Nano-Engineered Sensor Systems for Disease Diagnostics: Advances in Smart Healthcare Applications
Abstract
1. Introduction
2. Nanosensor Concepts and Mechanism of Action
2.1. Core Concepts of Nanosensor Technology
2.2. Nanosensor Design and Engineering
2.2.1. Nanomaterial Properties Relevant to Sensing
2.2.2. Fabrication and Engineering Strategies for Nanosensors
2.3. Attributes of Nanosensor Technology
3. Applications of Nanosensors in Disease Diagnostics
3.1. Integrating Nanotechnology into the Design of Smart Sensors
3.2. Revolutionizing Point-of-Care Diabetes Monitoring with Nanosensors
3.3. Advancements in Pharmaceutical Research: The Role of Nanosensors in Drug Discovery
3.4. Transforming Cancer Diagnosis with the Potential of Nanosensors

3.5. Advancements in Point-of-Care Diagnostics for Ebola and Marburg Using Nanosensors
4. Translational Case Studies and Field Deployment of Nanosensors
4.1. Ongoing and Customized Monitoring for Cardiac Health
4.2. Nucleic Acid Detection for Rapid Point-of-Care Diagnosis of Infectious and Genetic Disorders
4.3. Advanced HIV Virus Detection
4.4. Tracking Biological Abnormalities for Early Detection and Treatment
4.5. Nanosensor Technology for Rapid Bilharzia Diagnosis
5. Discussion
Challenges and Future Directions in Nanosensor Diagnostics
6. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.-J.; Choi, S.-J.; Jang, J.-S.; Cho, H.-J.; Kim, I.-D. Innovative Nanosensor for Disease Diagnosis. Accounts Chem. Res. 2017, 50, 1587–1596. [Google Scholar] [CrossRef]
- Li, Z.; He, B.; Li, Y.; Liu, B.-F.; Zhang, G.; Liu, S.; Hu, T.Y.; Li, Y. Synergizing Nanosensor-Enhanced Wearable Devices with Machine Learning for Precision Health Management Benefiting Older Adult Populations. ACS Nano 2025, 19, 26273–26295. [Google Scholar] [CrossRef]
- Rong, G.; Corrie, S.R.; Clark, H.A. In Vivo Biosensing: Progress and Perspectives. ACS Sens. 2017, 2, 327–338. [Google Scholar] [CrossRef]
- Gulati, S.; Yadav, R.; Kumari, V.; Nair, S.; Gupta, C.; Aishwari, M. Nanosensors in healthcare: Transforming real-time monitoring and disease management with cutting-edge nanotechnology. RSC Pharm. 2025, 2, 1003–1018. [Google Scholar] [CrossRef]
- Mulaudji, K.P.; Mokwebo, K.V.; De Bruin, F.Q.; Pokpas, K.; Ross, N. Advancement in electrochemical sensing of chloramphenicol in varying matrixes: A review. Talanta Open 2025, 12, 100561. [Google Scholar] [CrossRef]
- Yin, S. Artificial Intelligence-Assisted Nanosensors for Clinical Diagnostics: Current Advances and Future Prospects. Biosensors 2025, 15, 656. [Google Scholar] [CrossRef]
- Pantelopoulos, A.; Bourbakis, N.G. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 40, 1–12. [Google Scholar] [CrossRef]
- Borisov, S.M.; Wolfbeis, O.S. Optical Biosensors. Chem. Rev. 2008, 108, 423–461. [Google Scholar] [CrossRef]
- Song, S.; Qin, Y.; He, Y.; Huang, Q.; Fan, C.; Chen, H.-Y. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem. Soc. Rev. 2010, 39, 4234–4243. [Google Scholar] [CrossRef]
- Peng, H.-S.; Chiu, D.T. Soft fluorescent nanomaterials for biological and biomedical imaging. Chem. Soc. Rev. 2014, 44, 4699–4722. [Google Scholar] [CrossRef]
- Mohamed, E.F.; Awad, G. Chapter Six—Development of nano-sensor and biosensor as an air pollution detection technique for the foreseeable future. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2022; pp. 163–188. [Google Scholar] [CrossRef]
