Exploring Nucleic Acid Nanozymes: A New Frontier in Biosensor Development
Abstract
:1. Introduction
2. Advantages of NANs
3. Classification Based on Enzyme-like Activity
3.1. POD-like
3.2. OXD-like
3.3. Catalase-like
3.4. SOD-like
3.5. Laccase-like
3.6. GOx-like
4. Applications of NANs in Biosensors
4.1. Colorimetric Biosensors
4.1.1. Detection of Small Molecules
4.1.2. Detection of Metal Ions
4.1.3. Detection of Proteins
4.1.4. Detection of Whole Cells
4.1.5. Detection of Nucleic Acids
4.2. Fluorescent Biosensors
4.2.1. Detection of Small Molecules
4.2.2. Detection of Metal Ions
4.2.3. Detection of Proteins
4.2.4. Detection of Whole Cells
4.2.5. Detection of Nucleic Acids
4.3. Electrochemical Biosensors
4.3.1. Detection of Small Molecules
4.3.2. Detection of Metal Ions
4.3.3. Detection of Proteins
4.3.4. Detection of Whole Cells
4.3.5. Detection of Nucleic Acids
4.4. SERS Biosensors
4.5. Other Biosensors
5. Conclusions and Outlook
- Development of Sensor Devices
- 2.
- Functional Integration of Nucleic Acids and Nanozymes
- 3.
- Stability Optimization of Nucleic Acids
- 4.
- Detection of Disease-Related Molecules
- 5.
- Integration with Emerging Materials and Technologies
- 6.
- Control of Enzymatic Properties and Catalytic Efficiency
- 7.
- Biological Stability and Long-Term Performance
- 8.
- Exploration of Cofactors of Nanozymes
Funding
Data Availability Statement
Conflicts of Interest
References
- Alvarado-Ramírez, L.; Rostro-Alanis, M.; Rodríguez-Rodríguez, J.; Sosa-Hernández, J.E.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; Parra-Saldívar, R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. Biosensors 2021, 11, 410. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wang, L.; Li, M.; Wang, M.; Liu, G.; Ping, J. Nanozyme-based biosensor for organophosphorus pesticide monitoring: Functional design, biosensing strategy, and detection application. TrAC Trends Anal. Chem. 2023, 165, 117152. [Google Scholar] [CrossRef]
- Qin, J.; Guo, N.; Yang, J.; Wei, J. Recent advances in metal oxide nanozyme-based optical biosensors for food safety assays. Food Chem. 2024, 447, 139019. [Google Scholar] [CrossRef] [PubMed]
- Mahmudunnabi, R.G.; Farhana, F.Z.; Kashaninejad, N.; Firoz, S.H.; Shim, Y.B.; Shiddiky, M.J.A. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 2020, 145, 4398–4420. [Google Scholar] [CrossRef]
- Lang, Y.; Zhang, B.; Cai, D.; Tu, W.; Zhang, J.; Shentu, X.; Ye, Z.; Yu, X. Determination Methods of the Risk Factors in Food Based on Nanozymes: A Review. Biosensors 2022, 13, 69. [Google Scholar] [CrossRef]
- Baranwal, A.; Polash, S.A.; Aralappanavar, V.K.; Behera, B.K.; Bansal, V.; Shukla, R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. Nanomaterials 2024, 14, 244. [Google Scholar] [CrossRef]
- Jeon, H.J.; Kim, H.S.; Chung, E.; Lee, D.Y. Nanozyme-based colorimetric biosensor with a systemic quantification algorithm for noninvasive glucose monitoring. Theranostics 2022, 12, 6308–6338. [Google Scholar] [CrossRef]
- Du, Z.; Zhu, L.; Wang, P.; Lan, X.; Lin, S.; Xu, W. Coordination-Driven One-Step Rapid Self-Assembly Synthesis of Dual-Functional Ag@Pt Nanozyme. Small 2023, 19, 2301048. [Google Scholar] [CrossRef]
- Yang, W.; Zhu, L.; Yang, M.; Xu, W. Synthesis of Amorphous/Crystalline Hetero-Phase Nanozymes with Peroxidase-like Activity by Coordination-Driven Self-Assembly for Biosensors. Small 2023, 19, 2204782. [Google Scholar] [CrossRef]
- Chargaff, E. The Nucleic Acids; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Wang, L.; Zhou, H.; Hu, H.; Wang, Q.; Chen, X. Regulation Mechanism of ssDNA Aptamer in Nanozymes and Application of Nanozyme-Based Aptasensors in Food Safety. Foods 2022, 11, 544. [Google Scholar] [CrossRef]
- Fang, L.; Shi, C.; Wang, Y.; Xiong, Z.; Wang, Y. Exploring the diverse biomedical applications of programmable and multifunctional DNA nanomaterials. J. Nanobiotechnol. 2023, 21, 290. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, N.; Han, S.; Li, X.; Wang, M.; Cai, M.; Tang, Z.; Zhang, M. Construction of Bio-Nano Interfaces on Nanozymes for Bioanalysis. ACS Appl. Mater. Interfaces 2021, 13, 21040–21050. [Google Scholar] [CrossRef] [PubMed]
- Pautler, R.; Kelly, E.Y.; Huang, P.J.; Cao, J.; Liu, B.; Liu, J. Attaching DNA to nanoceria: Regulating oxidase activity and fluorescence quenching. ACS Appl. Mater. Interfaces 2013, 5, 6820–6825. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, H.; Lopez, A.; Su, H.; Liu, J. Promotion and Inhibition of the Oxidase-Mimicking Activity of Nanoceria by Phosphate, Polyphosphate, and DNA. Chembiochem 2020, 21, 2178–2186. [Google Scholar] [CrossRef]
- Smith, A.D.; Ukogu, O.A.; Devenica, L.M.; White, E.D.; Carter, A.R. Optical methods for measuring DNA folding. Mod. Phys. Lett. B 2017, 31, 1730001. [Google Scholar] [CrossRef]
- Dey, S.; Fan, C.; Gothelf, K.V.; Li, J.; Lin, C.; Liu, L.; Liu, N.; Nijenhuis, M.A.; Saccà, B.; Simmel, F.C.; et al. DNA origami. Nat. Rev. Methods Prim. 2021, 1, 13. [Google Scholar] [CrossRef]
- Li, L.; Ding, Y.; Lei, M.; Xue, Y.; He, X.; Xue, J.; Bu, H.; Su, Y.; Ouyang, X.; Wan, Y. DNA Framework-Templated Synthesis of Copper Cluster Nanozyme with Enhanced Activity and Specificity. ACS Appl. Mater. Interfaces 2024, 16, 54389–54400. [Google Scholar] [CrossRef]
- Lin, Y.; Li, Q.; Wang, L.; Guo, Q.; Liu, S.; Zhu, S.; Sun, Y.; Fan, Y.; Sun, Y.; Li, H.; et al. Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: An expert consensus recommendation. Int. J. Oral. Sci. 2022, 14, 51. [Google Scholar] [CrossRef]
- Ma, J.; Xu, J. Logic gates in nanoscale based on interaction of thiolated DNA with AuNPs and strand displacement. Biosystems 2021, 206, 104432. [Google Scholar] [CrossRef]
