A Time-Resolved Fluorescent Microsphere Immunochromatographic Assay for Determination of Vitamin B12 in Infant Formula Milk Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment and Chemicals
2.2. Production of Anti-VB12 mAb
2.3. Property Determination of Anti-VB12 mAb
2.4. Production of Fluorescent Microsphere-Labeled Monoclonal Antibody
2.5. Assembly of the Fluorescent Immunochromatographic Test Strip
2.6. Sensitivity Determination of TRFM-ICA
2.7. Sample Analysis
3. Results and Discussion
3.1. Principle of the TRFM-ICA
3.2. Evaluation of mAb Performance
3.3. Sensitivity of the TRFM-ICA
3.4. Application of TRFM-ICA
3.5. Analysis of VB12 in Infant Formula Milk Powder
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herreros-Chavez, L.; Morales-Rubio, A.; Cervera, M.L. Green methodology for quality control of elemental content of infant milk powder. LWT 2019, 111, 484–489. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Lin, Y.; Li, Y.; Ren, F.; Guo, H. How far is it from infant formula to human milk? A look at the human milk oligosaccharides. Trends Food Sci. Technol. 2021, 118, 374–387. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Meng, L.; Jiang, S.; Wang, J.; Zheng, N. Safety risk and quality evaluation of infant formula milk powders. Food Ind. 2021, 42, 476–479. [Google Scholar]
- Zhang, L.; Wang, H.; Hu, Q.; Guo, X.; Li, L.; Shuang, S.; Gong, X.; Dong, C. Carbon quantum dots doped with phosphorus and nitrogen are a viable fluorescent nanoprobe for determination and cellular imaging of vitamin B12 and cobalt(II). Microchim. Acta 2019, 186, 506. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gill, B.D.; Grainger, M.N.C.; Manley-Harris, M. The analysis of vitamin B12 in milk and infant formula: A review. Int. Dairy J. 2019, 99, 104543. [Google Scholar] [CrossRef]
- Ceribeli, C.; Otte, J.; Cardoso, D.R.; Ahrne, L.M. Kinetics of vitamin B12 thermal degradation in cow’s milk. J. Food Eng. 2023, 357, 111633. [Google Scholar] [CrossRef]
- Bell, D.S.H. Metformin-induced vitamin B12 deficiency can cause or worsen distal symmetrical, autonomic and cardiac neuropathy in the patient with diabetes. Diabetes Obes. Metab. 2022, 24, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gao, T.; Wu, X.; Geng, M.; Teng, F.; Li, Y. Investigation of soybean lipophilic proteins as carriers for vitamin B12: Focus on interaction mechanism, physicochemical functionality, and digestion characteristics. Food Chem. 2023, 424, 136435. [Google Scholar] [CrossRef]
- Pramanik, S.; Roy, S.; Bhandari, S. The quantum dot-FRET-based detection of vitamin B12 at a picomolar level. Nanoscale Adv. 2020, 2, 3809–3814. [Google Scholar] [CrossRef]
- Yu, Y.M.; So, S.K.C.; Ben Khallouq, B. The effect of metformin on vitamin B12 level in pediatric patients. Ann. Pediatr. Endocrinol. Metab. 2022, 27, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Tong, C. Silicon nanoparticles/gold nanoparticles composite as a fluorescence probe for sensitive and selective detection of Co2+ and vitamin B12 based on the selective aggregation and inner filter effect. Spectrochim. Acta Part A—Mol. Biomol. Spectrosc. 2022, 268, 120706. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, B.; Zheng, C.Y. The Fast Quantification of Vitamin B12 in Milk Powder by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. Molecules 2024, 29, 1795. [Google Scholar] [CrossRef]
