Khanmiri, H.H.; Yazdanfar, F.; Mobed, A.; Rezamohammadi, F.; Rahmani, M.; Haghgouei, T. Biosensors; noninvasive method in detection of C-reactive protein (CRP). Biomed. Microdevices 2023, 25, 27. [Google Scholar] [CrossRef]
- Bagi, M.; Amjad, F.; Ghoreishian, S.M.; Sohrabi Shahsavari, S.; Huh, Y.S.; Moraveji, M.K.; Shimpalee, S. Advances in technical assessment of spiral inertial microfluidic devices toward bioparticle separation and profiling: A critical review. BioChip J. 2024, 18, 45–67. [Google Scholar] [CrossRef]
- Stephan, K.; Pittet, P.; Renaud, L.; Kleimann, P.; Morin, P.; Ouaini, N.; Ferrigno, R. Fast prototyping using a dry film photoresist: Microfabrication of soft-lithography masters for microfluidic structures. J. Micromech. Microeng. 2007, 17, N69. [Google Scholar] [CrossRef]
- Martínez, E.D.; Prado, A.; Gonzalez, M.; Anguiano, S.; Tosi, L.; Salazar Alarcón, L.; Pastoriza, H. Recent advances on nanocomposite resists with design functionality for lithographic microfabrication. Front. Mater. 2021, 8, 629792. [Google Scholar] [CrossRef]
- Tavakolidakhrabadi, A.; Stark, M.; Bacher, U.; Legros, M.; Bessire, C. Optimization of Microfluidics for Point-of-Care Blood Sensing. Biosensors 2024, 14, 266. [Google Scholar] [CrossRef] [PubMed]
- Tavakolidakhrabadi, A.; Domange, T.; Nalm, C.; Rodino, F.; Meimandi, A.; Bessire, C.; Carrara, S. A Novel Microfluidic System for Capacitive Detection via Magnetophoretic Separation of Malaria-Infected Red Blood Cells. IEEE Sens. Lett. 2024, 8, 5503804. [Google Scholar] [CrossRef]
- Bauer, W.A.C.; Fischlechner, M.; Abell, C.; Huck, W.T. Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions. Lab Chip 2010, 10, 1814–1819. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Gao, X.; Liu, D.; Chen, X. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 2015, 115, 10575–10636. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, J.; Alici, G.; Du, H.; Zhu, Y.; Li, W. Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device. Lab Chip 2014, 14, 2993–3003. [Google Scholar] [CrossRef] [PubMed]
- Sunoj, S.; Igathinathane, C.; Saliendra, N.; Hendrickson, J.; Archer, D. Color calibration of digital images for agriculture and other applications. ISPRS J. Photogramm. Remote. Sens. 2018, 146, 221–234. [Google Scholar] [CrossRef]
- Cao, X.E.; Ongagna-Yhombi, S.Y.; Wang, R.; Ren, Y.; Srinivasan, B.; Hayden, J.A.; Zhao, Z.; Erickson, D.; Mehta, S. A diagnostic platform for rapid, simultaneous quantification of procalcitonin and C-reactive protein in human serum. EBioMedicine 2022, 76, 103867. [Google Scholar] [CrossRef]
- Koukouvinos, G.; Petrou, P.; Misiakos, K.; Drygiannakis, D.; Raptis, I.; Stefanitsis, G.; Martini, S.; Nikita, D.; Goustouridis, D.; Moser, I.; et al. Simultaneous determination of CRP and D-dimer in human blood plasma samples with White Light Reflectance Spectroscopy. Biosens. Bioelectron. 2016, 84, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Llor, C.; Plate, A.; Bjerrum, L.; Gentile, I.; Melbye, H.; Staiano, A.; Van Hecke, O.; Verbakel, J.Y.; Hopstaken, R. C-reactive protein point-of-care testing in primary care—Broader implementation needed to combat antimicrobial resistance. Front. Public Health 2024, 12, 1397096. [Google Scholar] [CrossRef] [PubMed]
