Dynamic Plasmonic Coupling in Gold Nanosphere Oligomers: Mechanically Tuned Red and Blue Shifts for SERS/SEF
Abstract
:1. Introduction
2. Method
3. Results and Discussion
3.1. Effect of Particle Size and Interparticle Gap on Plasmon Resonances
3.2. Stability of the Coupled Modes to Size and Gap Variability
3.3. Sensitivity of the Oligomer Systems to Interparticle Distance Change
3.4. SERS/SEF Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, H.; Zhou, W.; Odom, T.W. Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library. Adv. Funct. Mater. 2010, 20, 529–539. [Google Scholar] [CrossRef]
- Giannini, V.; Fernández-Domínguez, A.I.; Heck, S.C.; Maier, S.A. Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chem. Rev. 2011, 111, 3888–3912. [Google Scholar] [CrossRef] [PubMed]
- Hajshahvaladi, L.; Kaatuzian, H.; Moghaddasi, M.; Danaie, M. Hybridization of Surface Plasmons and Photonic Crystal Resonators for High-Sensitivity and High-Resolution Sensing Applications. Sci. Rep. 2022, 12, 21292. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.-H.; Erdene, N.; Park, J.-H.; Jeong, D.-H.; Lee, H.-Y.; Lee, S.-K. Real-Time Label-Free Immunoassay of Interferon-Gamma and Prostate-Specific Antigen Using a Fiber-Optic Localized Surface Plasmon Resonance Sensor. Biosens. Bioelectron. 2013, 39, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Masud, M.K.; Na, J.; Lin, T.-E.; Malgras, V.; Preet, A.; Ibn Sina, A.A.; Wood, K.; Billah, M.; Kim, J.; You, J.; et al. Nanostructured Mesoporous Gold Biosensor for microRNA Detection at Attomolar Level. Biosens. Bioelectron. 2020, 168, 112429. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, S.; Wei, W.; Yan, Q.; Wu, C. Selective Synthesis of Different ZnO/Ag Nanocomposites as Surface Enhanced Raman Scattering Substrates and Highly Efficient Photocatalytic Catalysts. RSC Adv. 2015, 5, 27075–27081. [Google Scholar] [CrossRef]
- Chen, L.-T.; Liao, U.-H.; Chang, J.-W.; Lu, S.-Y.; Tsai, D.-H. Aerosol-Based Self-Assembly of a Ag–ZnO Hybrid Nanoparticle Cluster with Mechanistic Understanding for Enhanced Photocatalysis. Langmuir 2018, 34, 5030–5039. [Google Scholar] [CrossRef]
- Mubeen, S.; Lee, J.; Lee, W.; Singh, N.; Stucky, G.D.; Moskovits, M. On the Plasmonic Photovoltaic. ACS Nano 2014, 8, 6066–6073. [Google Scholar] [CrossRef]
- Wang, H. Plasmonic Refractive Index Sensing Using Strongly Coupled Metal Nanoantennas: Nonlocal Limitations. Sci. Rep. 2018, 8, 9589. [Google Scholar] [CrossRef]
- Aoki, P.H.B.; Furini, L.N.; Alessio, P.; Aliaga, A.E.; Constantino, C.J.L. Surface-Enhanced Raman Scattering (SERS) Applied to Cancer Diagnosis and Detection of Pesticides, Explosives, and Drugs. Rev. Anal. Chem. 2013, 32, 55–76. [Google Scholar] [CrossRef]
- Dou, X.; Chung, P.-Y.; Jiang, P.; Dai, J. Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Sensing Enabled by Digital Versatile Discs. Appl. Phys. Lett. 2012, 100, 041116. [Google Scholar] [CrossRef]