- Finke, A.; Bußkamp, H.; Manea, M.; Marx, A. Designer Extracellular Matrix Based on DNA–Peptide Networks Generated by Polymerase Chain Reaction. Angew. Chem. Int. Ed. Engl. 2016, 55, 10136–10140. [Google Scholar] [CrossRef]
- Mao, D.; Li, W.; Liu, X.; Chen, J.; Wei, D.; Luo, L.; Yuan, Q.; Yang, Y.; Zhu, X.; Tan, W. Rolling circle amplification-based DNA-enzyme nanostructure for immobilization and functionalization of enzymes. Chem 2024, 11, 102335. [Google Scholar] [CrossRef]
- Zhong, Y.; Yang, Y.; Xu, Y.; Qian, B.; Huang, S.; Long, Q.; Qi, Z.; He, X.; Zhang, Y.; Li, L.; et al. Design of a Zn-based nanozyme injectable multifunctional hydrogel with ROS scavenging activity for myocardial infarction therapy. Acta Biomater. 2024, 177, 62–76. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Zhu, Y.; Chen, Y.; Lin, Y.; Shi, S. Advances in DNA nanotechnology for chronic wound management: Innovative functional nucleic acid nanostructures for overcoming key challenges. J. Control. Release 2024, 375, 155–177. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Xie, Y.; Zhu, L.; Li, X.; Xu, W. Functional Nucleic Acid Enzymes: Nucleic Acid-Based Catalytic Factories. ACS Catal. 2024, 14, 16392–16422. [Google Scholar] [CrossRef]
- Li, J.; Tan, W.; Li, X.; Zhang, P.; Jin, P.; Fan, J.; Li, K. Silver Ion-Facilitated Singular Poulos-Kraut Mechanism of O-O Heterolysis to Enhance the Light Activation of H2O2 over Peroxidase-Mimicking Photonanozymes. Anal. Chem. 2023, 95, 12435–12442. [Google Scholar] [CrossRef]
- Chen, L.; Oyebanji, M.; Yu, H.; Zhu, M. A mini-review on oxidoreductase-mimicking nanomaterials. Emerg. Mater. 2025. [Google Scholar] [CrossRef]
- Wei, K.; Zhang, L.; Li, N.; Gao, K.; Li, X.; Li, J.; Wang, S.; Mao, X. A colorimetric biosensor composed of split aptamers and mannan oligosaccharide nanozyme to monitor synthetic His-tagged food biomolecules. Food Chem. 2025, 466, 142108. [Google Scholar] [CrossRef]
- Gao, F.; Zhao, Y.; Dai, X.; Xu, W.; Zhan, F.; Liu, Y.; Wang, Q. Aptamer tuned nanozyme activity of nickel-metal–organic framework for sensitive electrochemical aptasensing of tetracycline residue. Food Chem. 2024, 430, 137041. [Google Scholar] [CrossRef]
- Chen, Q.; He, Q.; Wang, Y.; Huang, C.; Lin, Y.; Wang, J.; Shen, W.; Qiu, B.; Xu, X. Aptamer-controlled peroxidase activity of platinum nanoparticles/Fe-MOF nanozyme for highly effective voltammetric detection of carcinoembryonic antigen. Microchem. J. 2024, 201, 110609. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, J.; Su, D.; Zhang, Y.; Lu, H.; Yan, X.; Bai, J.; Gao, Y.; Lu, G. The DNA controllable peroxidase mimetic activity of MoS2 nanosheets for constructing a robust colorimetric biosensor. Nanoscale 2020, 12, 19420–19428. [Google Scholar] [CrossRef]
- Fan, Y.; Cui, M.; Liu, Y.; Jin, M.; Zhao, H. Selection and characterization of DNA aptamers for constructing colorimetric biosensor for detection of PBP2a. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117735. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, O.; Zolotovskaya, S.; Abdolvand, A.; Daeid, N.N. Biomimetic graphene oxide-cationic multi-shaped gold nanoparticle-hemin hybrid nanozyme: Tuning enhanced catalytic activity for the rapid colorimetric apta-biosensing of amphetamine-type stimulants. Talanta 2020, 216, 120990. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, W.; Liu, Y.; Zeng, Z.; Quan, X.; Zhao, H. Three-Dimensional Branched Crystal Carbon Nitride with Enhanced Intrinsic Peroxidase-like Activity: A Hypersensitive Platform for Colorimetric Detection. ACS Appl. Mater. Interfaces. 2019, 11, 17467–17474. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Peng, X.; Han, Y.; Fan, L.; Liu, Z.; Guo, Y. Ti3C2 MXenes with intrinsic peroxidase-like activity for label-free and colorimetric sensing of proteins. Microchem. J. 2021, 166, 106238. [Google Scholar] [CrossRef]
- Chi, J.; Ju, P.; Bi, F.; Wen, S.; Xiang, Z.; Chen, J.; Qiu, M. A smartphone-assisted ultrasensitive colorimetric aptasensor based on DNA-encoded porous MXene nanozyme for visual detection of okadaic acid. Food Chem. 2025, 464, 141776. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J. Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale 2015, 7, 13831–13835. [Google Scholar] [CrossRef]
- Zhang, L.; Qi, Z.; Zou, Y.; Zhang, J.; Xia, W.; Zhang, R.; He, Z.; Cai, X.; Lin, Y.; Duan, S.-Z.; et al. Engineering DNA–Nanozyme Interfaces for Rapid Detection of Dental Bacteria. ACS Appl. Mater. Interfaces. 2019, 11, 30640–30647. [Google Scholar] [CrossRef]
- Zou, R.; Li, H.; Shi, J.; Sun, C.; Lu, G.; Yan, X. Dual-enhanced enzyme cascade hybrid hydrogel for the construction of optical biosensor. Biosens. Bioelectron. 2024, 263, 116613. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, W.; Lu, H.; Zhang, H.; Hao, Z.; Zhang, F.; Zhang, R.; Li, X.; Zhang, L. DNA-modulated single-atom nanozymes with enhanced enzyme-like activity for ultrasensitive detection of dopamine. Nanoscale 2023, 15, 13289–13296. [Google Scholar] [CrossRef]
- Zeng, C.; Lu, N.; Wen, Y.; Liu, G.; Zhang, R.; Zhang, J.; Wang, F.; Liu, X.; Li, Q.; Tang, Z.; et al. Engineering Nanozymes Using DNA for Catalytic Regulation. ACS Appl. Mater. Interfaces 2019, 11, 1790–1799. [Google Scholar] [CrossRef]
