Analysis of Personalized Cardiovascular Drug Therapy: From Monitoring Technologies to Data Integration and Future Perspectives
Abstract
:1. Introduction
2. Key Technologies for Dynamic Monitoring
2.1. Sensing Technologies
2.1.1. ECG Sensor
2.1.2. Electrochemical Sensors
2.1.3. Optical Sensors
2.1.4. Pressure Sensors
2.1.5. Magnetic Sensors
2.1.6. Acoustic Sensors
2.1.7. Temperature Sensors
2.2. Microfluidic Chip Technology
2.3. Nanomaterials Technology
3. Dynamic Monitoring Based on Individual Differences
3.1. Dynamic Monitoring of Anticoagulant Drugs
3.1.1. Mechanism of Action and Metabolic Pathways of Warfarin
3.1.2. Dynamic Monitoring of INR Values
3.2. Dynamic Monitoring of Antihypertensive Drugs
3.2.1. Mechanism of Action of β-Blockers
3.2.2. Dynamic Monitoring Heart Rate and Blood Pressure Data
3.3. Dynamic Monitoring of Antiarrhythmic Drugs
3.3.1. Mechanism of Action of Antiarrhythmic Drugs
3.3.2. Dynamic Monitoring of Heart Rhythm
3.4. Dynamic Monitoring the Efficacy of Lipid-Lowering Drugs
3.4.1. Mechanism of Action and Adverse Reactions of Statins
3.4.2. Dynamic Monitoring of Cholesterol Level
3.4.3. Dynamic Monitoring of Creatine Kinase Levels
4. Multi-Dimensional Data Integration and Analysis
4.1. Pharmacokinetic/Pharmacodynamic Models
4.2. Drug–Target Networks
4.3. Machine Learning
5. Challenges and Future Prospects
5.1. Complexity of Cardiovascular Pharmacotherapy
5.2. Advances in Monitoring Technologies for Cardiovascular Drug Efficacy
5.3. Challenges and Solutions in Clinical Translation
5.4. Development Direction of Cardiovascular Drug Therapy
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poulter, N. Coronary heart disease is a multifactorial disease. Am. J. Hypertens. 1999, 12, 92S–95S. [Google Scholar] [CrossRef]
- Hamilton, G.A. Measuring adherence in a hypertension clinical trial. Eur. J. Cardiovasc. Nurs. 2003, 2, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Groenewegen, A.; Rutten, F.H.; Mosterd, A.; Hoes, A.W. Epidemiology of heart failure. Eur. J. Heart Fail. 2020, 22, 1342–1356. [Google Scholar] [CrossRef]
- Kamel, H.; Healey, J.S. Cardioembolic stroke. Circ. Res. 2017, 120, 514–526. [Google Scholar] [CrossRef]
- Reich, P.; DeSilva, R.A.; Lown, B.; Murawski, B.J. Acute psychological disturbances preceding life-threatening ventricular arrhythmias. Jama 1981, 246, 233–235. [Google Scholar] [CrossRef]
- Woodruff, R.C.; Tong, X.; Khan, S.S.; Shah, N.S.; Jackson, S.L.; Loustalot, F.; Vaughan, A.S. Trends in cardiovascular disease mortality rates and excess deaths, 2010–2022. Am. J. Prev. Med. 2024, 66, 582–589. [Google Scholar] [CrossRef]
- Lopez, E.; Ballard, B.; Jan, A. Cardiovascular Disease. StatPearls-NCBI Bookshelf. National Library of Medicine. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535419/ (accessed on 28 August 2023).
- Gooding, H.C.; Gidding, S.S.; Moran, A.E.; Redmond, N.; Allen, N.B.; Bacha, F.; Burns, T.L.; Catov, J.M.; Grandner, M.A.; Harris, K.M. Challenges and opportunities for the prevention and treatment of cardiovascular disease among young adults: Report from a National Heart, Lung, and Blood Institute Working Group. J. Am. Heart Assoc. 2020, 9, e016115. [Google Scholar] [CrossRef]
- Wagner, M.; Gelbrich, G.; Kircher, J.; Kotseva, K.; Wood, D.; Morbach, C.; Leyh, R.; Ertl, G.; Karmann, W.; Stoerk, S. Secondary prevention in younger vs. older coronary heart disease patients—Insights from the German subset of the EUROASPIRE IV survey. Int. J. Behav. Med. 2018, 25, 283–293. [Google Scholar] [CrossRef]
- Antza, C.; Gallo, A.; Boutari, C.; Ershova, A.; Gurses, K.M.; Lewek, J.; Mirmaksudov, M.; Silbernagel, G.; Sandstedt, J.; Lebedeva, A. Prevention of cardiovascular disease in young adults: Focus on gender differences. A collaborative review from the EAS Young Fellows. Atherosclerosis 2023, 384, 117272. [Google Scholar] [CrossRef]
- Lee, H.; Yano, Y.; Cho, S.M.J.; Heo, J.E.; Kim, D.-W.; Park, S.; Lloyd-Jones, D.M.; Kim, H.C. Adherence to antihypertensive medication and incident cardiovascular events in young adults with hypertension. Hypertension 2021, 77, 1341–1349. [Google Scholar] [CrossRef]
- Rippe, J.M.; Angelopoulos, T.J. Lifestyle strategies for risk factor reduction, prevention and treatment of cardiovascular disease. In Lifestyle Medicine, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 19–36. [Google Scholar]
- Yin, T.; Duan, J.; Xu, D.; Huang, M.; Yin, D. Precision individualized medication strategies and challenges for cardiovascular diseases. Precis. Medicat. 2024, 1, 7–15. [Google Scholar] [CrossRef]
- Upadhyay, R.K. Emerging risk biomarkers in cardiovascular diseases and disorders. J. Lipids 2015, 2015, 971453. [Google Scholar] [CrossRef] [PubMed]
- Siontis, K.C.; Noseworthy, P.A.; Attia, Z.I.; Friedman, P.A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 2021, 18, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Nolin, T.D. On warfarin use in kidney disease: A therapeutic window of opportunity? Am. J. Kidney Dis. 2010, 56, 805–808. [Google Scholar] [CrossRef]
- Fahmi, A.M.; Elewa, H.; El Jilany, I. Warfarin dosing strategies evolution and its progress in the era of precision medicine, a narrative review. Int. J. Clin. Pharm. 2022, 44, 599–607. [Google Scholar] [CrossRef]
- Bellanca, C.M.; Augello, E.; Cantone, A.F.; Di Mauro, R.; Attaguile, G.A.; Di Giovanni, V.; Condorelli, G.A.; Di Benedetto, G.; Cantarella, G.; Bernardini, R. Insight into Risk Factors, Pharmacogenetics/Genomics, and Management of Adverse Drug Reactions in Elderly: A Narrative Review. Pharmaceuticals 2023, 16, 1542. [Google Scholar] [CrossRef]
- Langmia, I.M.; Just, K.S.; Yamoune, S.; Brockmöller, J.; Masimirembwa, C.; Stingl, J.C. CYP2B6 functional variability in drug metabolism and exposure across populations—Implication for drug safety, dosing, and individualized therapy. Front. Genet. 2021, 12, 692234. [Google Scholar] [CrossRef]
- Gervasini, G.; Benítez, J.; Carrillo, J.A. Pharmacogenetic testing and therapeutic drug monitoring are complementary tools for optimal individualization of drug therapy. Eur. J. Clin. Pharmacol. 2010, 66, 755–774. [Google Scholar] [CrossRef]
- Alomar, M.J. Factors affecting the development of adverse drug reactions. Saudi Pharm. J. 2014, 22, 83–94. [Google Scholar] [CrossRef]
- Munger, M.A. Polypharmacy and combination therapy in the management of hypertension in elderly patients with co-morbid diabetes mellitus. Drugs Aging 2010, 27, 871–883. [Google Scholar] [CrossRef]
- Zijp, T.R.; Izzah, Z.; Åberg, C.; Gan, C.T.; Bakker, S.J.; Touw, D.J.; Van Boven, J.F. Clinical value of emerging bioanalytical methods for drug measurements: A scoping review of their applicability for medication adherence and therapeutic drug monitoring. Drugs 2021, 81, 1983–2002. [Google Scholar] [CrossRef] [PubMed]
- Delahaye, L.; Veenhof, H.; Koch, B.C.; Alffenaar, J.-W.C.; Linden, R.; Stove, C. Alternative sampling devices to collect dried blood microsamples: State-of-the-art. Ther. Drug Monit. 2021, 43, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Witt, D.M.; Clark, N.P.; Kaatz, S.; Schnurr, T.; Ansell, J.E. Guidance for the practical management of warfarin therapy in the treatment of venous thromboembolism. J. Thromb. Thrombolysis 2016, 41, 187–205. [Google Scholar] [CrossRef]
- Schein, J.R.; White, C.M.; Nelson, W.W.; Kluger, J.; Mearns, E.S.; Coleman, C.I. Vitamin K antagonist use: Evidence of the difficulty of achieving and maintaining target INR range and subsequent consequences. Thromb. J. 2016, 14, 1–10. [Google Scholar] [CrossRef]
- Bruttomesso, D.; Laviola, L.; Avogaro, A.; Bonora, E.; Del Prato, S.; Frontoni, S.; Orsi, E.; Rabbone, I.; Sesti, G.; Purrello, F. The use of real time continuous glucose monitoring or flash glucose monitoring in the management of diabetes: A consensus view of Italian diabetes experts using the Delphi method. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 421–431. [Google Scholar] [CrossRef]
- Frost, M.C.; Meyerhoff, M.E. Real-time monitoring of critical care analytes in the bloodstream with chemical sensors: Progress and challenges. Annu. Rev. Anal. Chem. 2015, 8, 171–192. [Google Scholar] [CrossRef]
- Godoy, L.C.; Tomlinson, G.; Abumuamar, A.M.; Farkouh, M.E.; Rudolph, M.; Billia, F.; Cohn, I.; Marcus, G.; Kim, R.H.; Rao, V. Association between time to therapeutic INR and length of stay following mechanical heart valve surgery. J. Card. Surg. 2022, 37, 62–69. [Google Scholar] [CrossRef]
- DeSantis, G.; Hogan-Schlientz, J.; Liska, G.; Kipp, S.; Sallee, R.; Wurster, M.; Kupfer, K.; Ansell, J. STABLE results: Warfarin home monitoring achieves excellent INR control. Am. J. Manag. Care 2014, 20, 202–209. [Google Scholar]
- Leopold, J.A.; Loscalzo, J. Emerging role of precision medicine in cardiovascular disease. Circ. Res. 2018, 122, 1302–1315. [Google Scholar] [CrossRef]
- Savoia, C.; Volpe, M.; Grassi, G.; Borghi, C.; Agabiti Rosei, E.; Touyz, R.M. Personalized medicine—A modern approach for the diagnosis and management of hypertension. Clin. Sci. 2017, 131, 2671–2685. [Google Scholar] [CrossRef]
- Rumsfeld, J.S.; Joynt, K.E.; Maddox, T.M. Big data analytics to improve cardiovascular care: Promise and challenges. Nat. Rev. Cardiol. 2016, 13, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Rogers, A.J.; Johnson, K.W.; Wang, Z.; Turakhia, M.P.; Halperin, J.L.; Narayan, S.M. Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat. Rev. Cardiol. 2021, 18, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Walsh III, J.A.; Topol, E.J.; Steinhubl, S.R. Novel wireless devices for cardiac monitoring. Circulation 2014, 130, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Misra, R. Nanomaterials in microfluidics for disease diagnosis and therapy development. Mater. Technol. 2019, 34, 92–116. [Google Scholar] [CrossRef]
- Hemdan, M.; Ali, M.A.; Doghish, A.S.; Mageed, S.S.A.; Elazab, I.M.; Khalil, M.M.; Mabrouk, M.; Das, D.B.; Amin, A.S. Innovations in biosensor technologies for healthcare diagnostics and therapeutic drug monitoring: Applications, recent progress, and future research challenges. Sensors 2024, 24, 5143. [Google Scholar] [CrossRef]
- Bendre, A.; Bhat, M.P.; Lee, K.-H.; Altalhi, T.; Alruqi, M.A.; Kurkuri, M. Recent developments in microfluidic technology for synthesis and toxicity-efficiency studies of biomedical nanomaterials. Mater. Today Adv. 2022, 13, 100205. [Google Scholar] [CrossRef]
- Xue, Z.; Gai, Y.; Wu, Y.; Liu, Z.; Li, Z. Wearable mechanical and electrochemical sensors for real-time health monitoring. Commun. Mater. 2024, 5, 211. [Google Scholar] [CrossRef]