- Zheng, D.; Pisano, F.; Collard, L.; Balena, A.; Pisanello, M.; Spagnolo, B.; Mach-Batlle, R.; Tantussi, F.; Carbone, L.; De Angelis, F.; et al. Toward Plasmonic Neural Probes: SERS Detection of Neurotransmitters through Gold-Nanoislands-Decorated Tapered Optical Fibers with Sub-10 Nm Gaps. Adv. Mater. 2023, 35, 2200902. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Tawa, K.; Hori, H.; Nishii, J. Tailored Plasmonic Gratings for Enhanced Fluorescence Detection and Microscopic Imaging. Adv. Funct. Mater. 2010, 20, 546–553. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Wu, L.; Ji, J.; Sun, X.; Qian, Y. Surface-Enhanced Fluorescence Immunosensor Using Au Nano-Crosses for the Detection of Microcystin-LR. Biosens. Bioelectron. 2014, 62, 255–260. [Google Scholar] [CrossRef]
- Sultangaziyev, A.; Bukasov, R. Review: Applications of Surface-Enhanced Fluorescence (SEF) Spectroscopy in Bio-Detection and Biosensing. Sens. Bio-Sens. Res. 2020, 30, 100382. [Google Scholar] [CrossRef]
- Tao, A.; Sinsermsuksakul, P.; Yang, P. Tunable Plasmonic Lattices of Silver Nanocrystals. Nat. Nanotechnol. 2007, 2, 435–440. [Google Scholar] [CrossRef]
- Wang, L.; Hasanzadeh Kafshgari, M.; Meunier, M. Optical Properties and Applications of Plasmonic-Metal Nanoparticles. Adv. Funct. Mater. 2020, 30, 2005400. [Google Scholar] [CrossRef]
- Hentschel, M.; Dregely, D.; Vogelgesang, R.; Giessen, H.; Liu, N. Plasmonic Oligomers: The Role of Individual Particles in Collective Behavior. ACS Nano 2011, 5, 2042–2050. [Google Scholar] [CrossRef]
- Hoang, T.B.; Mikkelsen, M.H. Broad Electrical Tuning of Plasmonic Nanoantennas at Visible Frequencies. Appl. Phys. Lett. 2016, 108, 183107. [Google Scholar] [CrossRef]
- Chen, K.; Leong, E.S.P.; Rukavina, M.; Nagao, T.; Liu, Y.J.; Zheng, Y. Active Molecular Plasmonics: Tuning Surface Plasmon Resonances by Exploiting Molecular Dimensions. Nanophotonics 2015, 4, 186–197. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, H.; Cheng, M.; Wang, Z.; Wang, J.; Cen, M.; Luo, D.; Priimagi, A.; Liu, Y.J. Photoelastic Plasmonic Metasurfaces with Ultra-Large near Infrared Spectral Tuning. Mater. Horiz. 2022, 9, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yan, M.; Xu, B.; Zhao, C.; Wang, D.; Wang, Y.; Chen, H. A Dual-Mode Optical Fiber Sensor for SERS and Fluorescence Detection in Liquid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 290, 122267. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, B.; Ye, Y.; Qi, X.; Zhang, Y.; Xia, X.; Wang, X.; Zhou, N. A Fluorescence and Surface-Enhanced Raman Scattering Dual-Mode Aptasensor for Rapid and Sensitive Detection of Ochratoxin A. Biosens. Bioelectron. 2022, 207, 114164. [Google Scholar] [CrossRef] [PubMed]
- Farcău, C. Silver Film over Nanospheres (AgFoN) as Tri-Modal Plasmonic Sensing Platform for Surface Plasmon Resonance Spectroscopy, Surface-Enhanced Raman Scattering, and Surface-Enhanced Fluorescence. J. Mol. Struct. 2022, 1250, 131583. [Google Scholar] [CrossRef]
- Farcau, C.; Moreira, H.; Viallet, B.; Grisolia, J.; Ciuculescu-Pradines, D.; Amiens, C.; Ressier, L. Monolayered Wires of Gold Colloidal Nanoparticles for High-Sensitivity Strain Sensing. J. Phys. Chem. C 2011, 115, 14494–14499. [Google Scholar] [CrossRef]
- Coronado, E.A.; Encina, E.R.; Stefani, F.D. Optical Properties of Metallic Nanoparticles: Manipulating Light, Heat and Forces at the Nanoscale. Nanoscale 2011, 3, 4042–4059. [Google Scholar] [CrossRef]