- Öğüt, E.; Kip, Ç.; Gökçal, B.; Tuncel, A. Aggregation-resistant nanozyme containing accessible magnetite nanoparticles immobilized in monodisperse-porous silica microspheres for colorimetric assay of human genomic DNA. J. Colloid. Interface Sci. 2019, 550, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Ren, K.; Guo, X.; Pokhrel, P.; Pokhrel, B.; Hossain, M.A.; Chen, Z.X.; Mao, H.; Shen, H. Amalgamation of DNAzymes and Nanozymes in a Coronazyme. J. Am. Chem. Soc. 2023, 145, 5750–5758. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jiao, L.; Luo, X.; Xu, W.; Wei, X.; Wang, H.; Yan, H.; Gu, W.; Xu, B.Z.; Du, D.; et al. Oxidase-like Fe-N-C Single-Atom Nanozymes for the Detection of Acetylcholinesterase Activity. Small 2019, 15, e1903108. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, B.; Huang, P.J.; Zhang, Z.; Liu, J. Highly active fluorogenic oxidase-mimicking NiO nanozymes. Chem. Commun. 2018, 54, 12519–12522. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, S.; Lin, X.; Chen, Y.; Li, J.; Liu, X.; Wang, F.; Li, C. A RuNPs-based multifunctional nanoplatform with excellent dual enzyme-mimic activities for diabetes diagnosis, cancer cell elimination, and in vitro antibacterial. Talanta 2024, 283, 127121. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Z.; Wu, L.; Ren, J.; Qu, X. Nucleoside Triphosphates as Promoters to Enhance Nanoceria Enzyme-like Activity and for Single-Nucleotide Polymorphism Typing. Adv. Funct. Mater. 2013, 24, 1624–1630. [Google Scholar] [CrossRef]
- Yang, D.; Fa, M.; Gao, L.; Zhao, R.; Luo, Y.; Yao, X. The effect of DNA on the oxidase activity of nanoceria with different morphologies. Nanotechnology 2018, 29, 385101. [Google Scholar] [CrossRef]
- Bülbül, G.; Hayat, A.; Andreescu, S. ssDNA-Functionalized Nanoceria: A Redox-Active Aptaswitch for Biomolecular Recognition. Adv. Healthc. Mater. 2016, 5, 822–828. [Google Scholar] [CrossRef]
- Kim, M.I.; Park, K.S.; Park, H.G. Ultrafast colorimetric detection of nucleic acids based on the inhibition of the oxidase activity of cerium oxide nanoparticles. Chem. Commun. 2014, 50, 9577–9580. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ahn, J.K.; Kim, M.I.; Park, K.S.; Park, H.G. Rapid and label-free, electrochemical DNA detection utilizing the oxidase-mimicking activity of cerium oxide nanoparticles. Electrochem. Commun. 2019, 99, 5–10. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.; Zhang, H.; Wu, W.; Zhang, Z.; Dong, S. Porous Co3O4 nanoplates with pH-switchable peroxidase- and catalase-like activity. Nanoscale 2018, 10, 19140–19146. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Wu, L.; Yao, H.; Zhao, L. Catalase-like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications. Small 2022, 18, e2203400. [Google Scholar] [CrossRef] [PubMed]
- Zuo, M.; Yang, Y.; Jiang, S.; Zhu, C.; Han, Y.; Hu, J.; Ren, K.; Cui, L.; Zhang, C.Y. Ultrathin-FeOOH-coated MnO2 nanozyme with enhanced catalase-like and oxidase-like activities for photoelectrochemical and colorimetric detection of organophosphorus pesticides. Food Chem. 2024, 445, 138716. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Sun, Z.; Huang, P.J.; Liu, J. Hydrogen peroxide displacing DNA from nanoceria: Mechanism and detection of glucose in serum. J. Am. Chem. Soc. 2015, 137, 1290–1295. [Google Scholar] [CrossRef]
- Losada-Garcia, N.; Jimenez-Alesanco, A.; Velazquez-Campoy, A.; Abian, O.; Palomo, J.M. Enzyme/Nanocopper Hybrid Nanozymes: Modulating Enzyme-like Activity by the Protein Structure for Biosensing and Tumor Catalytic Therapy. ACS Appl. Mater. Interfaces 2021, 13, 5111–5124. [Google Scholar] [CrossRef]
- Kajita, M.; Hikosaka, K.; Iitsuka, M.; Kanayama, A.; Toshima, N.; Miyamoto, Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic. Res. 2009, 41, 615–626. [Google Scholar] [CrossRef]
- Jiao, J.; Kang, Q.; Ma, C.; Lin, T.; Xiao, Z.; Du, T.; Wang, N.; Du, X.; Wang, S. Pressure Sensor Array Based on Four DNA-Nanoenzymes with Catalase-like Activity for Portable Multiple Detection of Foodborne Pathogens. J. Agric. Food Chem. 2024, 73, 1694–1702. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, R.; Yan, X.; Fan, K. Superoxide dismutase nanozymes: An emerging star for anti-oxidation. J. Mater. Chem. B 2021, 9, 6939–6957. [Google Scholar] [CrossRef]
- Korsvik, C.; Patil, S.; Seal, S.; Self, W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 10, 1056–1058. [Google Scholar] [CrossRef]
- Wu, G.; Berka, V.; Derry, P.J.; Mendoza, K.; Kakadiaris, E.; Roy, T.; Kent, T.A.; Tour, J.M.; Tsai, A.-L. Critical comparison of the superoxide dismutase-like activity of carbon antioxidant nanozymes by direct superoxide consumption kinetic measurements. ACS Nano 2019, 13, 11203–11213. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, R.; Zhao, H.; Qi, H.; Li, J.; Li, J.F.; Zhou, X.; Wang, A.; Fan, K.; Yan, X.; et al. Bioinspired copper single-atom nanozyme as a superoxide dismutase-like antioxidant for sepsis treatment. Exploration 2022, 2, 20210267. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Cheng, M.; Ma, S.; Song, K.; Yuan, Y.; Liu, Y. An Fe–Mn–S SOD-like nanozyme as an efficient antibacterial agent. New J. Chem. 2023, 47, 10493–10496. [Google Scholar] [CrossRef]
- Sharifi, M.; Faryabi, K.; Talaei, A.J.; Shekha, M.S.; Ale-Ebrahim, M.; Salihi, A.; Nanakali, N.M.Q.; Aziz, F.M.; Rasti, B.; Hasan, A.; et al. Antioxidant properties of gold nanozyme: A review. J. Mol. Liq. 2020, 297, 112004. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, W.; Ma, Y.; Cheng, L.; Zhang, L.; Liu, Q.; Chen, J.; Zhao, Y.; Tu, K.; Zhang, M.; et al. Integrating Pt nanoparticles with carbon nanodots to achieve robust cascade superoxide dismutase-catalase nanozyme for antioxidant therapy. Nano Today 2023, 49, 101768. [Google Scholar] [CrossRef]
- Shen, X.; Liu, W.; Gao, X.; Lu, Z.; Wu, X.; Gao, X. Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: A general way to the activation of molecular oxygen. J. Am. Chem. Soc. 2015, 137, 15882–15891. [Google Scholar] [CrossRef]