- Pattanayak, P.; Singh, S.K.; Gulati, M.; Vishwas, S.; Kapoor, B.; Chellappan, D.K.; Anand, K.; Gupta, G.; Jha, N.K.; Gupta, P.K.; et al. Microfluidic chips: Recent advances, critical strategies in design, applications and future perspectives. Microfluid. Nanofluidics 2021, 25, 99. [Google Scholar] [CrossRef]
- López-Marzo, A.M.; Merkoçi, A. based sensors and assays: A success of the engineering design and the convergence of knowledge areas. Lab Chip 2016, 16, 3150–3176. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Iqfath, M.; Meke, F.N.; Qu, Z.; Hernly, E.L.; Su, P.; Zhang, Z.Y.; Laskin, J. Correlative Imaging for Comprehensive Molecular Mapping of Individual Cell Types in Biological Tissues. bioRxiv 2024. [Google Scholar] [CrossRef]
- Su, X.; Xie, Y.; Liu, X.; Chen, M.; Zheng, C.; Zhong, H.; Li, M. Absolute quantification of serum exosomes in patients with an sers-lateral flow strip biosensor for noninvasive clinical cancer diagnosis. ACS Appl. Mater. Interfaces 2023, 15, 37130–37142. [Google Scholar] [CrossRef]
Parameter | Conventional LFA (AuNP) | Latex Turbidimetric Immunoassay | ELISA | Microfluidic LFA (AuNP) | Microfluidic LFA (Fluorescent) |
---|---|---|---|---|---|
Detection Range (g/mL) | ∼10–50 | 0.2–200 * | 0.1–50 | 1–10 | 1–70 |
LOD (g/mL) | ∼10 | 0.2–0.5 * | 0.1 or lower | ∼1 | ∼1 |
Assay Time (min) | 15–20 | 10–15 | 120–240 | 5–8 | 5–8 |
Sample Volume (L) | 10–20 | 10–50 | 50–100 | 5–10 | 5–10 |
Instrumentation | Minimal (visual) | Bench-top analyzer | Plate reader | Minimal (visual) | Fluorescence detector |
Complexity | Low | Moderate (instrument needed) | High (multiple steps) | Moderate (microfluidic integration) | Moderate (microfluidic + reader) |
Reagents Required | One-step or two-step buffer | Multiple reagent solutions | Multiple wash buffers | No buffer needed | No buffer needed |
Cost | Low–Moderate | Moderate–High | Moderate–High | Low–Moderate | Moderate |
Major Advantages | Simple, widely used | Good sensitivity; automated options | High sensitivity, well-established | Rapid, enhanced sensitivity, minimal reagents | Extended detection range, high sensitivity, minimal reagents |
Major Drawbacks | Lower sensitivity for CRP < 10 g/mL | Requires special instrument | Longer assay time, lab-based | Requires microfluidic fabrication | Requires fluorescence reader |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavakolidakhrabadi, A.; Stark, M.; Küenzi, A.; Carrara, S.; Bessire, C. Optimized Microfluidic Biosensor for Sensitive C-Reactive Protein Detection. Biosensors 2025, 15, 214. https://doi.org/10.3390/bios15040214
Tavakolidakhrabadi A, Stark M, Küenzi A, Carrara S, Bessire C. Optimized Microfluidic Biosensor for Sensitive C-Reactive Protein Detection. Biosensors. 2025; 15(4):214. https://doi.org/10.3390/bios15040214
Chicago/Turabian StyleTavakolidakhrabadi, Amirmahdi, Matt Stark, Alexander Küenzi, Sandro Carrara, and Cédric Bessire. 2025. "Optimized Microfluidic Biosensor for Sensitive C-Reactive Protein Detection" Biosensors 15, no. 4: 214. https://doi.org/10.3390/bios15040214
APA StyleTavakolidakhrabadi, A., Stark, M., Küenzi, A., Carrara, S., & Bessire, C. (2025). Optimized Microfluidic Biosensor for Sensitive C-Reactive Protein Detection. Biosensors, 15(4), 214. https://doi.org/10.3390/bios15040214