- Lin, R.; Lei, M.; Ding, S.; Cheng, Q.; Ma, Z.; Wang, L.; Tang, Z.; Zhou, B.; Zhou, Y. Applications of flexible electronics related to cardiocerebral vascular system. Mater. Today Bio 2023, 23, 100787. [Google Scholar] [CrossRef]
- Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens. 2020, 5, 2679–2700. [Google Scholar] [CrossRef]
- Garzón, V.; Pinacho, D.G.; Bustos, R.-H.; Garzón, G.; Bustamante, S. Optical biosensors for therapeutic drug monitoring. Biosensors 2019, 9, 132. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Xiao, S.; Liu, Y.; Bai, M.; Gong, L.; Zhao, J.; Chen, D. Revolutionizing precision medicine: Exploring wearable sensors for therapeutic drug monitoring and personalized therapy. Biosensors 2023, 13, 726. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Qi, J.; Fan, S.; Qiao, Z.; Yeo, J.C.; Lim, C.T. Flexible wearable sensors for cardiovascular health monitoring. Adv. Healthc. Mater. 2021, 10, 2100116. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Qi, H.; Ma, Y.; Deng, Y.; Liu, S.; Jie, Y.; Jing, J.; He, J.; Zhang, X.; Wheatley, L. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat. Commun. 2020, 11, 3207. [Google Scholar] [CrossRef] [PubMed]
- Omer, A.E.; Shaker, G.; Safavi-Naeini, S.; Alquié, G.; Deshours, F.; Kokabi, H.; Shubair, R.M. Non-invasive real-time monitoring of glucose level using novel microwave biosensor based on triple-pole CSRR. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 1407–1420. [Google Scholar] [CrossRef]
- Ogata, G.; Ishii, Y.; Asai, K.; Sano, Y.; Nin, F.; Yoshida, T.; Higuchi, T.; Sawamura, S.; Ota, T.; Hori, K. A microsensing system for the in vivo real-time detection of local drug kinetics. Nat. Biomed. Eng. 2017, 1, 654–666. [Google Scholar] [CrossRef]
- Ma’mun, A.; Abd El-Rahman, M.K.; Abd El-Kawy, M. Real-time potentiometric sensor; an innovative tool for monitoring hydrolysis of chemo/bio-degradable drugs in pharmaceutical sciences. J. Pharm. Biomed. Anal. 2018, 154, 166–173. [Google Scholar] [CrossRef]
- Fuad, N.M.; Kaslin, J.; Wlodkowic, D. Lab-on-a-Chip imaging micro-echocardiography (iμEC) for rapid assessment of cardiovascular activity in zebrafish larvae. Sens. Actuators B Chem. 2018, 256, 1131–1141. [Google Scholar] [CrossRef]
- Yuan, S.; Yuan, H.; Hay, D.C.; Hu, H.; Wang, C. Revolutionizing Drug Discovery: The Impact of Distinct Designs and Biosensor Integration in Microfluidics-Based Organ-on-a-Chip Technology. Biosensors 2024, 14, 425. [Google Scholar] [CrossRef]
- Cao, Y.; Shi, H.; Yi, C.; Zheng, Y.; Tan, Z.; Jia, X.; Liu, Z. Recent progress of non-invasive in vitro diagnosis using electrochemical analysis strategy and wearable microfluidic devices applied to exocrine secretion sampling. TrAC Trends Anal. Chem. 2024, 172, 117561. [Google Scholar] [CrossRef]
- Bayoumy, K.; Gaber, M.; Elshafeey, A.; Mhaimeed, O.; Dineen, E.H.; Marvel, F.A.; Martin, S.S.; Muse, E.D.; Turakhia, M.P.; Tarakji, K.G. Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nat. Rev. Cardiol. 2021, 18, 581–599. [Google Scholar] [CrossRef]
- Sharma, P.; Imtiaz, S.A.; Rodriguez-Villegas, E. Acoustic sensing as a novel wearable approach for cardiac monitoring at the wrist. Sci. Rep. 2019, 9, 20079. [Google Scholar] [CrossRef] [PubMed]
- Coker, S.J.; Batey, A.J.; Lightbown, I.D.; Díaz, M.E.; Eisner, D.A. Effects of mefloquine on cardiac contractility and electrical activity in vivo, in isolated cardiac preparations, and in single ventricular myocytes. Br. J. Pharmacol. 2000, 129, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Weiler, D.T.; Villajuan, S.O.; Edkins, L.; Cleary, S.; Saleem, J.J. Wearable heart rate monitor technology accuracy in research: A comparative study between PPG and ECG technology. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Wollongong, Australia, 26–29 November 2017; pp. 1292–1296. [Google Scholar]
- Fabian, D.; Ahmed, I. Ambulatory ECG monitoring. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Pérez-Riera, A.R.; Barbosa-Barros, R.; Daminello-Raimundo, R.; de Abreu, L.C. Main artifacts in electrocardiography. Ann. Noninvasive Electrocardiol. 2018, 23, e12494. [Google Scholar] [CrossRef]
- Casal, L.; Mura, G.L. Skin-electrode impedance measurement during ECG acquisition: Method’s validation. J. Phys. Conf. Ser. 2016, 705, 012006. [Google Scholar] [CrossRef]
- Laudon, M.K.; Webster, J.G.; Frayne, R.; Grist, T.M. Minimizing interference from magnetic resonance imagers during electrocardiography. IEEE Trans. Biomed. Eng. 1998, 45, 160–164. [Google Scholar] [CrossRef]
- Bogun, F.; Anh, D.; Kalahasty, G.; Wissner, E.; Serhal, C.B.; Bazzi, R.; Weaver, W.D.; Schuger, C. Misdiagnosis of atrial fibrillation and its clinical consequences. Am. J. Med. 2004, 117, 636–642. [Google Scholar] [CrossRef]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.; De Potter, T.J.; Dwight, J.; Guasti, L.; Hanke, T. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS) Developed by the task force for the management of atrial fibrillation of the European Society of Cardiology (ESC), with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Endorsed by the European Stroke Organisation (ESO). Eur. Heart J. 2024, 45, ehae176. [Google Scholar]
- Members, W.C.; Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D. 2023 ACC/AHA/ACCP/HRS guideline for the diagnosis and management of atrial fibrillation: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2024, 83, 109–279. [Google Scholar]
- Shanbhag, M.M.; Manasa, G.; Mascarenhas, R.J.; Mondal, K.; Shetti, N.P. Fundamentals of bio-electrochemical sensing. Chem. Eng. J. Adv. 2023, 16, 100516. [Google Scholar] [CrossRef]
- Qin, S.-N.; Jie, Z.-Q.; Chen, L.-Y.; Zheng, J.-X.; Xie, Y.; Feng, L.; Chen, Z.-M.; Salminen, K.; Sun, J.-J. Real-time monitoring of daunorubicin pharmacokinetics with nanoporous electrochemical aptamer-based sensors in vivo. Sens. Actuators B Chem. 2024, 411, 135710. [Google Scholar] [CrossRef]
- Mruthunjaya, A.K.; Torriero, A.A. Electrochemical Monitoring in Anticoagulation Therapy. Molecules 2024, 29, 1453. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; McCune, J.S. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Harwood, G.J.; Pouton, C.W. Amperometric enzyme biosensors for the analysis of drugs and metabolites. Adv. Drug Deliv. Rev. 1996, 18, 163–191. [Google Scholar] [CrossRef]
- Ghoneim, M.; Tawfik, A. Assay of anti-coagulant drug warfarin sodium in pharmaceutical formulation and human biological fluids by square-wave adsorptive cathodic stripping voltammetry. Anal. Chim. Acta 2004, 511, 63–69. [Google Scholar] [CrossRef]
- Wisedchaisri, G.; Gamal El-Din, T.M. Druggability of voltage-gated sodium channels—Exploring old and new drug receptor sites. Front. Pharmacol. 2022, 13, 858348. [Google Scholar] [CrossRef]
- Seshadri, D.R.; Li, R.T.; Voos, J.E.; Rowbottom, J.R.; Alfes, C.M.; Zorman, C.A.; Drummond, C.K. Wearable sensors for monitoring the physiological and biochemical profile of the athlete. NPJ Digit. Med. 2019, 2, 72. [Google Scholar] [CrossRef]
- Deshpande, A.S.; Muraoka, W.; Andreescu, S. Electrochemical sensors for oxidative stress monitoring. Curr. Opin. Electrochem. 2021, 29, 100809. [Google Scholar] [CrossRef]
- Bansal, H.; Kohli, R.K.; Saluja, K.; Chaurasia, A. Recent advancements in biomedical research in the era of AI and ML. Artif. Intell. Comput. Dyn. Biomed. Res. 2022, 8, 1–20. [Google Scholar]
- Romele, P.; Gkoupidenis, P.; Koutsouras, D.A.; Lieberth, K.; Kovács-Vajna, Z.M.; Blom, P.W.; Torricelli, F. Multiscale real time and high sensitivity ion detection with complementary organic electrochemical transistors amplifier. Nat. Commun. 2020, 11, 3743. [Google Scholar] [CrossRef]
- Song, H.; Shin, H.; Seo, H.; Park, W.; Joo, B.J.; Kim, J.; Kim, J.; Kim, H.K.; Kim, J.; Park, J.U. Wireless non-invasive monitoring of cholesterol using a smart contact lens. Adv. Sci. 2022, 9, 2203597. [Google Scholar] [CrossRef]
- Campuzano, S.; Barderas, R.; Moreno-Casbas, M.T.; Almeida, Á.; Pingarrón, J.M. Pursuing precision in medicine and nutrition: The rise of electrochemical biosensing at the molecular level. Anal. Bioanal. Chem. 2024, 416, 2151–2172. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhong, A. Electrochemical detection strategies for cardiovascular disease biomarkers: Applications in troponin I and troponin T assays. Int. J. Electrochem. Sci. 2024, 19, 100675. [Google Scholar] [CrossRef]
- Jacobs, C.B.; Peairs, M.J.; Venton, B.J. Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 662, 105–127. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, J.; Liang, Y.; Yang, J.; Lin, Y.; Li, Y. Microneedle-Based Electrochemical Array Patch for Ultra-Antifouling and Ultra-Anti-Interference Monitoring of Subcutaneous Oxygen. Anal. Chem. 2024, 97, 373–381. [Google Scholar] [CrossRef]
- Mandali, P.K.; Prabakaran, A.; Annadurai, K.; Krishnan, U.M. Trends in quantification of HbA1c using electrochemical and point-of-care analyzers. Sensors 2023, 23, 1901. [Google Scholar] [CrossRef]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef]
- Amjad, A.; Xian, X. Optical Sensors for Transdermal Biomarker Detection: A Review. Biosens. Bioelectron. 2024, 267, 116844. [Google Scholar] [CrossRef]
- Pereira, R.H.A.; Prado, A.R.; Caro, L.F.C.D.; Zanardo, T.É.C.; Alencar, A.P.; Nogueira, B.V. A non-linear mathematical model using optical sensor to predict heart decellularization efficacy. Sci. Rep. 2019, 9, 12211. [Google Scholar] [CrossRef]
- Jena, P.V.; Roxbury, D.; Galassi, T.V.; Akkari, L.; Horoszko, C.P.; Iaea, D.B.; Budhathoki-Uprety, J.; Pipalia, N.; Haka, A.S.; Harvey, J.D. A carbon nanotube optical reporter maps endolysosomal lipid flux. ACS Nano 2017, 11, 10689–10703. [Google Scholar] [CrossRef]
- Sun, T.; Zhao, H.; Hu, L.; Shao, X.; Lu, Z.; Wang, Y.; Ling, P.; Li, Y.; Zeng, K.; Chen, Q. Enhanced optical imaging and fluorescent labeling for visualizing drug molecules within living organisms. Acta Pharm. Sin. B 2024, 14, 2428–2446. [Google Scholar] [CrossRef]
- Nakayama, A.; Otani, A.; Inokuma, T.; Tsuji, D.; Mukaiyama, H.; Nakayama, A.; Itoh, K.; Otaka, A.; Tanino, K.; Namba, K. Development of a 1, 3a, 6a-triazapentalene derivative as a compact and thiol-specific fluorescent labeling reagent. Commun. Chem. 2020, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Bent, B.; Goldstein, B.A.; Kibbe, W.A.; Dunn, J.P. Investigating sources of inaccuracy in wearable optical heart rate sensors. NPJ Digit. Med. 2020, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Privett, B.J.; Shin, J.H.; Schoenfisch, M.H. Electrochemical sensors. Anal. Chem. 2010, 82, 4723–4741. [Google Scholar] [CrossRef] [PubMed]