- Ding, J.; Du, Y.; Hu, X.; Zhao, M.; Li, Y.; Li, L.; Su, Y.; Lin, Z. Aptamer-modified atomically precise gold nanoclusters as targeted nanozymes to scavenge reactive oxygen species in white adipocytes. Nanotechnology 2023, 34, 365101. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, T.; Zhao, H.; Cui, L.; Zhang, X. Dual-modal biosensor for highly sensitive and selective DNA methyltransferase activity detection based on a porous organic polymer-inorganic nanocomposite (Cu2O@ FePPOPBADE) with high laccase-like activity. Sens. Actuators B Chem. 2022, 372, 132650. [Google Scholar] [CrossRef]
- Xiao, F.; Xia, Q.; Zhang, S.; Li, Q.; Chen, D.; Li, H.; Yang, D.; Yang, Y. Ultrasound and defect engineering-enhanced nanozyme with high laccase-like activity for oxidation and detection of phenolic compounds and adrenaline. J. Hazard. Mater. 2024, 465, 133126. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, F.; Liu, Y.; Yang, M.; Zhang, B.; Bai, Z.; Zhao, B.; Li, X. Recent advances of copper-based metal phenolic networks in biomedical applications. Colloids Surf. B Biointerfaces 2024, 244, 114163. [Google Scholar] [CrossRef]
- Wang, Y.; He, C.; Li, W.; Zhang, J.; Fu, Y. Catalytic Performance of Oligonucleotide-Templated Pt Nanozyme Evaluated by Laccase Substrates. Catal. Lett. 2017, 147, 2144–2152. [Google Scholar] [CrossRef]
- Yang, T.; Li, Y.; Liu, G.; Tong, J.; Zhang, P.; Feng, B.; Tian, K.; Liu, X.; Qing, T. Nucleobase-modulated copper nanomaterials with laccase-like activity for high-performance degradation and detection of phenolic pollutants. J. Hazard. Mater. 2024, 477, 135292. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zhou, C.; Shi, L.; Zhu, X.; Liu, W.; Li, B.; Jin, Y. Multifunctional Manganese–Nucleotide Laccase-Mimicking Nanozyme for Degradation of Organic Pollutants and Visual Assay of Epinephrine via Smartphone. Anal. Chem. 2024, 96, 4736–4744. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Tang, Y.; Han, J.; Niu, X.; Lin, X.; Wu, Y. A stable colorimetric biosensor for highly selective detection of malathion residue in food based on aptamer-regulated laccase-mimic activity. Food Chem. 2024, 446, 138842. [Google Scholar] [CrossRef] [PubMed]
- Comotti, M.; Della Pina, C.; Matarrese, R.; Rossi, M. The Catalytic Activity of “Naked” Gold Particles. Angew. Chem. Int. Ed. Engl. 2004, 116, 5936–5939. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W.; Wen, Y.; He, Y.; Huang, Q.; Long, Y.T.; et al. Catalytic Gold Nanoparticles for Nanoplasmonic Detection of DNA Hybridization. Angew. Chem. Int. Ed. Engl. 2011, 50, 11994–11998. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, X.; Han, L.; Li, F. “Non-Naked” Gold with Glucose Oxidase-like Activity: A Nanozyme for Tandem Catalysis. Small 2018, 14, e1803256. [Google Scholar] [CrossRef]
- Zhou, P.; Jia, S.; Pan, D.; Wang, L.; Gao, J.; Lu, J.; Shi, J.; Tang, Z.; Liu, H. Reversible Regulation of Catalytic Activity of Gold Nanoparticles with DNA Nanomachines. Sci. Rep. 2015, 5, 14402. [Google Scholar] [CrossRef]
- Xing, Z.; Wang, C.; Fan, Z.; Qi, S.; Sun, Q.; Song, R.B.; Li, Z. Substrate-Switched Dual-Signal Self-Powered Sensing System Based on Dual-Nanozyme Activity of Bimetal-Doped CeO2 Nanospheres for Electrochemical Assay of Aflatoxin B1. Anal. Chem. 2024, 96, 14944–14952. [Google Scholar] [CrossRef]
- Tai, S.; Qian, Z.; Ren, H.; Barimah, A.O.; Peng, C.; Wei, X. Highly selective and sensitive colorimetric detection for glyphosate based on β-CD@DNA-CuNCs enzyme mimics. Anal. Chim. Acta 2022, 1222, 339992. [Google Scholar] [CrossRef]
- Sun, Y.; Qi, S.; Dong, X.; Qin, M.; Zhang, Y.; Wang, Z. Colorimetric aptasensor targeting zearalenone developed based on the hyaluronic Acid-DNA hydrogel and bimetallic MOFzyme. Biosens. Bioelectron. 2022, 212, 114366. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, J.; Ouyang, X.; Liao, Y.; Feng, H.; Yu, J.; Chen, L.; Lu, Y.; Yi, Y.; Tang, L. A versatile CuCo@PDA nanozyme-based aptamer-mediated lateral flow assay for highly sensitive, on-site and dual-readout detection of Aflatoxin B1. J. Hazard. Mater. 2024, 465, 133178. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.D.; Nguyen, P.T.; Le, T.N.; Kim, M.I. DNA-copper hybrid nanoflowers as efficient laccase mimics for colorimetric detection of phenolic compounds in paper microfluidic devices. Biosens. Bioelectron. 2021, 182, 113187. [Google Scholar] [CrossRef] [PubMed]
- Mei, W.; Huang, W.; Liu, X.; Wang, H.; Wang, Q.; Yang, X.; Wang, K. DNA-Encoded Bidirectional Regulation of the Peroxidase Activity of Pt Nanozymes for Bioanalysis. Anal. Chem. 2023, 95, 11391–11398. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Zhang, Y.; Cao, Z.; Lin, W.; Lu, N. DNA-Programmed Tuning of the Growth and Enzyme-like Activity of a Bimetallic Nanozyme and Its Biosensing Applications. ACS Appl. Mater. Interfaces 2023, 15, 18620–18629. [Google Scholar] [CrossRef]
- de Oliveira, H.P. Recent advances in colorimetric and photoluminescent fibrillar devices, photonic crystals and carbon dot-based sensors for mercury (II) ion detection. Talanta 2025, 282, 127018. [Google Scholar] [CrossRef]
- Tukur, F.; Tukur, P.; Hunyadi Murph, S.E.; Wei, J. Advancements in mercury detection using surface-enhanced Raman spectroscopy (SERS) and ion-imprinted polymers (IIPs): A review. Nanoscale 2024, 16, 11384–11410. [Google Scholar] [CrossRef]
- Mao, M.-X.; Zheng, R.; Peng, C.-F.; Wei, X.-L. DNA–Gold Nanozyme-Modified Paper Device for Enhanced Colorimetric Detection of Mercury Ions. Biosensors 2020, 10, 211. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Z.; Liu, R.; Wu, R.; Zhang, J. DNA-encoded MXene-Pt nanozyme for enhanced colorimetric sensing of mercury ions. Chem. Eng. J. 2022, 442, 136072. [Google Scholar] [CrossRef]