- Erarpat, S.; Bodur, S.; Guenkara, O.T.; Bakirdere, S. Combination of high performance liquid chromatography and flame atomic absorption spectrophotometry using a novel nebulizer interface supported T shaped slotted quartz tube for the determination of Vitamin B12. J. Pharm. Biomed. Anal. 2022, 217, 114855. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.I.; Kuellmer, M.; Giese, B.; Huebner, U.; Weber, K.; Cialla-May, D.; Popp, J. Surface-enhanced Raman spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals. Talanta 2016, 160, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Tian, S.L.; Zhao, W.H.; Liu, K.; Guo, J.H. Electrochemical vitamin sensors: A critical review. Talanta 2021, 222, 121645. [Google Scholar] [CrossRef]
- Qiu, X.; Zhang, H.S.; Yin, Y.H.; Brandes, H.; Marsala, T.; Stenerson, K.; Cramer, H.; You, H. Determination of active vitamin B12 (cobalamin) in dietary supplements and ingredients by reversed-phase liquid chromatography: Single-laboratory validation. Food Chem. 2019, 298, 125010. [Google Scholar] [CrossRef] [PubMed]
- Chamlagain, B.; Edelmann, M.; Kariluoto, S.; Ollilainen, V.; Piironen, V. Ultra-high performance liquid chromatographic and mass spectrometric analysis of active vitamin B12 in cells of Propionibacterium and fermented cereal matrices. Food Chem. 2015, 166, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Dubascoux, S.; Payot, J.R.; Sylvain, P.; Nicolas, M.; Gimenez, E.C. Vitamin B12 quantification in human milk—Beyond current limitations using liquid chromatography and inductively coupled plasma—Mass spectrometry. Food Chem. 2021, 362, 130197. [Google Scholar] [CrossRef] [PubMed]
- Teepoo, S.; Wongtongdee, U.; Phapugrangkul, P. Development of qualitative and quantitative immunochromatographic strip test assay for rapid and simple detection of leucomalachite green residual in aquatic animals. Food Chem. 2020, 320, 126613. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.L.; Xu, X.X.; Liu, L.Q.; Kuang, H.; Xu, L.G.; Xu, C.L. Immunochromatographic assays for ultrasensitive and high specific determination of enrofloxacin in milk, eggs, honey, and chicken meat. J. Dairy Sci. 2022, 105, 1999–2010. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.Z.; Aller, R.C.; Kaushik, A. Analysis of vitamin B12 in seawater and marine sediment porewater using ELISA. Limnol. Oceanogr. Methods 2011, 9, 515–523. [Google Scholar] [CrossRef]
- Kumar, L.S.S.; Thakur, M.S. Competitive immunoassay for analysis of vitamin B12. Anal. Biochem. 2011, 418, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, L.S.; Ragavan, K.V.; Abhijith, K.S.; Thakur, M.S. Immunodipstick based gold nanosensor for vitamin B12 in fruit and energy drinks. Anal. Methods 2013, 5, 1806–1810. [Google Scholar] [CrossRef]
- Selvakumar, L.S.; Thakur, M.S. Dipstick based immunochemiluminescence biosensor for the analysis of vitamin B12 in energy drinks: A novel approach. Anal. Chim. Acta 2012, 722, 107–113. [Google Scholar] [CrossRef]
- Chen, Z.J.; Wu, H.L.; Xiao, Z.L.; Fu, H.J.; Shen, Y.D.; Luo, L.; Wang, H.; Lei, H.T.; Hongsibsong, S.; Xu, Z.L. Rational hapten design to produce high-quality antibodies against carbamate pesticides and development of immunochromatographic assays for simultaneous pesticide screening. J. Hazard. Mater. 2021, 421, 125241. [Google Scholar] [CrossRef]