- Sarkodie, K.; Fergusson-Rees, A.; Diaz, P. A review of the application of non-intrusive infrared sensing for gas–liquid flow characterization. J. Comput. Multiph. Flows 2018, 10, 43–56. [Google Scholar] [CrossRef]
- Li, Y.; Dai, W.; Lv, X.; Deng, Y. Aptamer-based rolling circle amplification coupled with graphene oxide-based fluorescence resonance energy transfer for sensitive detection of cardiac troponin I. Anal. Methods 2018, 10, 1767–1773. [Google Scholar] [CrossRef]
- Bhatnagar, D.; Kumar, V.; Kumar, A.; Kaur, I. Graphene quantum dots FRET based sensor for early detection of heart attack in human. Biosens. Bioelectron. 2016, 79, 495–499. [Google Scholar] [CrossRef]
- Ulber, R.; Frerichs, J.-G.; Beutel, S. Optical sensor systems for bioprocess monitoring. Anal. Bioanal. Chem. 2003, 376, 342–348. [Google Scholar] [CrossRef]
- Liu, H.; Yang, C.; Ma, J.; Xu, M. Multimodal soft sensor integrated with hydrogel-optoelectronic for wrist motion monitoring. Measurement 2025, 239, 115486. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Denizli, A. Recent advances in optical biosensing approaches for biomarkers detection. Biosens. Bioelectron. X 2022, 12, 100269. [Google Scholar] [CrossRef]
- Luo, Z.; Li, M.; Kong, X.; Li, Y.; Li, W.; Tian, Z.; Cao, Q.; Zaman, M.H.; Li, Y.; Xiao, W. Advance on fiber optic-based biosensors for precision medicine: From diagnosis to therapy. Interdiscip. Med. 2023, 1, e20230022. [Google Scholar] [CrossRef]
- Ambrose, J.A.; Singh, M. Pathophysiology of coronary artery disease leading to acute coronary syndromes. F1000prime Rep. 2015, 7, 08. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.V.; O’Donoghue, M.L.; Ruel, M.; Rab, T.; Tamis-Holland, J.E.; Alexander, J.H.; Baber, U.; Baker, H.; Cohen, M.G.; Cruz-Ruiz, M. 2025 ACC/AHA/ACEP/NAEMSP/SCAI guideline for the management of patients with acute coronary syndromes: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Choi, K.H.; Song, Y.B.; Lee, J.-Y.; Lee, S.-J.; Lee, S.Y.; Kim, S.M.; Yun, K.H.; Cho, J.Y.; Kim, C.J. Intravascular imaging–guided or angiography-guided complex PCI. N. Engl. J. Med. 2023, 388, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Dagdeviren, C.; Su, Y.; Joe, P.; Yona, R.; Liu, Y.; Kim, Y.-S.; Huang, Y.; Damadoran, A.R.; Xia, J.; Martin, L.W. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 4496. [Google Scholar] [CrossRef]
- Boutry, C.M.; Kaizawa, Y.; Schroeder, B.C.; Chortos, A.; Legrand, A.; Wang, Z.; Chang, J.; Fox, P.; Bao, Z. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 2018, 1, 314–321. [Google Scholar] [CrossRef]
- Hasenkamp, W.; Forchelet, D.; Pataky, K.; Villard, J.; Lintel, H.V.; Bertsch, A.; Wang, Q.; Renaud, P. Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor. Biomed. Microdevices 2012, 14, 819–828. [Google Scholar] [CrossRef]
- Huang, S.; Gao, Y.; Hu, Y.; Shen, F.; Jin, Z.; Cho, Y. Recent development of piezoelectric biosensors for physiological signal detection and machine learning assisted cardiovascular disease diagnosis. RSC Adv. 2023, 13, 29174–29194. [Google Scholar] [CrossRef]
- Davidson, C.J.; Bonow, R.O. Cardiac catheterization. Libby P 1997, 10, 18. [Google Scholar]
- Pilz, N.; Picone, D.; Patzak, A.; Opatz, O.; Lindner, T.; Fesseler, L.; Heinz, V.; Bothe, T. Cuff-based blood pressure measurement: Challenges and solutions. Blood Press. 2024, 33, 2402368. [Google Scholar] [CrossRef]
- Abraham, W.T.; Perl, L. Implantable hemodynamic monitoring for heart failure patients. J. Am. Coll. Cardiol. 2017, 70, 389–398. [Google Scholar] [CrossRef]
- Meng, K.; Xiao, X.; Wei, W.; Chen, G.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, 2109357. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, Y.; Yang, Y.; Zheng, L.; Luo, L.; Gao, J.; Jiang, H.; Song, J.; Xu, M.; Wang, X. The soft-strain effect enabled high-performance flexible pressure sensor and its application in monitoring pulse waves. Research 2022, 2022, 0002. [Google Scholar] [CrossRef] [PubMed]
- Razavi, M.K.; Flanigan, D.P.T.; White, S.M.; Rice, T.B. A real-time blood flow measurement device for patients with peripheral artery disease. J. Vasc. Interv. Radiol. 2021, 32, 453–458. [Google Scholar] [CrossRef]
- Mancia, G.; Bombelli, M.; Seravalle, G.; Grassi, G. Diagnosis and management of patients with white-coat and masked hypertension. Nat. Rev. Cardiol. 2011, 8, 686–693. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Q.; Wang, Y.; Zhang, W.; Liu, J.; Xu, D.; Xia, X.; Hu, S.; Bian, B.; Zhao, Y. 3D printing wide detection range and high sensitivity flexible pressure sensor and its applications. React. Funct. Polym. 2024, 196, 105840. [Google Scholar] [CrossRef]
- Ma, Q.; Sun, L.; Wang, B. A strain-insensitive quantitative pressure sensor on your dynamic tissue. Matter 2022, 5, 782–784. [Google Scholar] [CrossRef]
- Li, F.; Wang, H.; Nan, S.; Yang, Y.; Wang, Z.; Zhu, R.; Zhang, T.; Zhang, J. Flexible pressure sensors tuned by interface structure design–Numerical and experimental study. Appl. Surf. Sci. 2023, 638, 158021. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, X.; Chen, S.C.; Zhao, N. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 2019, 29, 1808509. [Google Scholar] [CrossRef]
- Basov, M.; Prigodskiy, D.M. Investigation of high-sensitivity piezoresistive pressure sensors at ultra-low differential pressures. IEEE Sens. J. 2020, 20, 7646–7652. [Google Scholar] [CrossRef]
- Basov, M.; Prigodskiy, D. Development of high-sensitivity piezoresistive pressure sensors for−0.5…+ 0.5 kPa. J. Micromech. Microeng. 2020, 30, 105006. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q.; Wang, Z.; Yan, H. Novel method for processing the dynamic calibration signal of pressure sensor. Sensors 2015, 15, 17748–17766. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines (vol 71, pg 2199, 2018). J. Am. Coll. Cardiol. 2018, 71, 2273. [Google Scholar]
- Pickering, T.G.; Shimbo, D.; Haas, D. Ambulatory blood-pressure monitoring. N. Engl. J. Med. 2006, 354, 2368–2374. [Google Scholar] [CrossRef] [PubMed]
- Tunis, S.; Kendall, P.; Londner, M.; Whyte, J. Decision Memo for Ambulatory Blood Pressure Monitoring (CAG-00067N). 2001. Available online: https://www.cms.gov/medicare-coverage-database/view/ncacal-decision-memo.aspx?proposed=Y&NCAId=294 (accessed on 5 March 2025).
- Leung, A.A.; Daskalopoulou, S.S.; Dasgupta, K.; McBrien, K.; Butalia, S.; Zarnke, K.B.; Nerenberg, K.; Harris, K.C.; Nakhla, M.; Cloutier, L. Hypertension Canada’s 2017 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults. Can. J. Cardiol. 2017, 33, 557–576. [Google Scholar] [CrossRef]
- Wang, M.; Jin, L.; Hang-Mei Leung, P.; Wang-Ngai Chow, F.; Zhao, X.; Chen, H.; Pan, W.; Liu, H.; Li, S. Advancements in magnetic nanoparticle-based biosensors for point-of-care testing. Front. Bioeng. Biotechnol. 2024, 12, 1393789. [Google Scholar] [CrossRef]
- Roth, B.J. The magnetocardiogram. Biophys. Rev. 2024, 5, 021305. [Google Scholar] [CrossRef]
- Proudfoot, M.; Woolrich, M.W.; Nobre, A.C.; Turner, M.R. Magnetoencephalography. Pract. Neurol. 2014, 14, 336–343. [Google Scholar] [CrossRef]
- Khan, W.U.; Alissa, M.; Abouzied, A.S.; Alsugoor, M.H.; Sullivan, M. Navigating Sensor-Skin Coupling Challenges in Magnetic-Based Blood Pressure Monitoring: Innovations and Clinical Implications for Hypertension and Aortovascular Disease Management. Curr. Probl. Cardiol. 2024, 50, 102964. [Google Scholar] [CrossRef]
- Lau, S.; Petković, B.; Haueisen, J. Optimal magnetic sensor vests for cardiac source imaging. Sensors 2016, 16, 754. [Google Scholar] [CrossRef]
- Elsayed, H.A.; Medhat, M.; Hajjiah, A.; Alfassam, H.E.; Abukhadra, M.R.; Mehaney, A. A promising high-sensitive 1D photonic crystal magnetic field sensor based on the coupling of Fano\Tamm resonance in far IR region. Sci. Rep. 2025, 15, 1977. [Google Scholar] [CrossRef]
- Zhu, R.; Li, Z.; Deng, G.; Yu, Y.; Shui, J.; Yu, R.; Pan, C.; Liu, X. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 2022, 92, 106700. [Google Scholar] [CrossRef]
- Sobol, W.T. Recent advances in MRI technology: Implications for image quality and patient safety. Saudi J. Ophthalmol. 2012, 26, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A. 2023 ESC Guidelines for the management of cardiomyopathies: Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Steeden, J.A.; Quail, M.; Gotschy, A.; Mortensen, K.H.; Hauptmann, A.; Arridge, S.; Jones, R.; Muthurangu, V. Rapid whole-heart CMR with single volume super-resolution. J. Cardiovasc. Magn. Reson. 2020, 22, 56. [Google Scholar] [CrossRef]
- Grogan, S.P.; Mount, C.A. Ultrasound physics and instrumentation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Zhang, T.; Liu, N.; Xu, J.; Liu, Z.; Zhou, Y.; Yang, Y.; Li, S.; Huang, Y.; Jiang, S. Flexible electronics for cardiovascular healthcare monitoring. Innovation 2023, 4, 100485. [Google Scholar] [CrossRef]
- Madore, B.; Hess, A.T.; van Niekerk, A.M.; Hoinkiss, D.C.; Hucker, P.; Zaitsev, M.; Afacan, O.; Günther, M. External hardware and sensors, for improved MRI. J. Magn. Reson. Imaging 2023, 57, 690–705. [Google Scholar] [CrossRef]
- Lang, C.; Fang, J.; Shao, H.; Ding, X.; Lin, T. High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 2016, 7, 11108. [Google Scholar] [CrossRef]
- Hu, H.; Huang, H.; Li, M.; Gao, X.; Yin, L.; Qi, R.; Wu, R.S.; Chen, X.; Ma, Y.; Shi, K. A wearable cardiac ultrasound imager. Nature 2023, 613, 667–675. [Google Scholar] [CrossRef]
- Shung, K.K.; Sigelmann, R.A.; Reid, J.M. Scattering of ultrasound by blood. IEEE Trans. Biomed. Eng. 1976, 23, 460–467. [Google Scholar] [CrossRef]
- Degirmenci, A.; Perrin, D.P.; Howe, R.D. High dynamic range ultrasound imaging. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 721–729. [Google Scholar] [CrossRef]
- Burk, R.S.; Parker, A.; Sievers, L.; Rooney, M.B.; Pepperl, A.; Schubert, C.M.; Grap, M.J. Effects of position and operator on high-frequency ultrasound scan quality. Intensive Crit. Care Nurs. 2015, 31, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Wessels, P.W.; Basten, T.G. Design aspects of acoustic sensor networks for environmental noise monitoring. Appl. Acoust. 2016, 110, 227–234. [Google Scholar] [CrossRef]
- Hou, X.; Liu, C. Rope Jumping Strength Monitoring on Smart Devices via Passive Acoustic Sensing. Sensors 2022, 22, 9739. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.-W.; Prager, R.W.; Gee, A.H.; Treece, G.M. Freehand 3D ultrasound calibration: A review. In Advanced Imaging in Biology and Medicine: Technology, Software Environments, Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 47–84. [Google Scholar]