- Arndt, N.; Tran, H.D.N.; Zhang, R.; Xu, Z.P.; Ta, H.T. Different Approaches to Develop Nanosensors for Diagnosis of Diseases. Adv. Sci. 2020, 7, 2001476. [Google Scholar] [CrossRef]
- Dhahi, T.; Dafhalla, A.K.Y.; Tayfour, O.E.; Mubarakali, A.; Alqahtani, A.S.; Ahmed, A.E.T.; Elobaid, M.E.; Adam, T.; Gopinath, S.C. Advances in nano sensors for monitoring and optimal performance enhancement in photovoltaic cells. iScience 2024, 27, 109347. [Google Scholar] [CrossRef]
- Chauhan, N.; Saxena, K.; Rawal, R.; Yadav, L.; Jain, U. Advances in surface-enhanced Raman spectroscopy-based sensors for detection of various biomarkers. Prog. Biophys. Mol. Biol. 2023, 184, 32–41. [Google Scholar] [CrossRef]
- Leong, S.X.; Leong, Y.X.; Koh, C.S.L.; Tan, E.X.; Nguyen, L.B.T.; Chen, J.R.T.; Chong, C.; Pang, D.W.C.; Sim, H.Y.F.; Liang, X.; et al. Emerging nanosensor platforms and machine learning strategies toward rapid, point-of-need small-molecule metabolite detection and monitoring. Chem. Sci. 2022, 13, 11009–11029. [Google Scholar] [CrossRef] [PubMed]
- Barth, J.V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679. [Google Scholar] [CrossRef]
- Vagena, I.-A.; Gatou, M.-A.; Theocharous, G.; Pantelis, P.; Gazouli, M.; Pippa, N.; Gorgoulis, V.G.; Pavlatou, E.A.; Lagopati, N. Functionalized ZnO-Based Nanocomposites for Diverse Biological Applications: Current Trends and Future Perspectives. Nanomaterials 2024, 14, 397. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Pal, R.; Bej, S.; Mondal, M.; Kundu, K.; Banerjee, P. Recent progress in 0D optical nanoprobes for applications in the sensing of (bio)analytes with the prospect of global health monitoring and detailed mechanistic insights. Mater. Adv. 2022, 3, 4421–4459. [Google Scholar] [CrossRef]
- Chelliah, R.; Khan, I.; Wei, S.; Madar, I.H.; Sultan, G.; Daliri, E.B.-M.; Swamidoss, C.; Oh, D.H. Intelligent Packaging Systems: Food Quality and Intelligent Medicine Box Based on Nano-sensors. In Smart Nanomaterials in Biomedical Applications; Kim, J.-C., Alle, M., Husen, A., Eds.; Springer: Cham, Switzerland, 2022; pp. 555–587. [Google Scholar] [CrossRef]
- Li, P.; Chen, S.; Dai, H.; Yang, Z.; Chen, Z.; Wang, Y.; Chen, Y.; Peng, W.; Shan, W.; Duan, H. Recent advances in focused ion beam nanofabrication for nanostructures and devices: Fundamentals and applications. Nanoscale 2020, 13, 1529–1565. [Google Scholar] [CrossRef]
- Ebad-Sichani, S.; Sharafi-Badr, P.; Hayati, P.; Jaafar Soltanian-Fard, M. Nano-Fabrication Methods. In Nanofabrication Techniques-Principles, Processes and Applications; Sahu, D.E., Huang, J.Y., Eds.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Thakur, M.; Wang, B.; Verma, M.L. Development and applications of nanobiosensors for sustainable agricultural and food industries: Recent developments, challenges and perspectives. Environ. Technol. Innov. 2022, 26, 102371. [Google Scholar] [CrossRef]
- Xu, S.; Luo, Y.; Graeser, R.; Warnecke, A.; Kratz, F.; Hauff, P.; Licha, K.; Haag, R. Development of pH-responsive core–shell nanocarriers for delivery of therapeutic and diagnostic agents. Bioorganic Med. Chem. Lett. 2009, 19, 1030–1034. [Google Scholar] [CrossRef]
- Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760. [Google Scholar] [CrossRef]
- Itaka, K.; Chung, U.-I.; Kataoka, K. Supramolecular nanocarrier for gene and siRNA delivery. Nihon Rinsho. Jpn. J. Clin. Med. 2006, 64, 253–257. [Google Scholar]