- Kermani, H.A.; Hosseini, M.; Miti, A.; Dadmehr, M.; Zuccheri, G.; Hosseinkhani, S.; Ganjali, M.R. A colorimetric assay of DNA methyltransferase activity based on peroxidase mimicking of DNA template Ag/Pt bimetallic nanoclusters. Anal. Bioanal. Chem. 2018, 410, 4943–4952. [Google Scholar] [CrossRef]
- Zheng, C.; Zheng, A.-X.; Liu, B.; Zhang, X.-L.; He, Y.; Li, J.; Yang, H.-H.; Chen, G. One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem. Commun. 2014, 50, 13103–13106. [Google Scholar] [CrossRef]
- Dehghani, Z.; Hosseini, M.; Mohammadnejad, J.; Ganjali, M.R. New Colorimetric DNA Sensor for Detection of Campylobacter jejuni in Milk Sample Based on Peroxidase-like Activity of Gold/Platinium Nanocluster. ChemistrySelect 2019, 4, 11687–11692. [Google Scholar] [CrossRef]
- Lu, C.; Tang, L.; Gao, F.; Li, Y.; Liu, J.; Zheng, J. DNA-encoded bimetallic Au-Pt dumbbell nanozyme for high-performance detection and eradication of Escherichia coli O157:H7. Biosens. Bioelectron. 2021, 187, 113327. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wu, Z.; Niu, X.; Zhan, X.; Tao, H.; Wu, Y. Novel nanozyme-catalyzed and magnetically assisted colorimetric biosensor for Staphylococcus aureus detection with a low matrix effect from complex environments. Sens. Actuators B Chem. 2022, 373, 132752. [Google Scholar] [CrossRef]
- Li, Q.; Li, J.; Jiao, Y.; Yang, X.; Yang, D.; Zhong, Z.; Yang, Y. Aptamer-functionalized Fe3O4/MWCNTs@Mo-CDs nanozyme for rapid colorimetric detection toward Escherichia coli. Talanta 2024, 277, 126265. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Yu, Y.; Hu, S.; Yi, X.; Wang, J. Bifunctional Diblock DNA-Mediated Synthesis of Nanoflower-Shaped Photothermal Nanozymes for a Highly Sensitive Colorimetric Assay of Cancer Cells. ACS Appl. Mater. Interfaces 2021, 13, 16801–16811. [Google Scholar] [CrossRef]
- Guo, Y.; Lv, M.; Ren, J.; Wang, E. Regulating Catalytic Activity of DNA-Templated Silver Nanoclusters Based on their Differential Interactions with DNA Structures and Stimuli-Responsive Structural Transition. Small 2021, 17, 2006553. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, S.; Wu, C.; Li, Q.; Shen, Z.; Lu, Y.; Wu, Z.-S. Self-Protected DNAzyme Walker with a Circular Bulging DNA Shield for Amplified Imaging of miRNAs in Living Cells and Mice. ACS Nano 2021, 15, 19211–19224. [Google Scholar] [CrossRef]
- Yan, J.; Yin, B.; Zhang, Q.; Li, C.; Chen, J.; Huang, Y.; Hao, J.; Yi, C.; Zhang, Y.; Wong, S.H.D.; et al. A CRISPR-Cas12a-mediated dual-mode luminescence and colorimetric nucleic acid biosensing platform based on upconversion nanozyme. Biosens. Bioelectron. 2025, 270, 116963. [Google Scholar] [CrossRef]
- Wang, J.; Han, J.; Wang, J.; Lv, X.; Fan, D.; Dong, S. A cost-effective, “mix & act” G-quadruplex/Cu (II) metal-nanozyme-based ratiometric fluorescent platform for highly sensitive and selective cysteine/bleomycin detection and multilevel contrary logic computing. Biosens. Bioelectron. 2024, 244, 115801. [Google Scholar] [CrossRef]
- Revesz, I.A.; Hickey, S.M.; Sweetman, M.J. Metal ion sensing with graphene quantum dots: Detection of harmful contaminants and biorelevant species. J. Mater. Chem. B 2022, 10, 4346–4362. [Google Scholar] [CrossRef]
- Guo, X.; Feng, S.; Peng, Y.; Li, B.; Zhao, J.; Xu, H.; Meng, X.; Zhai, W.; Pang, H. Emerging insights into the application of metal-organic framework (MOF)-based materials for electrochemical heavy metal ion detection. Food Chem. 2025, 463, 141387. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, M.; Zhao, W.; Wang, S.; Gui, M.; Li, H.; Yu, R. DNAzyme-based cascade signal amplification strategy for highly sensitive detection of lead ions in the environment. J. Hazard. Mater. 2022, 429, 128347. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Loh, K.Y.; Chu, Y.-T.; Feng, R.; Satyavolu, N.S.R.; Xiong, M.; Nakamata Huynh, S.M.; Hwang, K.; Li, L.; Xing, H.; et al. Optical Control of Metal Ion Probes in Cells and Zebrafish Using Highly Selective DNAzymes Conjugated to Upconversion Nanoparticles. J. Am. Chem. Soc. 2018, 140, 17656–17665. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kang, S.; Du, Z.; Dong, Y.; Fang, B.; Zhan, J.; Xu, W.; Zhu, L. Magnetic DNAzyme nanomachine fluorescent biosensor for Pb(II) detection. Sens. Actuators B Chem. 2024, 405, 135332. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, Y.; Zhu, L.; Chu, H.; Shao, X.; Asakiya, C.; Huang, K.; Xu, W. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. J. Control. Release 2022, 341, 869–891. [Google Scholar] [CrossRef]
- Kao, K.C.; Vilbois, S.; Tsai, C.H.; Ho, P.C. Metabolic communication in the tumour-immune microenvironment. Nat. Cell Biol. 2022, 24, 1574–1583. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Zhao, T.; Shi, J.; Chen, J.; Li, D.; Cui, Y.; Xu, S.; Luo, X. Enzymatically Activated Autonomous-Motion DNAzyme Signal Amplification Strategy for Tumor Cell-Specific Molecular Imaging with Improved Spatial Specificity. Anal. Chem. 2023, 95, 9388–9395. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Y.; Guo, M.; Huang, K.; Xu, W. Ultrasensitive magnetic DNAzyme-copper nanoclusters fluorescent biosensor with triple amplification for the visual detection of E. coli O157:H7. Biosens. Bioelectron. 2020, 167, 112475. [Google Scholar] [CrossRef]
- Fang, M.; Liu, F.; Fang, D.; Chen, Y.; Xiang, Y.; Zhang, H.; Huang, M.; Qin, X.; Pan, L.-H.; Yang, F. Primer exchange reaction-amplified protein-nucleic acid interactions for ultrasensitive and specific microRNA detection. Biosens. Bioelectron. 2023, 230, 115274. [Google Scholar] [CrossRef]