- Liu, T.; Mao, Y.; Dou, H.; Zhang, W.; Yang, J.; Wu, P.; Li, D.; Mu, X. Emerging Wearable Acoustic Sensing Technologies. Adv. Sci. 2025, 12, 2408653. [Google Scholar] [CrossRef]
- Edler, I.; Lindström, K. The history of echocardiography. Ultrasound Med. Biol. 2004, 30, 1565–1644. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar]
- Gulati, M.; Levy, P.D.; Mukherjee, D.; Amsterdam, E.; Bhatt, D.L.; Birtcher, K.K.; Blankstein, R.; Boyd, J.; Bullock-Palmer, R.P.; Conejo, T.; et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Cardiovasc. Comput. Tomogr. 2022, 16, 54–122. [Google Scholar] [CrossRef]
- Sessler, D.I. Temperature monitoring and perioperative thermoregulation. Anesthesiology 2008, 109, 318. [Google Scholar] [CrossRef]
- Tansey, E.A.; Johnson, C.D. Recent advances in thermoregulation. Adv. Physiol. Educ. 2015, 39, 139–148. [Google Scholar] [CrossRef]
- Moser, Y.; Gijs, M.A. Miniaturized flexible temperature sensor. J. Microelectromech. Syst. 2007, 16, 1349–1354. [Google Scholar] [CrossRef]
- Rai, V.K. Temperature sensors and optical sensors. Appl. Phys. B 2007, 88, 297–303. [Google Scholar] [CrossRef]
- Zhao, Y.; Bergmann, J.H. Non-contact infrared thermometers and thermal scanners for human body temperature monitoring: A systematic review. Sensors 2023, 23, 7439. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Arafa, H.M.; Yang, T.; Albadawi, H.; Fowl, R.J.; Zhang, Z.; Kandula, V.; Ramesh, A.; Correia, C.; Huang, Y. A soft thermal sensor for the continuous assessment of flow in vascular access. Nat. Commun. 2025, 16, 38. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, G.M.; Ciarka, A.; Biniecka, M.; Ceranowicz, P. Right heart catheterization—Background, physiological basics, and clinical implications. J. Clin. Med. 2019, 8, 1331. [Google Scholar] [CrossRef]
- Scholte, N.T.; van Ravensberg, A.E.; Shakoor, A.; Boersma, E.; Ronner, E.; de Boer, R.A.; Brugts, J.J.; Bruining, N.; van der Boon, R.M. A scoping review on advancements in noninvasive wearable technology for heart failure management. NPJ Digit. Med. 2024, 7, 279. [Google Scholar] [CrossRef]
- Lin, J.; Fu, R.; Zhong, X.; Yu, P.; Tan, G.; Li, W.; Zhang, H.; Li, Y.; Zhou, L.; Ning, C. Wearable sensors and devices for real-time cardiovascular disease monitoring. Cell Rep. Phys. Sci. 2021, 2, 100541. [Google Scholar] [CrossRef]
- Wei, D.; Saidel, G.M.; Jones, S.C. Optimal design of a thermistor probe for surface measurement of cerebral blood flow. IEEE Trans. Biomed. Eng. 1990, 37, 1159–1172. [Google Scholar] [CrossRef]
- Bill, A. Studies of the heated thermocouple principle for determinations of blood flow in tissues. Acta Physiol. Scand. 1962, 55, 111–126. [Google Scholar] [CrossRef]
- Mimoun, B.; Van Der Horst, A.; Dekker, R.; Van Der Voort, D.; Rutten, M.; Van de Vosse, F. Thermal flow sensors on flexible substrates for minimally invasive medical instruments. In Proceedings of the SENSORS, 2012 IEEE, Taipei, Taiwan, 28–31 October 2012; pp. 1–4. [Google Scholar]
- Su, Y.; Ma, C.; Chen, J.; Wu, H.; Luo, W.; Peng, Y.; Luo, Z.; Li, L.; Tan, Y.; Omisore, O.M. Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: A review. Nanoscale Res. Lett. 2020, 15, 1–34. [Google Scholar] [CrossRef]
- Lu, D.; Li, S.; Yang, Q.; Arafa, H.M.; Xu, Y.; Yan, Y.; Ostojich, D.; Bai, W.; Guo, H.; Wu, C. Implantable, wireless, self-fixing thermal sensors for continuous measurements of microvascular blood flow in flaps and organ grafts. Biosens. Bioelectron. 2022, 206, 114145. [Google Scholar] [CrossRef]
- Leung, C.M.; De Haan, P.; Ronaldson-Bouchard, K.; Kim, G.-A.; Ko, J.; Rho, H.S.; Chen, Z.; Habibovic, P.; Jeon, N.L.; Takayama, S. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2022, 2, 33. [Google Scholar] [CrossRef]
- Ribas, J.; Sadeghi, H.; Manbachi, A.; Leijten, J.; Brinegar, K.; Zhang, Y.S.; Ferreira, L.; Khademhosseini, A. Cardiovascular organ-on-a-chip platforms for drug discovery and development. Appl. Vitr. Toxicol. 2016, 2, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Odijk, M.; Baumann, A.; Lohmann, W.; Van Den Brink, F.; Olthuis, W.; Karst, U.; Van Den Berg, A. A microfluidic chip for electrochemical conversions in drug metabolism studies. Lab A Chip 2009, 9, 1687–1693. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Peng, Y.; Li, H.; Chen, W. Organ-on-a-chip: A new paradigm for drug development. Trends Pharmacol. Sci. 2021, 42, 119–133. [Google Scholar] [CrossRef]
- Shen, J.X.; Youhanna, S.; Zandi Shafagh, R.; Kele, J.; Lauschke, V.M. Organotypic and microphysiological models of liver, gut, and kidney for studies of drug metabolism, pharmacokinetics, and toxicity. Chem. Res. Toxicol. 2019, 33, 38–60. [Google Scholar] [CrossRef]
- Donoghue, L.; Nguyen, K.T.; Graham, C.; Sethu, P. Tissue chips and microphysiological systems for disease modeling and drug testing. Micromachines 2021, 12, 139. [Google Scholar] [CrossRef]
- Ingber, D.E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 2022, 23, 467–491. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Kwon, K.W.; Jang, K.-J.; Park, M.C.; Lee, J.S.; Suh, K.Y. Adhesion assays of endothelial cells on nanopatterned surfaces within a microfluidic channel. Anal. Chem. 2010, 82, 3016–3022. [Google Scholar] [CrossRef]
- Van der Meer, A.D.; Vermeul, K.; Poot, A.A.; Feijen, J.; Vermes, I. A microfluidic wound-healing assay for quantifying endothelial cell migration. Am. J. Physiol.-Heart Circ. Physiol. 2010, 298, H719–H725. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, X.; Chen, Z.; Luo, Y.; Lu, Y.; Liu, T.; Wu, Z.; Jin, Y.; Zhao, W.; Lin, B. A cell lines derived microfluidic liver model for investigation of hepatotoxicity induced by drug-drug interaction. Biomicrofluidics 2019, 13, 024101. [Google Scholar] [CrossRef]
- Sikanen, T.M.; Kiiski, I.; Ollikainen, E. Microfluidic Analysis Techniques for Safety Assessment of Pharmaceutical Nano-and Microsystems. In Characterization of Pharmaceutical Nano and Microsystems; Wiley: Hoboken, NJ, USA, 2021; pp. 97–135. [Google Scholar]
- Ayuso, J.M.; Virumbrales-Muñoz, M.; Lang, J.M.; Beebe, D.J. A role for microfluidic systems in precision medicine. Nat. Commun. 2022, 13, 3086. [Google Scholar] [CrossRef] [PubMed]
- Low, L.A.; Tagle, D.A. ‘You-on-a-chip’for precision medicine. Expert Rev. Precis. Med. Drug Dev. 2018, 3, 137–146. [Google Scholar] [CrossRef]
- Bax, M.; Thorpe, J.; Romanov, V. The future of personalized cardiovascular medicine demands 3D and 4D printing, stem cells, and artificial intelligence. Front. Sens. 2023, 4, 1294721. [Google Scholar] [CrossRef]
- Pala, R.; Pattnaik, S.; Busi, S.; Nauli, S.M. Nanomaterials as novel cardiovascular theranostics. Pharmaceutics 2021, 13, 348. [Google Scholar] [CrossRef]
- Philip, A.; Kumar, A.R. The performance enhancement of surface plasmon resonance optical sensors using nanomaterials: A review. Coord. Chem. Rev. 2022, 458, 214424. [Google Scholar] [CrossRef]
- Sharma, P.A.; Maheshwari, R.; Tekade, M.; Kumar Tekade, R. Nanomaterial based approaches for the diagnosis and therapy of cardiovascular diseases. Curr. Pharm. Des. 2015, 21, 4465–4478. [Google Scholar] [CrossRef]
- Garg, M.; Gupta, A.; Sharma, A.L.; Singh, S. Advancements in 2D materials based biosensors for oxidative stress biomarkers. ACS Appl. Bio Mater. 2021, 4, 5944–5960. [Google Scholar] [CrossRef]
- Gunache, R.O.; Bounegru, A.V.; Apetrei, C. Determination of atorvastatin with voltammetric sensors based on nanomaterials. Inventions 2021, 6, 57. [Google Scholar] [CrossRef]
- Martins de Oliveira, A.; Matias Silva, R.; Dias da Silva, A.; Silva, T.A. Electroanalysis of Statin Drugs: A Review on the Electrochemical Sensor Architectures Ranging from Classical to Modern Systems. Crit. Rev. Anal. Chem. 2024, 1–20. [Google Scholar] [CrossRef]
- Nenna, A.; Nappi, F.; Larobina, D.; Verghi, E.; Chello, M.; Ambrosio, L. Polymers and nanoparticles for statin delivery: Current use and future perspectives in cardiovascular disease. Polymers 2021, 13, 711. [Google Scholar] [CrossRef]
- Roșca, R.O.; Bounegru, A.V.; Apetrei, C. Quantification of Statins in Pharmaceutical Products Using Screen-Printed Sensors Based of Multi-Walled Carbon Nanotubes and Gold Nanoparticles. Inventions 2023, 8, 111. [Google Scholar] [CrossRef]
- Yawari, I.; Kaykhaii, M. Determination of (S)-warfarin using an activated screen printed gold electrode modified with gold nanoparticles and an enantioselective molecularly imprinted polymer. Anal. Methods 2017, 9, 6583–6589. [Google Scholar] [CrossRef]
- Taogesi; Wu, H.Y.; Murata, M.; Ren, H.F.; Endo, H. Carbon Nanotube-Enhanced Enzyme Sensor for Real-Time Monitoring of Cholesterol Levels in Free-Swimming Fish. Sens. Mater. 2015, 27, 805–815. [Google Scholar]
- Rettie, A.E.; Tai, G.Y. The pharmacogenomics of Warfarin—Closing in on personalized medicine. Mol. Interv. 2006, 6, 223–227. [Google Scholar] [CrossRef]
- Collier, D.J.; Taylor, M.; Godec, T.; Shiel, J.; James, R.; Chowdury, Y.; Ebano, P.; Monk, V.; Patel, M.; Pheby, J.; et al. Personalized Antihypertensive Treatment Optimization With Smartphone-Enabled Remote Precision Dosing of Amlodipine During the COVID-19 Pandemic (PERSONAL-CovidBP Trial). J. Am. Heart Assoc. 2024, 13, 030749. [Google Scholar] [CrossRef]
- Zhu, W.D.; Mazzanti, A.; Voelker, T.L.; Hou, P.P.; Moreno, J.D.; Angsutararux, P.; Naegle, K.M.; Priori, S.G.; Silva, J.R. Predicting Patient Response to the Antiarrhythmic Mexiletine Based on Genetic Variation Personalized Medicine for Long QT Syndrome. Circ. Res. 2019, 124, 539–552. [Google Scholar] [CrossRef]
- Gianazza, E.; Brioschi, M.; Iezzi, A.; Paglia, G.; Banfi, C. Pharmacometabolomics for the Study of Lipid-Lowering Therapies: Opportunities and Challenges. Int. J. Mol. Sci. 2023, 24, 3291. [Google Scholar] [CrossRef]
- Brown, R.E.; Dorion, R.P.; Trowbridge, C.; Stammers, A.H.; Fitt, W.; Davis, J. Algorithmic and Consultative Integration of Transfusion Medicine and Coagulation: A Personalized Medicine Approach with Reduced Blood Component Utilization. Ann. Clin. Lab. Sci. 2011, 41, 211–216. [Google Scholar]
- Entcheva, E.; Kay, M.W. Cardiac optogenetics: A decade of enlightenment. Nat. Rev. Cardiol. 2021, 18, 349–367. [Google Scholar] [CrossRef]
- Abeltino, A.; Hatem, D.; Serantoni, C.; Riente, A.; De Giulio, M.M.; De Spirito, M.; De Maio, F.; Maulucci, G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 2024, 16, 3806. [Google Scholar] [CrossRef]
- Valke, L.; Rijpma, S.; Meijer, D.; Schols, S.E.M.; van Heerde, W.L. Thrombin generation assays to personalize treatment in bleeding and thrombotic diseases. Front. Cardiovasc. Med. 2022, 9, 1033416. [Google Scholar] [CrossRef] [PubMed]