- Rechberger, W.; Hohenau, A.; Leitner, A.; Krenn, J.R.; Lamprecht, B.; Aussenegg, F.R. Optical Properties of Two Interacting Gold Nanoparticles. Opt. Commun. 2003, 220, 137–141. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Z. Bonding and Anti-Bonding Modes of Plasmon Coupling Effects in TiO2-Ag Core-Shell Dimers. Sci. Rep. 2016, 6, 19433. [Google Scholar] [CrossRef]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef]
- Farcau, C.; Sangeetha, N.M.; Moreira, H.; Viallet, B.; Grisolia, J.; Ciuculescu-Pradines, D.; Ressier, L. High-Sensitivity Strain Gauge Based on a Single Wire of Gold Nanoparticles Fabricated by Stop-and-Go Convective Self-Assembly. ACS Nano 2011, 5, 7137–7143. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Pazos-Perez, N.; Guerrini, L. SERS-Fluorescent Encoded Particles as Dual-Mode Optical Probes. Appl. Mater. Today 2018, 13, 1–14. [Google Scholar] [CrossRef]
- Gabudean, A.M.; Focsan, M.; Astilean, S. Gold Nanorods Performing as Dual-Modal Nanoprobes via Metal-Enhanced Fluorescence (MEF) and Surface-Enhanced Raman Scattering (SERS). J. Phys. Chem. C 2012, 116, 12240–12249. [Google Scholar] [CrossRef]
- Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications|ACS Nano. Available online: https://pubs.acs.org/doi/10.1021/acsnano.2c07910 (accessed on 12 February 2025).
- Saracut, V.; Giloan, M.; Gabor, M.; Astilean, S.; Farcau, C. Polarization-Sensitive Linear Plasmonic Nanostructures via Colloidal Lithography with Uniaxial Colloidal Arrays. ACS Appl. Mater. Interfaces 2013, 5, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Chen, Y.; Liu, C.-C.; Rettner, C.T.; Holmdahl, B.; Gleixner, S.; Chung, R.; Pitera, J.W.; Cheng, J.; Nelson, A. Programmable Nanoparticle Ensembles via High-Throughput Directed Self-Assembly. Langmuir 2013, 29, 3567–3574. [Google Scholar] [CrossRef]
- Pal, S.; Deng, Z.; Ding, B.; Yan, H.; Liu, Y. DNA-Origami-Directed Self-Assembly of Discrete Silver-Nanoparticle Architectures. Angew. Chem. Int. Ed. 2010, 49, 2700–2704. [Google Scholar] [CrossRef]
- Mehmandoust, S.; Eskandari, V.; Karooby, E. A Review of Fabrication of DNA Origami Plasmonic Structures for the Development of Surface-Enhanced Raman Scattering (SERS) Platforms. Plasmonics 2024, 19, 1131–1143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, I.; Farcău, C. Dynamic Plasmonic Coupling in Gold Nanosphere Oligomers: Mechanically Tuned Red and Blue Shifts for SERS/SEF. Biosensors 2025, 15, 181. https://doi.org/10.3390/bios15030181
Tóth I, Farcău C. Dynamic Plasmonic Coupling in Gold Nanosphere Oligomers: Mechanically Tuned Red and Blue Shifts for SERS/SEF. Biosensors. 2025; 15(3):181. https://doi.org/10.3390/bios15030181
Chicago/Turabian StyleTóth, István, and Cosmin Farcău. 2025. "Dynamic Plasmonic Coupling in Gold Nanosphere Oligomers: Mechanically Tuned Red and Blue Shifts for SERS/SEF" Biosensors 15, no. 3: 181. https://doi.org/10.3390/bios15030181
APA StyleTóth, I., & Farcău, C. (2025). Dynamic Plasmonic Coupling in Gold Nanosphere Oligomers: Mechanically Tuned Red and Blue Shifts for SERS/SEF. Biosensors, 15(3), 181. https://doi.org/10.3390/bios15030181