- White, R.R.; Sullenger, B.A.; Rusconi, C.P. Developing aptamers into therapeutics. J. Clin. Investig. 2000, 106, 929–934. [Google Scholar] [CrossRef]
- Parveen, S.; Sahoo, S.K. Polymeric nanoparticles for cancer therapy. J. Drug Target. 2008, 16, 108–123. [Google Scholar] [CrossRef] [PubMed]
- Yonzon, C.R.; Stuart, D.A.; Zhang, X.; McFarland, A.D.; Haynes, C.L.; Van Duyne, R.P. Towards advanced chemical and biological nanosensors—An overview. Talanta 2005, 67, 438–448. [Google Scholar] [CrossRef]
- Park, T.G.; Jeong, J.H.; Kim, S.W. Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev. 2006, 58, 467–486. [Google Scholar] [CrossRef] [PubMed]
- Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, M.; Ptitsyn, A.; McLamore, E.S.; Claussen, J.C. Nanomaterial-mediated Biosensors for Monitoring Glucose. J. Diabetes Sci. Technol. 2014, 8, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Ci, S.; Li, J. Pt Nanoparticles Inserting in Carbon Nanotube Arrays: Nanocomposites for Glucose Biosensors. J. Phys. Chem. C 2009, 113, 13482–13487. [Google Scholar] [CrossRef]
- Claussen, J.C.; Hengenius, J.B.; Wickner, M.M.; Fisher, T.S.; Umulis, D.M.; Porterfield, D.M. Effects of Carbon Nanotube-Tethered Nanosphere Density on Amperometric Biosensing: Simulation and Experiment. J. Phys. Chem. C 2011, 115, 20896–20904. [Google Scholar] [CrossRef]
- Noah, N.M.; Ndangili, P.M. Current Trends of Nanobiosensors for Point-of-Care Diagnostics. J. Anal. Methods Chem. 2019, 2019, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Schellenberger, E. Bioresponsive nanosensors in medical imaging. J. R. Soc. Interface 2009, 7, S83–S91. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.A.; Mousavi, S.M.; Faghihi, R.; Arjmand, M.; Sina, S.; Amani, A.M. Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding. Radiat. Phys. Chem. 2018, 146, 77–85. [Google Scholar] [CrossRef]
- Akbarian, M.; Ghasemi, Y.; Uversky, V.N.; Yousefi, R. Chemical modifications of insulin: Finding a compromise between stability and pharmaceutical performance. Int. J. Pharm. 2018, 547, 450–468. [Google Scholar] [CrossRef]
- Ravanshad, R.; Karimi Zadeh, A.; Amani, A.M.; Mousavi, S.M.; Hashemi, S.A.; Savar Dashtaki, A.; Mirzaei, E.; Zare, B. Application of nanoparticles in cancer detection by Raman scattering based techniques. Nano Rev. Exp. 2018, 9, 1373551. [Google Scholar] [CrossRef]
- Malik, S.; Muhammad, K.; Waheed, Y. Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules 2023, 28, 6624. [Google Scholar] [CrossRef]
- Smith, S.; Nagel, D.J. Sensor Technology Handbook; Wilson, J.S., Ed.; Newnes: Oxford, UK, 2005; pp. 563–574. [Google Scholar] [CrossRef]
- Fu, Y.; Ma, Q. Recent developments in electrochemiluminescence nanosensors for cancer diagnosis applications. Nanoscale 2020, 12, 13879–13898. [Google Scholar] [CrossRef]
- Wazid, M.; Das, A.K.; Shetty, S.; Rodrigues, J.J.P.C.; Guizani, M. AISCM-FH: AI-Enabled Secure Communication Mechanism in Fog Computing-Based Healthcare. IEEE Trans. Inf. Forensics Secur. 2022, 18, 319–334. [Google Scholar] [CrossRef]
- Bano, R.; Soleja, N.; Mohsin, M. Genetically Encoded FRET-Based Nanosensor for Real-Time Monitoring of A549 Exosomes: Early Diagnosis of Cancer. Anal. Chem. 2023, 95, 5738–5746. [Google Scholar] [CrossRef] [PubMed]
- Huber, F.; Lang, H.P.; Zhang, J.; Rimoldi, D.; Gerber, C. Nanosensors for cancer detection. Swiss Med. Wkly. 2015, 145, w14092. [Google Scholar] [CrossRef]