- Kotchen, T.A. Historical Trends and Milestones in Hypertension Research A Model of the Process of Translational Research. Hypertension 2011, 58, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Baker, W.L. Treating arrhythmias with adjunctive magnesium: Identifying future research directions. Eur. Heart J.-Cardiovasc. Pharmacother. 2017, 3, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Havel, R.J.; Hunninghake, D.B.; Illingworth, D.R.; Lees, R.S.; Stein, E.A.; Tobert, J.A.; Bacon, S.R.; Bolognese, J.A.; Frost, P.H.; Lamkin, G.E.; et al. Lovastatin (mevinolin) in the treatment of heterozygous familial hypercholesterolemia—A multicenter study. Ann. Intern. Med. 1987, 107, 609–615. [Google Scholar] [CrossRef]
- Dunn, K.E.; Barrett, F.S.; Brands, B.; Marsh, D.C.; Bigelow, G.E. Individual differences in human opioid abuse potential as observed in a human laboratory study. Drug Alcohol Depend. 2019, 205, 107688. [Google Scholar] [CrossRef]
- Joseph, G.; Marott, J.L.; Torp-Pedersen, C.; Biering-Sørensen, T.; Nielsen, G.; Christensen, A.E.; Johansen, M.B.; Schnohr, P.; Sogaard, P.; Mogelvang, R. Dose-Response Association Between Level of Physical Activity and Mortality in Normal, Elevated, and High Blood Pressure. Hypertension 2019, 74, 1307–1315. [Google Scholar] [CrossRef]
- Dagenais, G.R.; Pais, P.; Gao, P.; Roshandel, G.; Malekzadeh, R.; Joseph, P.; Yusuf, S. Fixed dose combination therapies in primary cardiovascular disease prevention in different groups: An individual participant meta-analysis. Heart 2023, 109, 1372–1379. [Google Scholar] [CrossRef]
- Wallin, R.; Wajih, N.; Hutson, S.M. VKORC1: A warfarin-sensitive enzyme in vitamin K metabolism and biosynthesis of vitamin K-dependent blood coagulation factors. Vitam Horm 2008, 78, 227–246. [Google Scholar] [CrossRef]
- Rost, S.; Fregin, A.; Ivaskevicius, V.; Conzelmann, E.; Hörtnagel, K.; Pelz, H.J.; Lappegard, K.; Seifried, E.; Scharrer, I.; Tuddenham, E.G.; et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004, 427, 537–541. [Google Scholar] [CrossRef]
- Fiessinger, J.N.; Huisman, M.V.; Davidson, B.L.; Bounameaux, H.; Francis, C.W.; Eriksson, H.; Lundström, T.; Berkowitz, S.D.; Nyström, P.; Thorsén, M.; et al. Ximelagatran vs. low-molecular-weight heparin and warfarin for the treatment of deep vein thrombosis: A randomized trial. Jama 2005, 293, 681–689. [Google Scholar] [CrossRef]
- Kostadima, E.; Zakynthinos, E. Pulmonary embolism: Pathophysiology, diagnosis, treatment. Hell. J. Cardiol 2007, 48, 94–107. [Google Scholar]
- Ridker, P.M.; Goldhaber, S.Z.; Danielson, E.; Rosenberg, Y.; Eby, C.S.; Deitcher, S.R.; Cushman, M.; Moll, S.; Kessler, C.M.; Elliott, C.G.; et al. Long-term, low-intensity warfarin therapy for the prevention of recurrent venous thromboembolism. N. Engl. J. Med. 2003, 348, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Grzymala-Lubanski, B.; Labaf, A.; Englund, E.; Svensson, P.J.; Själander, A. Mechanical heart valve prosthesis and warfarin—Treatment quality and prognosis. Thromb. Res. 2014, 133, 795–798. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Korzekwa, K.R.; Jones, J.P.; Rettie, A.E.; Trager, W.F. Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch. Biochem. Biophys. 1999, 372, 16–28. [Google Scholar] [CrossRef]
- Schwarz, U.I. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur. J. Clin. Invest. 2003, 33, 23–30. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Huang, S.Q.; Su, H.H.; Zhou, S.F. Genetic polymorphism of the human cytochrome P450 2C9 gene and its clinical significance. Curr. Drug Metab. 2009, 10, 781–834. [Google Scholar] [CrossRef]
- Watanabe, E. Small therapeutic window of warfarin in Japanese population. J. Cardiol. 2015, 65, 171–172. [Google Scholar] [CrossRef]
- Merli, G.J.; Tzanis, G. Warfarin: What are the clinical implications of an out-of-range-therapeutic international normalized ratio? J. Thromb. Thrombolysis 2009, 27, 293–299. [Google Scholar] [CrossRef]
- Lee, M.T.; Klein, T.E. Pharmacogenetics of warfarin: Challenges and opportunities. J. Hum. Genet. 2013, 58, 334–338. [Google Scholar] [CrossRef]
- Gao, X.; Passman, R. Stroke Prevention in Atrial Fibrillation. Curr. Cardiol. Rep. 2022, 24, 1765–1774. [Google Scholar] [CrossRef]
- Mohamed, S.; Mei Fong, C.; Jie Ming, Y.; Naila Kori, A.; Abdul Wahab, S.; Mohd Ali, Z. Evaluation of an Initiation Regimen of Warfarin for International Normalized Ratio Target 2.0 to 3.0. J. Pharm. Technol. 2021, 37, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Brasen, C.L.; Madsen, J.S.; Parkner, T.; Brandslund, I. Home Management of Warfarin Treatment Through a Real-Time Supervised Telemedicine Solution: A Randomized Controlled Trial. Telemed. J. e-Health 2019, 25, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.F.; Castro-López, V.; Killard, A.J. Coagulation monitoring devices: Past, present, and future at the point of care. TrAC Trends Anal. Chem. 2013, 50, 85–95. [Google Scholar] [CrossRef]
- Williams, N.X.; Carroll, B.; Noyce, S.G.; Hobbie, H.A.; Joh, D.Y.; Rogers, J.G.; Franklin, A.D. Fully printed prothrombin time sensor for point-of-care testing. Biosens. Bioelectron. 2021, 172, 112770. [Google Scholar] [CrossRef]
- Tripathi, M.M.; Egawa, S.; Wirth, A.G.; Tshikudi, D.M.; Van Cott, E.M.; Nadkarni, S.K. Clinical evaluation of whole blood prothrombin time (PT) and international normalized ratio (INR) using a Laser Speckle Rheology sensor. Sci. Rep. 2017, 7, 9169. [Google Scholar] [CrossRef]
- Mohammadi Aria, M.; Erten, A.; Yalcin, O. Technology Advancements in Blood Coagulation Measurements for Point-of-Care Diagnostic Testing. Front. Bioeng. Biotechnol. 2019, 7, 395. [Google Scholar] [CrossRef]
- Gupta, P.; Mohan, A.; Mishra, A.; Nair, A.; Chowdhury, N.; Balekai, D.; Rai, K.; Prabhakar, A.; Saiyed, T. Multiplexed fluorescence and scatter detection with single cell resolution using on-chip fiber optics for droplet microfluidic applications. Microsyst. Nanoeng. 2024, 10, 35. [Google Scholar] [CrossRef]
- Dusse, L.M.; Oliveira, N.C.; Rios, D.R.; Marcolino, M.S. Point-of-care test (POCT) INR: Hope or illusion? Rev. Bras. Cir. Cardiovasc. 2012, 27, 296–301. [Google Scholar] [CrossRef]
- Chan, J.; Michaelsen, K.; Estergreen, J.K.; Sabath, D.E.; Gollakota, S. Micro-mechanical blood clot testing using smartphones. Nat. Commun. 2022, 13, 831. [Google Scholar] [CrossRef]
- Ripley, T.L.; Saseen, J.J. β-blockers: A review of their pharmacological and physiological diversity in hypertension. Ann. Pharmacother. 2014, 48, 723–733. [Google Scholar] [CrossRef]
- Oliver, E.; Mayor, F., Jr.; D’Ocon, P. Beta-blockers: Historical Perspective and Mechanisms of Action. Rev. Esp. Cardiol. 2019, 72, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; McAlister, F.A. Re-examining the efficacy of beta-blockers for the treatment of hypertension: A meta-analysis. Cmaj 2006, 174, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- de Muinck, E.D.; Lie, K.I. Safety and efficacy of beta-blockers in the treatment of stable angina pectoris. J. Cardiovasc. Pharmacol. 1990, 16, S123–S128. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Rossignol, P. Beta-blockers in heart failure patients with severe chronic kidney disease-time for a randomized controlled trial? Nephrol. Dial. Transpl. 2020, 35, 728–731. [Google Scholar] [CrossRef]
- Chatterjee, S.; Biondi-Zoccai, G.; Abbate, A.; D’Ascenzo, F.; Castagno, D.; Van Tassell, B.; Mukherjee, D.; Lichstein, E. Benefits of β blockers in patients with heart failure and reduced ejection fraction: Network meta-analysis. Bmj 2013, 346, f55. [Google Scholar] [CrossRef]
- Ko, D.T.; Hebert, P.R.; Coffey, C.S.; Curtis, J.P.; Foody, J.M.; Sedrakyan, A.; Krumholz, H.M. Adverse effects of beta-blocker therapy for patients with heart failure: A quantitative overview of randomized trials. Arch. Intern. Med. 2004, 164, 1389–1394. [Google Scholar] [CrossRef]
- Bateman, B.T.; Patorno, E.; Desai, R.J.; Seely, E.W.; Mogun, H.; Maeda, A.; Fischer, M.A.; Hernandez-Diaz, S.; Huybrechts, K.F. Late Pregnancy β Blocker Exposure and Risks of Neonatal Hypoglycemia and Bradycardia. Pediatrics 2016, 138, e20160731. [Google Scholar] [CrossRef]
- Niu, W.; Qi, Y. A meta-analysis of randomized controlled trials assessing the impact of beta-blockers on arterial stiffness, peripheral blood pressure and heart rate. Int. J. Cardiol. 2016, 218, 109–117. [Google Scholar] [CrossRef]
- Thackray, S.D.; Ghosh, J.M.; Wright, G.A.; Witte, K.K.; Nikitin, N.P.; Kaye, G.C.; Clark, A.L.; Tweddel, A.; Cleland, J.G. The effect of altering heart rate on ventricular function in patients with heart failure treated with beta-blockers. Am. Heart J. 2006, 152, 713.e9–713.e13. [Google Scholar] [CrossRef]
- Pucci, G.; Ranalli, M.G.; Battista, F.; Schillaci, G. Effects of β-Blockers With and Without Vasodilating Properties on Central Blood Pressure: Systematic Review and Meta-Analysis of Randomized Trials in Hypertension. Hypertension 2016, 67, 316–324. [Google Scholar] [CrossRef]
- Aronson, D.; Burger, A.J. Effect of beta-blockade on heart rate variability in decompensated heart failure. Int. J. Cardiol. 2001, 79, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.E.; Cockcroft, J.R. The vasodilatory beta-blockers. Curr. Hypertens. Rep. 2007, 9, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Tamargo, J.; Delpón, E. Optimization of beta-blockers’ pharmacology. J. Cardiovasc. Pharmacol. 1990, 16, S10–S18. [Google Scholar] [CrossRef] [PubMed]
- Contenti, J.; Occelli, C.; Corraze, H.; Lemoël, F.; Levraut, J. Long-Term β-Blocker Therapy Decreases Blood Lactate Concentration in Severely Septic Patients. Crit. Care Med. 2015, 43, 2616–2622. [Google Scholar] [CrossRef]
- Love, J.N.; Enlow, B.; Howell, J.M.; Klein-Schwartz, W.; Litovitz, T.L. Electrocardiographic changes associated with beta-blocker toxicity. Ann. Emerg. Med. 2002, 40, 603–610. [Google Scholar] [CrossRef]
- Oba, Y.; Kabutoya, T.; Kohro, T.; Imai, Y.; Kario, K.; Sato, H.; Nochioka, K.; Nakayama, M.; Fujita, H.; Mizuno, Y.; et al. Relationships Among Heart Rate, β-Blocker Dosage, and Prognosis in Patients With Coronary Artery Disease in a Real-World Database Using a Multimodal Data Acquisition System. Circ. J. 2023, 87, 336–344. [Google Scholar] [CrossRef]
- Graettinger, W.F.; Lipson, J.L.; Cheung, D.G.; Weber, M.A. Validation of portable noninvasive blood pressure monitoring devices: Comparisons with intra-arterial and sphygmomanometer measurements. Am. Heart J. 1988, 116, 1155–1160. [Google Scholar] [CrossRef]
- Galiè, N.; Seeger, W.; Naeije, R.; Simonneau, G.; Rubin, L.J. Comparative analysis of clinical trials and evidence-based treatment algorithm in pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2004, 43, 81s–88s. [Google Scholar] [CrossRef]