- Yadavalli, H.C.; Park, S.; Kim, Y.; Nagda, R.; Kim, T.-H.; Han, M.K.; Jung, I.L.; Bhang, Y.J.; Yang, W.H.; Dalgaard, L.T.; et al. Tailed-Hoogsteen Triplex DNA Silver Nanoclusters Emit Red Fluorescence upon Target miRNA Sensing. Small 2024, 20, 2306793. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Xie, N.; Li, J.; Ma, C.; Wang, K. Gold Nanoparticle Loaded Split-DNAzyme Probe for Amplified miRNA Detection in Living Cells. Anal. Chem. 2017, 89, 8377–8383. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, Z.; Shi, Y.; Zhang, Y.; Shen, T.; Chen, M.; Huang, Z.; Tong, Y.; Liu, S.-Y.; Guo, J.; et al. A DNAzyme dual-feedback autocatalytic exponential amplification biocircuit for microRNA imaging in living cells. Biosens. Bioelectron. 2023, 241, 115669. [Google Scholar] [CrossRef] [PubMed]
- Mattei, A.L.; Bailly, N.; Meissner, A. DNA methylation: A historical perspective. Trends Genet. 2022, 38, 676–707. [Google Scholar] [CrossRef]
- Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Leng, T.; Sun, H.; Miao, W.; Wang, X.; Xu, D.; Zhang, C.; Fang, Y. DNA Programmable Peroxidase Activity of Oxidized Polypyrrole Quantum Dots. Adv. Funct. Mater. 2023, 33, 2306103. [Google Scholar] [CrossRef]
- Brown, M.D.; Schoenfisch, M.H. Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization. Chem. Rev. 2019, 119, 11551–11575. [Google Scholar] [CrossRef]
- Ghaani, M.; Azimzadeh, M.; Büyüktaş, D.; Carullo, D.; Farris, S. Electrochemical Sensors in the Food Sector: A Review. J. Agric. Food Chem. 2024, 72, 24170–24190. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F.; Li, Z.; Hu, B.; Zheng, Q.; Piao, Y.; Feng, L.; Cao, J. Dual-mode electrochemical/colorimetric microfluidic sensor integrated tetrahedral DNA nanostructures with Au/Ni-Co LDH NCs nanozyme for ultrasensitive detection of aflatoxin B1. Sens. Actuators B Chem. 2023, 393, 134322. [Google Scholar] [CrossRef]
- Yue, F.; Hu, M.; Bai, M.; Guo, Y.; Sun, X.; Zhao, G. An exonuclease III-driven dual-mode aptasensor based on Au-Pd@Fc nanozyme and magnetic separation pretreatment for aminoglycoside antibiotics detection. Food Chem. 2024, 460, 140480. [Google Scholar] [CrossRef]
- Shen, Y.-Z.; Xie, W.Z.; Wang, Z.; Ning, K.P.; Ji, Z.P.; Li, H.B.; Hu, X.-Y.; Ma, C.; Qin, X. A generalizable sensing platform based on molecularly imprinted polymer-aptamer double recognition and nanoenzyme assisted photoelectrochemical-colorimetric dual-mode detection. Biosens. Bioelectron. 2024, 254, 116201. [Google Scholar] [CrossRef]
- Eshghi, P.; Moafi, L.; Alidoosti, M.; Esfahani, D.N. Colorimetric detection of fluoride and mercury (II) ions using isatin Schiff base skeleton bearing pyridine-2-carboxamidine moiety: Experimental and theoretical studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 305, 123467. [Google Scholar] [CrossRef] [PubMed]
- Gul, Z.; Ullah, S.; Khan, S.; Ullah, H.; Khan, M.U.; Ullah, M.; Ali, S.; Altaf, A.A. Recent Progress in Nanoparticles Based Sensors for the Detection of Mercury (II) Ions in Environmental and Biological Samples. Crit. Rev. Anal. Chem. 2024, 54, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Wang, F.; Chi, H.; Zhao, G.; Zhang, Y.; Li, T.; Wei, Q. Electrochemical aptasensor based on gold modified thiol graphene as sensing platform and gold-palladium modified zirconium metal-organic frameworks nanozyme as signal enhancer for ultrasensitive detection of mercury ions. J. Colloid. Interface Sci. 2022, 606, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.P.; Soonpaa, M.H.; Field, D.; Simpson, E.; Rubart-von der Lohe, M.; Lee, H.K.; Sridhar, A.; Ware, S.M.; Green, N.; Li, X.; et al. Cardiac Troponin I-Interacting Kinase Affects Cardiomyocyte S-Phase Activity but Not Cardiomyocyte Proliferation. Circulation 2023, 147, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Quijano-Rubio, A.; Yeh, H.-W.; Park, J.; Lee, H.; Langan, R.A.; Boyken, S.E.; Lajoie, M.J.; Cao, L.; Chow, C.M.; Miranda, M.C.; et al. De novo design of modular and tunable protein biosensors. Nature 2021, 591, 482–487. [Google Scholar] [CrossRef]
- Sun, D.; Lin, X.; Lu, J.; Wei, P.; Luo, Z.; Lu, X.; Chen, Z.; Zhang, L. DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme. Biosens. Bioelectron. 2019, 142, 111578. [Google Scholar] [CrossRef]
- Scheltens, P.; Blennow, K.; Breteler, M.M.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Vogel, J.W.; Young, A.L.; Oxtoby, N.P.; Smith, R.; Ossenkoppele, R.; Strandberg, O.T.; La Joie, R.; Aksman, L.M.; Grothe, M.J.; Iturria-Medina, Y.; et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 2021, 27, 871–881. [Google Scholar] [CrossRef]
- Chen, X.; Yang, S.; Shao, H.; Wang, S.; Xie, J.; Liu, Q.; Huang, Y.; Gan, N.; Huang, S. Multi-enzyme mimic nanozyme with enhanced catalysis for methylene blue probe promotes the one-step detection of tau protein. Chem. Eng. J. 2024, 498, 155897. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Yang, L.; Cai, A.; Zhou, X.; Zhou, C.; Li, G.; Wang, Q.; Wu, M.; Wu, L.; et al. A highly sensitive electrochemical cytosensor based on a triple signal amplification strategy using both nanozyme and DNAzyme. J. Mater. Chem. B 2022, 10, 700–706. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, B.; Luo, N.; Li, C.; Wu, H.; Wang, Y.; Tian, S.; Li, X.; Liu, R.; Li, X.; et al. Self-enhanced nanohydrogel electrochemiluminescence biosensor based on CRISPR/Cas12a and gold platinum nanoparticles modification for high-sensitivity detection of Burkholderia pseudomallei. Chem. Eng. J. 2024, 486, 150279. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Li, D.; Zhao, M.; Wu, H.; Shen, B.; Liu, P.; Ding, S. Electrochemical biosensor for ultrasensitive exosomal miRNA analysis by cascade primer exchange reaction and MOF@Pt@MOF nanozyme. Biosens. Bioelectron. 2020, 168, 112554. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Keshavarz, M.; Kassanos, P.; Kidy, Z.; Roddan, A.; Yeatman, E.; Thompson, A.J. SERS Detection of Breast Cancer-Derived Exosomes Using a Nanostructured Pt-Black Template. Adv. Sens. Res. 2023, 2, 2200039. [Google Scholar] [CrossRef]