- Liu, L.; Chang, Y.; Lou, J.X.; Zhang, S.; Yi, X.Y. Overview on the Development of Alkaline-Phosphatase-Linked Optical Immunoassays. Molecules 2023, 28, 6565. [Google Scholar] [CrossRef]
- Wang, Y.M.; Zhang, G.; Xiao, X.Y.; Shu, X.H.; Fei, D.; Guang, Y.L.; Zhou, Y.M.; Lai, W.H. High-Performance Fluorescent Microspheres Based on Fluorescence Resonance Energy Transfer Mode for Lateral Flow Immunoassays. Anal. Chem. 2023, 95, 17860–17867. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wang, Y.X. Recent advances in metal–organic frameworks as emerging platforms for immunoassays. TrAC Trends Anal. Chem. 2024, 171, 117520. [Google Scholar] [CrossRef]
- Xia, N.; Gao, F.L.; Zhang, J.W.; Wang, J.Q.; Huang, Y.L. Overview on the Development of Electrochemical Immunosensors by the Signal Amplification of Enzyme- or Nanozyme-Based Catalysis Plus Redox Cycling. Molecules 2024, 29, 2796. [Google Scholar] [CrossRef]
- Ma, X.H.; Ge, Y.J.; Xia, N. Overview of the Design and Application of Dual-Signal Immunoassays. Molecules 2024, 29, 4551. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.D.; Wang, L.Z.; Shao, J.D.; Yang, D.D.; Fu, X.R.; Sun, X.L. One-step time-resolved fluorescence microsphere immunochromatographic test strip for quantitative and simultaneous detection of DON and ZEN. Anal. Bioanal. Chem. 2021, 413, 6489–6502. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.W.; An, X.S.; Xiang, Y.D.; Guan, F.K.; Zhang, Q.; Yang, Q.Q.; Sun, X.; Guo, Y.M. Novel Time-Resolved Fluorescence Immunochromatography Paper-Based Sensor with Signal Amplification Strategy for Detection of Deoxynivalenol. Sensors 2020, 20, 6577. [Google Scholar] [CrossRef]
- Liu, J.; Xu, X.X.; Wu, A.H.; Song, S.S.; Xu, L.G.; Xu, C.L.; Kuang, H.; Liu, L.Q. Immunochromatographic assay for the rapid and sensitive detection of etoxazole in orange and grape samples. LWT 2022, 163, 113519. [Google Scholar] [CrossRef]
- Li, J.Y.; Jiang, L.M.; Shu, Y.; Song, S.S.; Xu, L.G.; Kuang, H.; Xu, C.L.; Guo, L.L. Quantitative immunochromatographic assay for rapid and cost-effective on-site detection of benzo[a]pyrene in oilfield chemicals. J. Hazard. Mater. 2024, 469, 134100. [Google Scholar] [CrossRef]
- Li, X.F.; Li, J.Y.; Feng, Y.W.; Liu, L.Q.; Kuang, H.; Xu, C.L.; Guo, L.L. Fluorescent microsphere immunochromatographic sensor for the detection of total fumonisins B1, B2, and B3 in grain samples. J. Food Compos. Anal. 2024, 128, 106018. [Google Scholar] [CrossRef]
- Sun, J.D.; Shi, Z.X.; Zhang, T.; Wang, L.Z.; Dong, R.R.; Zhang, Y.Z.; Sun, X.L. Highly sensitive and quantitative fluorescent strip immunosensor based on an independent control system for rapid detection of tetrodotoxin in shellfish. Food Control 2023, 145, 109403. [Google Scholar] [CrossRef]
- Lei, X.L.; Xu, X.X.; Wang, L.; Liu, L.Q.; Kuang, H.; Xu, L.G.; Xu, C.L. Fluorescent microsphere-based lateral-flow immunoassay for rapid and sensitive determination of eugenols. Food Chem. 2023, 411, 135475. [Google Scholar] [CrossRef] [PubMed]
- Hampel, D.; Shahab-Ferdows, S.; Domek, J.M.; Siddiqua, T.; Raqib, R.; Allen, L.H. Competitive chemiluminescent enzyme immunoassay for vitamin B12 analysis in human milk. Food Chem. 2014, 153, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.Z.; Liu, L.Q.; Song, S.S.; Kuang, H.; Xu, C.L. Development of Sensitive, Rapid, and Effective Immunoassays for the Detection of Vitamin B12 in Fortified Food and Nutritional Supplements. Food Anal. Methods 2017, 10, 10–18. [Google Scholar] [CrossRef]