- Mai, V.; Alattas, K.A.; Bouteraa, Y.; Ghaderpour, E.; Mohammadzadeh, A. Personalized blood pressure control by machine learning for remote patient monitoring. IEEE Access 2024, 12, 83994–84004. [Google Scholar] [CrossRef]
- Goodacre, S.; Irons, R. Atrial arrhythmias. Bmj 2002, 324, 594–597. [Google Scholar] [CrossRef]
- Keating, M.T.; Sanguinetti, M.C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 2001, 104, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Kodama, I.; Toyama, J.; Takanaka, C.; Yamada, K. Block of activated and inactivated sodium channels by class-I antiarrhythmic drugs studied by using the maximum upstroke velocity (Vmax) of action potential in guinea-pig cardiac muscles. J. Mol. Cell. Cardiol. 1987, 19, 367–377. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, C.; Pavlovic, D.; Rajpoot, K.; Winter, J. Examination of the effects of conduction slowing on the upstroke of optically recorded action potentials. Front. Physiol. 2019, 10, 1295. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Y.; Zhou, Y.; Liu, Z.; Liu, R. Pharmacological mechanism of natural drugs and their active ingredients in the treatment of arrhythmia via calcium channel regulation. Biomed. Pharmacother. 2023, 160, 114413. [Google Scholar] [CrossRef]
- Fleckenstein, A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu. Rev. Pharmacol. Toxicol. 1977, 17, 149–166. [Google Scholar] [CrossRef]
- Tejera, E.; Nieto-Villar, J.; Rebelo, I. Unexpected heart rate variability complexity in the aging process of arrhythmic subjects. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1858–1863. [Google Scholar] [CrossRef]
- Ni, H.; Morotti, S.; Grandi, E. A heart for diversity: Simulating variability in cardiac arrhythmia research. Front. Physiol. 2018, 9, 958. [Google Scholar] [CrossRef]
- Campbell, T.; Williams, K. Therapeutic drug monitoring: Antiarrhythmic drugs. Br. J. Clin. Pharmacol. 2001, 52, 21–33. [Google Scholar] [CrossRef]
- Zaza, A.; Ronchi, C.; Malfatto, G. Arrhythmias and heart rate: Mechanisms and significance of a relationship. Arrhythmia Electrophysiol. Rev. 2018, 7, 232. [Google Scholar] [CrossRef]
- Fu, D.-G. Cardiac arrhythmias: Diagnosis, symptoms, and treatments. Cell Biochem. Biophys. 2015, 73, 291–296. [Google Scholar] [CrossRef]
- Sahoo, S.; Dash, M.; Behera, S.; Sabut, S. Machine learning approach to detect cardiac arrhythmias in ECG signals: A survey. Irbm 2020, 41, 185–194. [Google Scholar] [CrossRef]
- Reed, M.J.; Robertson, C.; Addison, P. Heart rate variability measurements and the prediction of ventricular arrhythmias. Qjm 2005, 98, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Sperelakis, N. Electrical properties of embryonic heart cells. In Electrical Phenomena in the Heart; Academic Press: New York, NY, USA, 1972; pp. 1–61. [Google Scholar]
- Bigger, J.T., Jr.; Sahar, D.I. Clinical types of proarrhythmic response to antiarrhythmic drugs. Am. J. Cardiol. 1987, 59, E2–E9. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Li, J.; Cui, C.; Wang, X.; Gao, H.; Liu, C.; Chen, M. A wearable real-time telemonitoring electrocardiogram device compared with traditional Holter monitoring. J. Biomed. Res. 2020, 35, 238. [Google Scholar] [CrossRef]
- Chaudhary, M.H.; Dev, S.; Kumari, A.; Kanwal, K.; Jadav, D.N.; Rasool, S.; Saleem, M.T.; Bhagat, R.; Prachi, F.; Puri, P. Holistic approaches to arrhythmia management: Combining medication, ablation, and device interventions. Cureus 2023, 15, 45958. [Google Scholar] [CrossRef]
- Shusterman, V.; London, B. Personalized ECG monitoring and adaptive machine learning. J. Electrocardiol. 2024, 82, 131–135. [Google Scholar] [CrossRef]
- Siddoway, L.A. Amiodarone: Guidelines for use and monitoring. Am. Fam. Physician 2003, 68, 2189–2197. [Google Scholar]
- Roy, D.; Talajic, M.; Dorian, P.; Connolly, S.; Eisenberg, M.J.; Green, M.; Kus, T.; Lambert, J.; Dubuc, M.; Gagné, P. Amiodarone to prevent recurrence of atrial fibrillation. N. Engl. J. Med. 2000, 342, 913–920. [Google Scholar] [CrossRef]
- Mujović, N.; Dobrev, D.; Marinković, M.; Russo, V.; Potpara, T.S. The role of amiodarone in contemporary management of complex cardiac arrhythmias. Pharmacol. Res. 2020, 151, 104521. [Google Scholar] [CrossRef]
- Banach, M.; Penson, P.E. Statins and LDL-C in secondary prevention—So much progress, so far to go. JAMA Netw. Open 2020, 3, e2025675. [Google Scholar] [CrossRef]
- Ferhatbegović, L.; Mršić, D.; Kušljugić, S.; Pojskić, B. LDL-C: The only causal risk factor for ASCVD. Why is it still overlooked and underestimated? Curr. Atheroscler. Rep. 2022, 24, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Underberg, J.; Toth, P.P.; Rodriguez, F. LDL-C target attainment in secondary prevention of ASCVD in the United States: Barriers, consequences of nonachievement, and strategies to reach goals. Postgrad. Med. 2022, 134, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Istvan, E.S.; Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 2001, 292, 1160–1164. [Google Scholar] [CrossRef] [PubMed]
- Reiner, Ž. Statins in the primary prevention of cardiovascular disease. Nat. Rev. Cardiol. 2013, 10, 453–464. [Google Scholar] [CrossRef]
- Vrecer, M.; Turk, S.; Drinovec, J.; Mrhar, A. Use of statins in primary and secondary prevention of coronary heart disease and ischemic stroke: Meta-analysis of randomized trials. In Database of Abstracts of Reviews of Effects (DARE): Quality-Assessed Reviews; Centre for Reviews and Dissemination: York, UK, 2003. [Google Scholar]
- Tournadre, A. Statins, myalgia, and rhabdomyolysis. Jt. Bone Spine 2020, 87, 37–42. [Google Scholar] [CrossRef]
- Sakamoto, K.; Kimura, J. Mechanism of statin-induced rhabdomyolysis. J. Pharmacol. Sci. 2013, 123, 289–294. [Google Scholar] [CrossRef]
- Antons, K.A.; Williams, C.D.; Baker, S.K.; Phillips, P.S. Clinical perspectives of statin-induced rhabdomyolysis. Am. J. Med. 2006, 119, 400–409. [Google Scholar] [CrossRef]
- Safari, S.; Yousefifard, M.; Hashemi, B.; Baratloo, A.; Forouzanfar, M.M.; Rahmati, F.; Motamedi, M.; Najafi, I. The value of serum creatine kinase in predicting the risk of rhabdomyolysis-induced acute kidney injury: A systematic review and meta-analysis. Clin. Exp. Nephrol. 2016, 20, 153–161. [Google Scholar] [CrossRef]
- Luckoor, P.; Salehi, M.; Kunadu, A. Exceptionally high creatine kinase (CK) levels in multicausal and complicated rhabdomyolysis: A case report. Am. J. Case Rep. 2017, 18, 746. [Google Scholar] [CrossRef]
- Goldstein, J.L.; Brown, M.S. A century of cholesterol and coronaries: From plaques to genes to statins. Cell 2015, 161, 161–172. [Google Scholar] [CrossRef]
- Narwal, V.; Deswal, R.; Batra, B.; Kalra, V.; Hooda, R.; Sharma, M.; Rana, J. Cholesterol biosensors: A review. Steroids 2019, 143, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.M.; Park, J.-D.; Kang, H.-C.; Lee, J.-J. Recent development in nanomaterial-based electrochemical sensors for cholesterol detection. Chemosensors 2021, 9, 98. [Google Scholar] [CrossRef]
- Budiyanto, M.; Purnomo, A.; Sabtiawan, W.; Yasin, M. Development of optical fiber sensor performance as a tool to determine cholesterol concentration. J. Phys. Conf. Ser. 2019, 1417, 012005. [Google Scholar] [CrossRef]
- Li, Q.; Ding, L.; Zhang, Y.; Wu, T. A cholesterol optical fiber sensor based on CQDs-COD/CA composite. IEEE Sens. J. 2022, 22, 6247–6255. [Google Scholar] [CrossRef]
- Joshi, V.; Hussain, S.; Dua, S.; Arora, N.; Mir, S.H.; Rydzek, G.; Senthilkumar, T. Oligomer sensor nanoarchitectonics for “turn-on” fluorescence detection of cholesterol at the nanomolar level. Molecules 2022, 27, 2856. [Google Scholar] [CrossRef]
- Guo, L.; Chen, S.; Yu, Y.-L.; Wang, J.-H. A smartphone optical device for point-of-care testing of glucose and cholesterol using Ag NPs/UiO-66-NH2-based ratiometric fluorescent probe. Anal. Chem. 2021, 93, 16240–16247. [Google Scholar] [CrossRef]
- Ni, J.; Liu, Y.; Hong, H.; Kong, X.; Han, Y.; Zhang, L.; Zhang, Y.; Zhang, Y.; Hua, C.; Wang, Q. A novel fluorescent digitonin derivative for non-invasive skin cholesterol detection: Potential application in atherosclerosis screening. RSC Adv. 2022, 12, 18397–18406. [Google Scholar] [CrossRef]
- Demirbakan, B.; Sezgintürk, M.K. An electrochemical immunosensor based on graphite paper electrodes for the sensitive detection of creatine kinase in actual samples. J. Electroanal. Chem. 2022, 921, 116656. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, X.; Zhang, Y.; Li, Z.; Xiao, H.; Cui, Y. Electrochemical protein-based biosensors for creatine kinase: A review. IEEE Sens. J. 2022, 22, 10280–10291. [Google Scholar] [CrossRef]
- Li, H.; Nie, W. Electrochemical sensors for creatine kinase detection in blood serum based on glucose oxidase modified multiwalled carbon nanotubes. Int. J. Electrochem. Sci. 2024, 19, 100447. [Google Scholar] [CrossRef]
- Ferreira, A.L.; de Lima, L.F.; Moraes, A.S.; Rubira, R.J.; Constantino, C.J.; Leite, F.L.; Delgado-Silva, A.O.; Ferreira, M. Development of a novel biosensor for creatine kinase (CK-MB) using surface plasmon resonance (SPR). Appl. Surf. Sci. 2021, 554, 149565. [Google Scholar] [CrossRef]
- John, R.V.; Devasiya, T.; VR, N.; Adigal, S.; Lukose, J.; Kartha, V.; Chidangil, S. Cardiovascular biomarkers in body fluids: Progress and prospects in optical sensors. Biophys. Rev. 2022, 14, 1023–1050. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.T.; Dutra, R.A.; Noronha, J.P.; Sales, M.G.F. Novel sensory surface for creatine kinase electrochemical detection. Biosens. Bioelectron. 2014, 56, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, M.; Wu, D.; Wu, H.-F. Synthesis of Fluorescent Titanium Nanoclusters at ambient temperature for highly sensitive and selective detection of Creatine Kinase MM in myocardial infarction. Colloids Surf. B Biointerfaces 2022, 217, 112594. [Google Scholar] [CrossRef]
- Arneson, D.; Shu, L.; Tsai, B.; Barrere-Cain, R.; Sun, C.; Yang, X. Multidimensional integrative genomics approaches to dissecting cardiovascular disease. Front. Cardiovasc. Med. 2017, 4, 8. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Pan, D.; Wang, X.; Xu, Y.; Yan, J.; Wang, L.; Yang, X.; Yang, M.; Liu, G.P. Applications of multi-omics analysis in human diseases. MedComm 2023, 4, e315. [Google Scholar] [CrossRef]
- Ullah, A.; Kumar, M.; Sayyar, M.; Sapna, F.; John, C.; Memon, S.; Qureshi, K.; Agbo, E.C.; Ariri, H.I.; Chukwu, E.J. Revolutionizing cardiac care: A comprehensive narrative review of cardiac rehabilitation and the evolution of cardiovascular medicine. Cureus 2023, 15, e46469. [Google Scholar] [CrossRef]