- Li, J.; Koo, K.M.; Wang, Y.; Trau, M. Native MicroRNA Targets Trigger Self-Assembly of Nanozyme-Patterned Hollowed Nanocuboids with Optimal Interparticle Gaps for Plasmonic-Activated Cancer Detection. Small 2019, 15, 1904689. [Google Scholar] [CrossRef]
- Gagic, M.; Jamroz, E.; Krizkova, S.; Milosavljevic, V.; Kopel, P.; Adam, V. Current Trends in Detection of Histamine in Food and Beverages. J. Agric. Food Chem. 2019, 67, 773–783. [Google Scholar] [CrossRef]
- Nevado, D.L.; Delos Santos, S.; Bastian, G.; Deyta, J.; Managuelod, E.J.; Fortaleza, J.A.; De Jesus, R. Detection, Identification, and Inactivation of Histamine-forming Bacteria in Seafood: A Mini-review. J. Food Prot. 2023, 86, 100049. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, H.; Tang, R.; Tan, Y.; Xia, X.; Zhang, X. Construction of histamine aptamer sensor based on Au NPs nanozyme for ultrasensitive SERS detection of histamine. J. Food Compos. Anal. 2023, 120, 105337. [Google Scholar] [CrossRef]
- Ma, X.; Xu, S.; Pan, Y.; Jiang, C.; Wang, Z. Construction of SERS output-signal aptasensor using MOF/noble metal nanoparticles based nanozyme for sensitive histamine detection. Food Chem. 2024, 440, 138227. [Google Scholar] [CrossRef]
- Jiang, H.; Chang, W.; Zhu, X.; Liu, G.; Liu, K.; Chen, W.; Wang, H.; Qin, P. Development of a Colorimetric and SERS Dual-Signal Platform via dCas9-Mediated Chain Assembly of Bifunctional Au@Pt Nanozymes for Ultrasensitive and Robust Salmonella Assay. Anal. Chem. 2024, 96, 12684–12691. [Google Scholar] [CrossRef]
- Chen, H.; Feng, Y.; Liu, F.; Tan, C.; Xu, N.; Jiang, Y.; Tan, Y. Universal smartphone-assisted label-free CRISPR/Cas12a-DNAzyme chemiluminescence biosensing platform for on-site detection of nucleic acid and non-nucleic acid targets. Biosens. Bioelectron. 2024, 247, 115929. [Google Scholar] [CrossRef]
- Qiu, D.; He, F.; Liu, Y.; Zhou, Z.; Yang, Y.; Long, Z.; Chen, Q.; Chen, D.; Wei, S.; Mao, X.; et al. A Cost-Effective Hemin-Based Artificial Enzyme Allows for Practical Applications. Adv. Sci. 2024, 11, 2402237. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Wang, B.; Jie, G. A dual-mode biosensor based on CdIn2S4 hollow microsphere combined with Au@CuO/Cu2O nanozyme for sensitive detection of Sa-16S rDNA. Sens. Actuators B Chem. 2024, 417, 136184. [Google Scholar] [CrossRef]
- Jia, L.; Wang, Y.; Jiang, M.; Yuan, W.; Jin, Y.; Yan, W.; Ze, X.; Chen, Y.; Niu, L. An ultrasensitive dual-mode stagey for 17β-estradiol assay: Photoelectrochemical and colorimetric biosensor based on a WSe(2)/TiO(2)-modified electrode coupled with nucleic acid amplification. Anal. Chim. Acta 2024, 1319, 342966. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yu, R.; Zeng, H.; Wang, X.; Luo, S.; Li, W.; Luo, X.; Yang, T. Nucleic acid-based ratiometric electrochemiluminescent, electrochemical and photoelectrochemical biosensors: A review. Mikrochim. Acta 2019, 186, 405. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Liu, L.; Cai, Z.; Meng, M.; Luo, S.; Gong, J. Visual and photoelectrochemical analysis of antibiotic resistance genes enabled by surface-engineered ZIF-8@Au cascade nanozymes. Biosens. Bioelectron. 2024, 261, 116470. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, X.; Bao, Y.; Shen, H.; Fan, M.; Wang, Y.; Xiang, S.; Ran, X. Nucleic acid-functionalized gold nanoparticles as intelligent photothermal therapy agents for precise cancer treatment. Nanotechnology 2024, 35, 465101. [Google Scholar] [CrossRef]
- Zhang, L.; Parvin, R.; Lin, S.; Chen, M.; Zheng, R.; Fan, Q.; Ye, F. Peptide Nucleic Acid Clamp-Assisted Photothermal Multiplexed Digital PCR for Identifying SARS-CoV-2 Variants of Concern. Adv. Sci. 2024, 11, e2306088. [Google Scholar] [CrossRef]
- He, S.; Lian, H.; Cao, X.; Liu, B.; Wei, X. Light-Driven Photocatalytic-Photothermal Synergetic System for Portable and Sensitive Nucleic Acid Quantification. Anal. Chem. 2023, 95, 17613–17621. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Q.; Qi, L.; Fang, Q.; Shang, X.; Zhang, X.; Du, Y. Fluorophore and nanozyme-functionalized DNA walking: A dual-mode DNA logic biocomputing platform for microRNA sensing in clinical samples. Biosens. Bioelectron. 2024, 252, 116137. [Google Scholar] [CrossRef]
Nanomaterials | Nucleic Acid Types | Mechanism | Influence | Ref. |
---|---|---|---|---|
MoS2 NSs | ssDNA (CEA aptamer, G20, T20, A20, C20) | The electron transfer process from TMB to H2O2 catalyzed by the MoS2 NSs was obviously accelerated via adding ssDNA. | Enhancement of POD-like activity | [31] |
GO/Au | PBP2a aptamer | The phenomenon may be attributed to both aromatic stacking and electrostatic interaction with the substrate TMB. | Enhancement of POD-like activity | [32] |
3DBC-C3N4 | ssDNA (OTC aptamer, A22, T22, C22, and G22) | Facilitates TMB affinity for oxidation via electrostatic incorporation. | Enhancement of POD-like activity | [34] |
CuNCs | DNA nanosheet | It is due to the content of intermediates generated after the introduction of nanozymes. | Enhancement of POD-like activity and specificity | [18] |
Ti3C2 | TBA aptamer | This is probably attributed to the π−π stacking between the benzene ring structure of OPD and the nucleobases of ssDNA. | Enhancement of POD-like activity and specificity | [35] |
Porous Ti3C2 | OA aptamer | Exposed Ti enhances DNA adsorption improves TMB affinity, and increases active intermediate •OH production. | Enhancement of POD-like activity and specificity | [36] |
Fe3O4 NPs | DNA (Sm1, Sm2, Sm3) | Surface coverage was increased by bioconjugate DNA and Fe3O4 NP (physisorption < affinity coupling). | Enhancement of POD-like activity via DNA modification | [38] |