- Xu, L.; Chen, Y.; Ye, J.; Fan, M.; Weng, G.; Shen, Y.; Lin, Z.; Lin, D.; Xu, Y.; Feng, S. Optical Nanobiosensor Based on Surface-Enhanced Raman Spectroscopy and Catalytic Hairpin Assembly for Early-Stage Lung Cancer Detection via Blood Circular RNA. ACS Sensors 2024, 9, 2020–2030. [Google Scholar] [CrossRef]
- Arntz, Y.; Seelig, J.D.; Lang, H.P.; Zhang, J.; Hunziker, P.; Ramseyer, J.P.; Meyer, E.; Hegner, M.; Gerber, C. Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 2002, 14, 86–90. [Google Scholar] [CrossRef]
- Braun, T.; Backmann, N.; Vögtli, M.; Bietsch, A.; Engel, A.; Lang, H.-P.; Gerber, C.; Hegner, M. Conformational Change of Bacteriorhodopsin Quantitatively Monitored by Microcantilever Sensors. Biophys. J. 2006, 90, 2970–2977. [Google Scholar] [CrossRef]
- Huber, F.; Lang, H.P.; Backmann, N.; Rimoldi, D.; Gerber, C. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays. Nat. Nanotechnol. 2013, 8, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Chen, Y.; Tan, M.J.A.; Ren, K.; Wu, H. Microfluidic technologies for vasculature biomimicry. Analyst 2019, 144, 4461–4471. [Google Scholar] [CrossRef]
- Mauk, M.G.; Liu, C.; Sadik, M.; Bau, H.H. Microfluidic Devices for Nucleic Acid (NA) Isolation, Isothermal NA Amplification, and Real-Time Detection. In Mobile Health Technologies: Methods and Protocols; Rasooly, A., Herold, K., Eds.; Humana Press: New York, NY, USA, 2015; pp. 15–40. [Google Scholar] [CrossRef]
- Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors 2021, 21, 5185. [Google Scholar] [CrossRef]
- Farshidfar, N.; Hamedani, S. The Potential Role of Smartphone-Based Microfluidic Systems for Rapid Detection of COVID-19 Using Saliva Specimen. Mol. Diagn. Ther. 2020, 24, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, L.S.B.; Verma, N. Alkaline phosphatase inhibition based conductometric biosensor for phosphate estimation in biological fluids. Biosens. Bioelectron. 2015, 68, 611–616. [Google Scholar] [CrossRef]
- Rodrigues, D.; Barbosa, A.I.; Rebelo, R.; Kwon, I.K.; Reis, R.L.; Correlo, V.M. Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review. Biosensors 2020, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Guerrieri, A.; Ciriello, R.; Crispo, F.; Bianco, G. Detection of choline in biological fluids from patients on haemodialysis by an amperometric biosensor based on a novel anti-interference bilayer. Bioelectrochemistry 2019, 129, 135–143. [Google Scholar] [CrossRef]
- Ajibola, O.; Gulumbe, B.H.; Eze, A.A.; Obishakin, E. Tools for Detection of Schistosomiasis in Resource Limited Settings. Med. Sci. 2018, 6, 39. [Google Scholar] [CrossRef]
- Yang, M.; Kostov, Y.; Bruck, H.A.; Rasooly, A. Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of Staphylococcal Enterotoxin B (SEB) in food. Int. J. Food Microbiol. 2009, 133, 265–271. [Google Scholar] [CrossRef]
- Tyagi, P.K.; Arya, A.; Ramniwas, S.; Tyagi, S. Editorial: Recent trends in nanotechnology in precision and sustainable agriculture. Front. Plant Sci. 2023, 14, 1256319. [Google Scholar] [CrossRef] [PubMed]
- Onyeaka, H.; Passaretti, P.; Miri, T.; Al-Sharify, Z.T. The safety of nanomaterials in food production and packaging. Curr. Res. Food Sci. 2022, 5, 763–774. [Google Scholar] [CrossRef]
- Mustafa, F.; Andreescu, S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv. 2020, 10, 19309–19336. [Google Scholar] [CrossRef] [PubMed]