- Namasivayam, V.; Senguttuvan, N.; Saravanan, V.; Palaniappan, S.; Kathiravan, M.K. Artificial intelligence and its application in cardiovascular disease management. In Machine Learning and Systems Biology in Genomics and Health; Springer: Berlin/Heidelberg, Germany, 2022; pp. 189–236. [Google Scholar]
- Garralda, E.; Dienstmann, R.; Tabernero, J. Pharmacokinetic/pharmacodynamic modeling for drug development in oncology. Am. Soc. Clin. Oncol. Educ. Book 2017, 37, 210–215. [Google Scholar] [CrossRef]
- Yıldırım, M.A.; Goh, K.-I.; Cusick, M.E.; Barabási, A.-L.; Vidal, M. Drug—Target network. Nat. Biotechnol. 2007, 25, 1119–1126. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef]
- Andes, D. Pharmacokinetics and pharmacodynamics of antifungals. Infect. Dis. Clin. 2006, 20, 679–697. [Google Scholar] [CrossRef] [PubMed]
- Tyson, R.J.; Park, C.C.; Powell, J.R.; Patterson, J.H.; Weiner, D.; Watkins, P.B.; Gonzalez, D. Precision dosing priority criteria: Drug, disease, and patient population variables. Front. Pharmacol. 2020, 11, 420. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Ma, C.; Wang, Z.; Miao, Y. A review of local anesthetic-induced heart toxicity using human induced pluripotent stem cell-derived cardiomyocytes. Mol. Cell. Probes 2024, 76, 101965. [Google Scholar] [CrossRef] [PubMed]
- Raz, I.; Riddle, M.C.; Rosenstock, J.; Buse, J.B.; Inzucchi, S.E.; Home, P.D.; Del Prato, S.; Ferrannini, E.; Chan, J.C.; Leiter, L.A. Personalized management of hyperglycemia in type 2 diabetes: Reflections from a Diabetes Care Editors’ Expert Forum. Diabetes Care 2013, 36, 1779–1788. [Google Scholar] [CrossRef]
- Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhães, P.; Schmidt, S.; Vale, N. Advancing precision medicine: A review of innovative In Silico approaches for drug development, clinical pharmacology and personalized healthcare. Pharmaceutics 2024, 16, 332. [Google Scholar] [CrossRef]
- Niu, J.; Straubinger, R.M.; Mager, D.E. Pharmacodynamic drug–drug interactions. Clin. Pharmacol. Ther. 2019, 105, 1395–1406. [Google Scholar] [CrossRef]
- Vesell, E.S. Genetic and environmental factors affecting drug disposition in man. Clin. Pharmacol. Ther. 1977, 22, 659–679. [Google Scholar] [CrossRef]
- Knights, J.; Chanda, P.; Sato, Y.; Kaniwa, N.; Saito, Y.; Ueno, H.; Zhang, A.; Ramanathan, M. Vertical integration of pharmacogenetics in population PK/PD modeling: A novel information theoretic method. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, 1–10. [Google Scholar] [CrossRef]
- Zhou, Y.; Arribas, G.H.; Turku, A.; Jürgenson, T.; Mkrtchian, S.; Krebs, K.; Wang, Y.; Svobodova, B.; Milani, L.; Schulte, G. Rare genetic variability in human drug target genes modulates drug response and can guide precision medicine. Sci. Adv. 2021, 7, eabi6856. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Jackson, S.H. Age-related changes in pharmacokinetics and pharmacodynamics: Basic principles and practical applications. Br. J. Clin. Pharmacol. 2004, 57, 6–14. [Google Scholar] [CrossRef]
- Reddy, N.; Verma, N.; Dungan, K. Monitoring technologies-continuous glucose monitoring, mobile technology, biomarkers of glycemic control. In Endotext; MDText.com, Inc.: South Dartmouth, MA, USA, 2023. [Google Scholar]
- Tanoli, Z.; Alam, Z.; Vähä-Koskela, M.; Ravikumar, B.; Malyutina, A.; Jaiswal, A.; Tang, J.; Wennerberg, K.; Aittokallio, T. Drug Target Commons 2.0: A community platform for systematic analysis of drug–target interaction profiles. Database 2018, 2018, bay083. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huai, Y.; Miao, Z.; Qian, A.; Wang, Y. Systems pharmacology for investigation of the mechanisms of action of traditional Chinese medicine in drug discovery. Front. Pharmacol. 2019, 10, 743. [Google Scholar] [CrossRef] [PubMed]
- Vogt, I.; Mestres, J. Drug-target networks. Mol. Inform. 2010, 29, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic effects of statins on the cardiovascular system. Circ. Res. 2017, 120, 229–243. [Google Scholar] [CrossRef]
- Zhao, S.; Iyengar, R. Systems pharmacology: Network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 505–521. [Google Scholar] [CrossRef]
- Breitenbach, T.; Lorenz, K.; Dandekar, T. How to steer and control ERK and the ERK signaling cascade exemplified by looking at cardiac insufficiency. Int. J. Mol. Sci. 2019, 20, 2179. [Google Scholar] [CrossRef]
- Katoh, M. Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol. Sci. 2016, 37, 1081–1096. [Google Scholar] [CrossRef]
- Shi, S.-H.; Cai, Y.-P.; Cai, X.-J.; Zheng, X.-Y.; Cao, D.-S.; Ye, F.-Q.; Xiang, Z. A network pharmacology approach to understanding the mechanisms of action of traditional medicine: Bushenhuoxue formula for treatment of chronic kidney disease. PLoS ONE 2014, 9, e89123. [Google Scholar] [CrossRef]
- Bakris, G.; Ali, W.; Parati, G. ACC/AHA versus ESC/ESH on hypertension guidelines: JACC guideline comparison. J. Am. Coll. Cardiol. 2019, 73, 3018–3026. [Google Scholar] [CrossRef]
- Bakris, G.L. A practical approach to achieving recommended blood pressure goals in diabetic patients. Arch. Intern. Med. 2001, 161, 2661–2667. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Chen, Y.; Huang, W.; Zhou, H.; Zhang, W. Drug-microbiota interactions: An emerging priority for precision medicine. Signal Transduct. Target. Ther. 2023, 8, 386. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.-W. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef]
- Bohr, A.; Memarzadeh, K. The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in Healthcare; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–60. [Google Scholar]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Khalifa, M.; Albadawy, M. Artificial Intelligence for Clinical Prediction: Exploring Key Domains and Essential Functions. Comput. Methods Programs Biomed. Update 2024, 5, 100148. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, A.; Khanna, N.N.; Laird, J.R.; Nicolaides, A.; Faa, G.; Johri, A.M.; Mantella, L.E.; Fernandes, J.F.E.; Teji, J.S. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: A scoping review. EClinicalMedicine 2024, 73, 102660. [Google Scholar] [CrossRef]
- Xue, L.; He, S.; Singla, R.K.; Qin, Q.; Ding, Y.; Liu, L.; Ding, X.; Bediaga-Bañeres, H.; Arrasate, S.; Durado-Sanchez, A. Machine learning guided prediction of warfarin blood levels for personalized medicine based on clinical longitudinal data from cardiac surgery patients: A prospective observational study. Int. J. Surg. 2024, 110, 6528–6540. [Google Scholar] [CrossRef]
- Noseworthy, P.A.; Attia, Z.I.; Behnken, E.M.; Giblon, R.E.; Bews, K.A.; Liu, S.; Gosse, T.A.; Linn, Z.D.; Deng, Y.; Yin, J. Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: A prospective non-randomised interventional trial. Lancet 2022, 400, 1206–1212. [Google Scholar] [CrossRef]
- Lip, G.Y.; Frison, L.; Halperin, J.L.; Lane, D.A. Comparative validation of a novel risk score for predicting bleeding risk in anticoagulated patients with atrial fibrillation: The HAS-BLED (Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol Concomitantly) score. J. Am. Coll. Cardiol. 2011, 57, 173–180. [Google Scholar]
- Verdecchia, P.; Angeli, F.; Reboldi, G. Hypertension and atrial fibrillation: Doubts and certainties from basic and clinical studies. Circ. Res. 2018, 122, 352–368. [Google Scholar] [CrossRef]
- Page, R.L.; O’Bryant, C.L.; Cheng, D.; Dow, T.J.; Ky, B.; Stein, C.M.; Spencer, A.P.; Trupp, R.J.; Lindenfeld, J. Drugs that may cause or exacerbate heart failure: A scientific statement from the American Heart Association. Circulation 2016, 134, e32–e69. [Google Scholar] [CrossRef] [PubMed]
- Denfeld, Q.E.; Turrise, S.; MacLaughlin, E.J.; Chang, P.-S.; Clair, W.K.; Lewis, E.F.; Forman, D.E.; Goodlin, S.J.; on behalf of the American Heart Association Cardiovascular Disease in Older Populations Committee of the Council on Clinical Cardiology and Council on Cardiovascular and Stroke Nursing; Council on Lifestyle and Cardiometabolic Health; et al. Preventing and managing falls in adults with cardiovascular disease: A scientific statement from the American Heart Association. Circ. Cardiovasc. Qual. Outcomes 2022, 15, e000108. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, Y.; Chen, Y.; Sun, J.; Zhao, Z.; Chen, X.-w.; Matheny, M.E.; Xu, H. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs. J. Am. Med. Inform. Assoc. 2012, 19, e28–e35. [Google Scholar] [CrossRef] [PubMed]
- Marvasti, T.B.; Gao, Y.; Murray, K.R.; Hershman, S.; McIntosh, C.; Moayedi, Y. Unlocking tomorrow’s health care: Expanding the clinical scope of wearables by applying artificial intelligence. Can. J. Cardiol. 2024, 40, 1934–1945. [Google Scholar] [CrossRef]
- Antikainen, E.; Linnosmaa, J.; Umer, A.; Oksala, N.; Eskola, M.; van Gils, M.; Hernesniemi, J.; Gabbouj, M. Transformers for cardiac patient mortality risk prediction from heterogeneous electronic health records. Sci. Rep. 2023, 13, 3517. [Google Scholar] [CrossRef]
- Rahman, A.U.; Alsenani, Y.; Zafar, A.; Ullah, K.; Rabie, K.; Shongwe, T. Enhancing heart disease prediction using a self-attention-based transformer model. Sci. Rep. 2024, 14, 514. [Google Scholar] [CrossRef]
- Giudicessi, J.R.; Ackerman, M.J.; Fatkin, D.; Kovacic, J.C. Precision medicine approaches to cardiac arrhythmias: JACC focus seminar 4/5. J. Am. Coll. Cardiol. 2021, 77, 2573–2591. [Google Scholar] [CrossRef]
- Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal biomedical AI. Nat. Med. 2022, 28, 1773–1784. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Lasalde-Ramírez, J.A.; Mahato, K.; Wang, J.; Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 2022, 6, 899–915. [Google Scholar] [CrossRef]
- Quazi, S. Artificial intelligence and machine learning in precision and genomic medicine. Med. Oncol. 2022, 39, 120. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, J.; Han, D.; Zhu, H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov. Today 2017, 22, 1680–1685. [Google Scholar] [CrossRef] [PubMed]
- Moshawrab, M.; Adda, M.; Bouzouane, A.; Ibrahim, H.; Raad, A. Reviewing multimodal machine learning and its use in cardiovascular diseases detection. Electronics 2023, 12, 1558. [Google Scholar] [CrossRef]
- Benetos, A.; Petrovic, M.; Strandberg, T. Hypertension management in older and frail older patients. Circ. Res. 2019, 124, 1045–1060. [Google Scholar] [CrossRef]
- NIo, A. The Dangers of Polypharmacy and the Case for Deprescribing in Older Adults. 2022. Available online: https://www.nia.nih.gov/news/dangers-polypharmacy-and-case-deprescribing-older-adults (accessed on 10 January 2025).