Fe-cdDNA | ssDNA | The electrons are transferred through the DNA pathway that consists of H-bonds and through-space interactions (saturated bonds) to Fe(II). | The morphology and catalytic activity can be regulated by controlling synthesis conditions | [39] |
Fe3O4 NPs/AuNPs | HCR products | HCR product with maximum negative phosphate charges exhibited highest binding for TMB oxidation. | Enhancement of POD-like activity | [41] |
Fe3O4NP@pSiO2 | hgDNA | The hgDNA enhances OPDA interaction with Fe3O4NP. | Enhancement of POD-like activity | [42] |
AuNP | DNAzyme | Hydroxyl radicals generated from the reversible O-O bond cleavage of hydrogen peroxide on AuNPs oxidize adjacent DNA bases, converting them into radical cations. Upon contact of this charge with AR bound to the DNA, charge (hole) transfer occurs. | Enhancement of POD-like activity and specificity | [43] |
CeO2 | ssDNA | Phosphate-coated nanozyme enhance their interaction with TMB via electrostatic interactions. | DNA can both enhance and inhibit OXD-like of CeO2 activity depending on buffer and DNA concentration | [14,15] |
CeO2 | PCR products | The nucleic acids adsorb onto surfaces and induce aggregation of CeO2 NPs. | Reduces the OXD-like activity of CeO2 NPs | [50] |
DAg/PtN DAu/PtN DCu/PtN DPtN | ssDNA (4 different nucleic acid sequences) | The four nanozymes are synthesized using DNA as a template. | Exhibits CAT-like activity | [58] |
Au25 NCs | White adipocyte aptamers | Aptamers are mainly endowed with targeted and low-toxicity properties | It has SOD-like and CAT-like catalytic activity | [67] |
Pt NPs | Oligonucleotides (A10, T10, C10, G10) | Pt2+ has coordination with nucleobase; the relative proportion of Pt2+ and Pt0 species determines enzyme activity. | Exhibits Laccase-like activity | [71] |
C–Cu | Cytosine | The catalytic process may consist of the following four steps: 1. The substrates are adsorbed around it because of the large specific surface area of C–Cu. 2. The polyphenol substrates are oxidized and lost electrons with the reduction of Cu2+ to Cu+. 3. The active sites of C–Cu contacts and binds to O2, and electrons transfer to O2. 4. O2 gains electrons, combines with free protons in the reaction system, and is reduced to H2O with the oxidation of Cu+ to Cu2+, realizing the catalytic cycle of C–Cu. | Laccase-like activity can be controlled by synthesis conditions | [72] |
Ag2O NPs | M17-F aptamer | Through interactions such as π-π stacking, hydrogen bonding, and other forces between nucleotide bases and the aromatic ring of the oxidized 2,4-DP substrate molecule, aptamers are able to adsorb increased amounts of the substrate and position it in close proximity to the cube-like Ag2O NPs. | All four base sequences enhance laccase-like activity | [74] |
AuNPs | ssDNA/dsDNA | Nitrogenous bases in DNA can adsorb onto the surface of AuNPs. However, the higher surface charge density and rigidity of dsDNA make its binding to AuNPs more difficult compared to ssDNA. | ssDNA inhibits the GOx-like activity of AuNPs; dsDNA slightly perturbs the catalytic activity | [76] |
AuNPs | G-rich DNA | Conformational changes in DNA nanomachines linked to the surface of AuNPs lead to changes in the exposed surface active area of the metal nanoparticles. | Reversible regulation of GOx-like activity | [78] |
Comparison Criteria | Nucleic Acid Nanozymes (NANs) | Natural Enzymes | Artificial Nanozymes | Traditional Detection Methods (e.g., ELISA) |
---|---|---|---|---|
Catalytic Activity | High; tunable via sequence engineering | High, but susceptible to denaturation | High; stable | N/A 1 |
Specificity | High; target identification via nucleic acid hybridization or aptamer binding | Moderate; based on enzyme-substrate specificity | Moderate; depends on surface properties | High; dependent on antibody or sensor selectivity |
Stability | High under diverse conditions | Low; sensitive to pH and temperature | Very high; robust in harsh conditions | Moderate; affected by environmental factors |
Biocompatibility | High; based on nucleic acid-based systems | High, but potential immunogenicity | Moderate; concerns with metal toxicity | Moderate to high, depending on materials used |
Cost and Scalability | Low cost; easy synthesis and modification | High cost; requires complex production | Moderate to high; depends on synthesis | Moderate to high; varies by detection system |
Regulability and Flexibility | Highly programmable by sequence design | Limited; requires genetic engineering | Limited; depends on material properties | Moderate; relies on functionalization strategies |
Detection Sensitivity | Very high; combinable with signal amplification | High, but requires optimized conditions | High; suitable for different detection methods | High; widely used in clinical diagnostics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Du, Z.; Zhang, Y.; Bai, R.; Zhu, L.; Xu, W. Exploring Nucleic Acid Nanozymes: A New Frontier in Biosensor Development. Biosensors 2025, 15, 142. https://doi.org/10.3390/bios15030142
Chen K, Du Z, Zhang Y, Bai R, Zhu L, Xu W. Exploring Nucleic Acid Nanozymes: A New Frontier in Biosensor Development. Biosensors. 2025; 15(3):142. https://doi.org/10.3390/bios15030142
Chicago/Turabian StyleChen, Keren, Zaihui Du, Yangzi Zhang, Ruobin Bai, Longjiao Zhu, and Wentao Xu. 2025. "Exploring Nucleic Acid Nanozymes: A New Frontier in Biosensor Development" Biosensors 15, no. 3: 142. https://doi.org/10.3390/bios15030142
APA StyleChen, K., Du, Z., Zhang, Y., Bai, R., Zhu, L., & Xu, W. (2025). Exploring Nucleic Acid Nanozymes: A New Frontier in Biosensor Development. Biosensors, 15(3), 142. https://doi.org/10.3390/bios15030142