- Yang, F.F.; Zhu, L.X.; Meng, W.; Liu, R.R. Novel artificial antigen synthesis for antibody production and development of an indirect competitive ELISA of cyanocobalamin. Anal. Methods 2015, 7, 5275–5281. [Google Scholar] [CrossRef]
Vitamins | IC50 (ng/mL) | CR (%) |
---|---|---|
VB12 | 0.370 | 100 |
Vitamin B1 | >100 | <1 |
Vitamin B2 | >100 | <1 |
Vitamin B3 | >100 | <1 |
Vitamin B5 | >100 | <1 |
Vitamin B6 | >100 | <1 |
Vitamin B7 | >100 | <1 |
Vitamin B9 | >100 | <1 |
Samples | The Determination Value of Microbiological Method (μg/kg) | TRFM-ICA | Relative Accuracy (%) ± SD | |
---|---|---|---|---|
Detection Value (μg/kg) Mean ± SD | CV (%) | |||
1 | 68.09 | 60.23 ± 1.35 | 2.2 | 88.4 ± 2.0 |
2 | 64.02 | 69.37 ± 2.88 | 4.2 | 108.4 ± 4.5 |
3 | 30.30 | 32.45 ± 1.09 | 3.4 | 107.1 ± 3.6 |
4 | 72.21 | 60.67 ± 3.03 | 5.0 | 84.0 ± 4.2 |
5 | 30.03 | 26.29 ± 0.67 | 2.5 | 87.6 ± 2.2 |
6 | 32.11 | 30.35 ± 1.98 | 6.2 | 94.5 ± 6.2 |
7 | 37.28 | 41.67 ± 1.43 | 3.4 | 111.7 ± 3.8 |
8 | 40.80 | 35.29 ± 2.32 | 6.6 | 86.5 ± 5.7 |
9 | 34.81 | 30.37 ± 0.74 | 2.4 | 87.3 ± 2.1 |
Samples | The Determination Value of Microbiological Method (μg/kg) | Test Results After 180 Days by TRFM-ICA | Relative Accuracy (%) ± SD | |
---|---|---|---|---|
Detection Value (μg/kg) Mean ± SD | CV (%) | |||
3 | 30.30 | 32.19 ± 1.27 | 4.0 | 106.2 ± 4.2 |
4 | 72.21 | 65.32 ± 3.32 | 5.1 | 89.8 ± 4.6 |
Method | Samples | LOD (ng/mL) | Measuring Time |
---|---|---|---|
TRFM-ICA | Infant formula milk powder | 0.059 | 15 min |
ELISA [21] | Seawater | 0.2 | 80 min |
ELISA [22] | Vitamin injections, tablets capsules and chocolates | 10 | 90 min |
Immunodipstick-based gold nanosensor [23] | Fruit and energy drinks | 1 | / |
Dipstick-based immunochemiluminescence biosensor [24] | Energy drinks | 1 | 10 min |
Competitive chemiluminescent enzyme immunoassay [38] | Milk | 0.08 ng/mL | 97 min |
ELISA [39] | Vitamin tablets, energy drink, and infant milk powder | 0.065 | 75 min |
ELISA [40] | VB12 tablet supplements | 0.2 | 133 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Feng, Y.; Zhou, Q.; Yang, T.; Kuang, H.; Xu, C.; Guo, L. A Time-Resolved Fluorescent Microsphere Immunochromatographic Assay for Determination of Vitamin B12 in Infant Formula Milk Powder. Biosensors 2025, 15, 65. https://doi.org/10.3390/bios15020065
Lu Q, Feng Y, Zhou Q, Yang T, Kuang H, Xu C, Guo L. A Time-Resolved Fluorescent Microsphere Immunochromatographic Assay for Determination of Vitamin B12 in Infant Formula Milk Powder. Biosensors. 2025; 15(2):65. https://doi.org/10.3390/bios15020065
Chicago/Turabian StyleLu, Qianqian, Yongwei Feng, Qi Zhou, Ting Yang, Hua Kuang, Chuanlai Xu, and Lingling Guo. 2025. "A Time-Resolved Fluorescent Microsphere Immunochromatographic Assay for Determination of Vitamin B12 in Infant Formula Milk Powder" Biosensors 15, no. 2: 65. https://doi.org/10.3390/bios15020065
APA StyleLu, Q., Feng, Y., Zhou, Q., Yang, T., Kuang, H., Xu, C., & Guo, L. (2025). A Time-Resolved Fluorescent Microsphere Immunochromatographic Assay for Determination of Vitamin B12 in Infant Formula Milk Powder. Biosensors, 15(2), 65. https://doi.org/10.3390/bios15020065