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef]
- Care, D. Cardiovascular disease and risk management: Standards of medical care in diabetesd 2021. Diabetes Care 2021, 44, S125–S150. [Google Scholar]
- Wiggins, B.S.; Saseen, J.J.; Page, R.L.; Reed, B.N.; Sneed, K.; Kostis, J.B.; Lanfear, D.; Virani, S.; Morris, P.B. Recommendations for management of clinically significant drug-drug interactions with statins and select agents used in patients with cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2016, 134, e468–e495. [Google Scholar] [CrossRef]
- Sugandh, F.; Chandio, M.; Raveena, F.; Kumar, L.; Karishma, F.; Khuwaja, S.; Memon, U.A.; Bai, K.; Kashif, M.; Varrassi, G. Advances in the management of diabetes mellitus: A focus on personalized medicine. Cureus 2023, 15, e43697. [Google Scholar] [CrossRef]
- Puccetti, M.; Pariano, M.; Schoubben, A.; Giovagnoli, S.; Ricci, M. Biologics, theranostics, and personalized medicine in drug delivery systems. Pharmacol. Res. 2024, 201, 107086. [Google Scholar] [CrossRef]
- Ahmad, A.; Imran, M.; Ahsan, H. Biomarkers as biomedical bioindicators: Approaches and techniques for the detection, analysis, and validation of novel Biomarkers of diseases. Pharmaceutics 2023, 15, 1630. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, N.; Huang, Z.a.; Lai, J.; Liu, J.n.; Deng, G.; Wang, X.; Zhao, W. High-Sensitivity Force Sensors Based on Novel Materials. Adv. Devices Instrum. 2023, 4, 0019. [Google Scholar] [CrossRef]
- Klebes, A.; Ates, H.C.; Verboket, R.D.; Urban, G.A.; von Stetten, F.; Dincer, C.; Früh, S.M. Emerging multianalyte biosensors for the simultaneous detection of protein and nucleic acid biomarkers. Biosens. Bioelectron. 2024, 244, 115800. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Liu, C.; Zhang, L.; Liu, T.; Wang, Z.; Song, Z.; Cai, H.; Fang, Z.; Chen, J.; Wang, J. Wearable and flexible electrochemical sensors for sweat analysis: A review. Microsyst. Nanoeng. 2023, 9, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Sapna, F.; Raveena, F.; Chandio, M.; Bai, K.; Sayyar, M.; Varrassi, G.; Khatri, M.; Kumar, S.; Mohamad, T. Advancements in heart failure management: A comprehensive narrative review of emerging therapies. Cureus 2023, 15, e46486. [Google Scholar] [CrossRef] [PubMed]
- Ignatiuk, B.; Baccillieri, M.; Frigo, G.; Marinaccio, L.; Cassinadri, E.; Montemurro, D.; Verlato, R.; Marchese, D.; Pasquetto, G. Costs and quality of care optimization in the remote monitoring of cardiac implantable electronic devices (CIEDs). A picture from Veneto, Northern Italy. Eur. Heart J. 2020, 41, ehaa946.3537. [Google Scholar] [CrossRef]
- Zhao, J.; Ghannam, R.; Htet, K.O.; Liu, Y.; Law, M.k.; Roy, V.A.; Michel, B.; Imran, M.A.; Heidari, H. Self-Powered implantable medical devices: Photovoltaic energy harvesting review. Adv. Healthc. Mater. 2020, 9, 2000779. [Google Scholar] [CrossRef]
- Shuvo, M.M.H.; Titirsha, T.; Amin, N.; Islam, S.K. Energy harvesting in implantable and wearable medical devices for enduring precision healthcare. Energies 2022, 15, 7495. [Google Scholar] [CrossRef]
- Zhang, S.; Bick, M.; Xiao, X.; Chen, G.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887. [Google Scholar] [CrossRef]
- Le, H.T.; Haque, R.I.; Ouyang, Z.; Lee, S.W.; Fried, S.I.; Zhao, D.; Qiu, M.; Han, A. MEMS inductor fabrication and emerging applications in power electronics and neurotechnologies. Microsyst. Nanoeng. 2021, 7, 59. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, Y.; Qu, X.; Liu, Y.; Cheng, S.; Zhang, Z.; Shan, Y.; Luo, R.; Weng, S.; Li, H. A self-powered intracardiac pacemaker in swine model. Nat. Commun. 2024, 15, 507. [Google Scholar] [CrossRef]
- Yogev, D.; Goldberg, T.; Arami, A.; Tejman-Yarden, S.; Winkler, T.E.; Maoz, B.M. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng. 2023, 7, 031506. [Google Scholar] [CrossRef]
- Alugubelli, N.; Abuissa, H.; Roka, A. Wearable devices for remote monitoring of heart rate and heart rate variability—What we know and what is coming. Sensors 2022, 22, 8903. [Google Scholar] [CrossRef] [PubMed]
- Hearn, J.; Van den Eynde, J.; Chinni, B.; Cedars, A.; Sen, D.G.; Kutty, S.; Manlhiot, C. Data Quality Degradation on Prediction Models Generated From Continuous Activity and Heart Rate Monitoring: Exploratory Analysis Using Simulation. JMIR Cardio 2023, 7, e40524. [Google Scholar] [CrossRef] [PubMed]
- Colomer-Lahiguera, S.; Gentizon, J.; Christofis, M.; Darnac, C.; Serena, A.; Eicher, M. Achieving Comprehensive, Patient-Centered Cancer Services: Optimizing the Role of Advanced Practice Nurses at the Core of Precision Health. Semin. Oncol. Nurs. 2024, 40, 151629. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data 2019, 6, 1–25. [Google Scholar] [CrossRef]
- Soto, R.J.; Schoenfisch, M.H. Preclinical performance evaluation of percutaneous glucose biosensors: Experimental considerations and recommendations. J. Diabetes Sci. Technol. 2015, 9, 978–984. [Google Scholar] [CrossRef]
- Flynn, C.D.; Chang, D.; Mahmud, A.; Yousefi, H.; Das, J.; Riordan, K.T.; Sargent, E.H.; Kelley, S.O. Biomolecular sensors for advanced physiological monitoring. Nat. Rev. Bioeng. 2023, 1, 560–575. [Google Scholar] [CrossRef]
- Tyler, J.; Choi, S.W.; Tewari, M. Real-time, personalized medicine through wearable sensors and dynamic predictive modeling: A new paradigm for clinical medicine. Curr. Opin. Syst. Biol. 2020, 20, 17–25. [Google Scholar] [CrossRef]
- Chen, C.; Ding, S.; Wang, J. Digital health for aging populations. Nat. Med. 2023, 29, 1623–1630. [Google Scholar] [CrossRef]
- Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020, 2020, baaa010. [Google Scholar] [CrossRef]
- Goetz, L.H.; Schork, N.J. Personalized medicine: Motivation, challenges, and progress. Fertil. Steril. 2018, 109, 952–963. [Google Scholar] [CrossRef]
- Wieszczycka, K.; Staszak, K.; Woźniak-Budych, M.J.; Litowczenko, J.; Maciejewska, B.M.; Jurga, S. Surface functionalization–The way for advanced applications of smart materials. Coord. Chem. Rev. 2021, 436, 213846. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; Chehelgerdi, M.; Allela, O.Q.B.; Pecho, R.D.C.; Jayasankar, N.; Rao, D.P.; Thamaraikani, T.; Vasanthan, M.; Viktor, P.; Lakshmaiya, N. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023, 22, 169. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Fan, S.; Zhu, B.; El-Hout, S.I.; Zhang, J.; Chen, C. Recent progress on photothermal nanomaterials: Design, mechanism, and applications. Green Energy Environ. 2024; in press. [Google Scholar]
- Vitorino, R. Navigating the omics landscape in precision medicine: A bidirectional approach to patient care. Oral Oncol. Rep. 2024, 12, 100660. [Google Scholar] [CrossRef]
- Duan, X.-P.; Qin, B.-D.; Jiao, X.-D.; Liu, K.; Wang, Z.; Zang, Y.-S. New clinical trial design in precision medicine: Discovery, development and direction. Signal Transduct. Target. Ther. 2024, 9, 57. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, R.; Huang, Z.; Liu, Y.; Zhou, Y. Analysis of Personalized Cardiovascular Drug Therapy: From Monitoring Technologies to Data Integration and Future Perspectives. Biosensors 2025, 15, 191. https://doi.org/10.3390/bios15030191
Lin R, Huang Z, Liu Y, Zhou Y. Analysis of Personalized Cardiovascular Drug Therapy: From Monitoring Technologies to Data Integration and Future Perspectives. Biosensors. 2025; 15(3):191. https://doi.org/10.3390/bios15030191
Chicago/Turabian StyleLin, Runxing, Ziyu Huang, Yu Liu, and Yinning Zhou. 2025. "Analysis of Personalized Cardiovascular Drug Therapy: From Monitoring Technologies to Data Integration and Future Perspectives" Biosensors 15, no. 3: 191. https://doi.org/10.3390/bios15030191
APA StyleLin, R., Huang, Z., Liu, Y., & Zhou, Y. (2025). Analysis of Personalized Cardiovascular Drug Therapy: From Monitoring Technologies to Data Integration and Future Perspectives. Biosensors, 15(3), 191. https://doi.org/10.3390/bios15030191