- Long, W.; Yang, J.; Zhao, Q.; Pan, Y.; Luan, X.; He, B.; Han, X.; Wang, Y.; Song, Y. Metal–Organic Framework-DNA Bio-Barcodes Amplified CRISPR/Cas12a Assay for Ultrasensitive Detection of Protein Biomarkers. Anal. Chem. 2022, 95, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Pan, B.; Long, W.; Pan, Y.; Zhou, D.; Luan, X.; He, B.; Wang, Y.; Song, Y. Metal Organic Framework-Based Bio-Barcode CRISPR/Cas12a Assay for Ultrasensitive Detection of MicroRNAs. Nano Lett. 2022, 22, 9714–9722. [Google Scholar] [CrossRef]



| Fabrication Technique | Description | Quantitative Outcomes | Reference |
|---|---|---|---|
| Template-Assisted Fabrication | Uses lithographic or self-assembled templates to guide nanomaterial growth. | Pattern fidelity: ±5% deviation; Batch yield: >90%; Sensor noise: <2 µV RMS | [20] |
| Directed Self-Assembly | Combines bottom-up assembly with external fields (e.g., electric/magnetic). | Orientation accuracy: >95%; Feature resolution: ~10 nm; Yield: ~85% | [21] |
| Nanopatterning and Nanolithography | Integrates e-beam or nanoimprint lithography with growth processes. | Line edge roughness: <3 nm; Reproducibility: >88%; Throughput: 106 devices/hour | [22] |
| Methods | Key Results | Defined Metrics | References |
|---|---|---|---|
| Breath nanosensors | VOC detection for lung cancer | LOD: 0.5 ppb; Response time: 12 s; Accuracy: 92% | [24] |
| Nanosensors for viral biomarkers | Real-time detection of Ebola antigen | LOD: 220 fg/mL; Sensitivity: 95.8%; Time-to-result: <10 min | [25] |
| Wearable biosensors | Continuous glucose tracking | LOD: 0.0054 mg/dL; Linear range: 0.18–900.78 mg/dL | [26] |
| SERS-based nanosensors | Tumor marker identification at single-cell level | Enhancement factor: >106; Specificity: >90%; SNR: >30 dB | [27] |
| Functionalized transistors | Label-free detection of PSA and BRAF mutations | Response time: <30 s; LOD: 1 ng/mL; Selectivity: >95% | [28] |
| Application of Nanosensors | Impact | Parameters | Important Factors | Reference |
|---|---|---|---|---|
| Cancer detection |
|
|
| [39] |
| Detection of autoimmune disease |
|
|
| [40] |
| Detection of chronic infection |
|
|
| [41] |
| Detection of kidney disease |
|
|
| [42] |
| Detection of endocrine disorders |
|
|
| [43] |
| Comparison Axis | Production Routes | Structural Types | Key Features | Final Performance |
|---|---|---|---|---|
| Procedures | 3D Nano-printing, photolithography | Carbon nanotubes, porous structures, quantum dots | Big active surface area, high reactivity | Sensitive and fast detection |
| Biocompatibility | Coating with biocompatible polymers | Biologically compatible structures | Improved biological constancy | Improved clinical applicability |
| Functional optimization | Layer deposition practices | Reduced flaws | High sensitivity | Enhanced diagnostic precision |
| Advanced approaches | Nano-fabrication, inkjet printing | Adjustable to complex situations | Quick recovery proficiencies | Real-time recognition |
| Assessment and optimization | Innovative methods like FTIR and XPS | Surface morphology | High selectivity and sensitivity indices | Developed operational applicability |
| Economic feasibility | Cost decrease | Simpler and cost-effective | Reduced entire production and application expenses | Improved availability in personalized treatment |
| Device Type | Target Biomarker | Sample Type | LOD | Response Time | Pre-Analytical Steps | Regulatory Status | Reference |
|---|---|---|---|---|---|---|---|
| Graphene/Nafion Glucose Sensor | Glucose | Whole blood | 0.0054 mg/dL | <10 s | Dilution, stabilization | ISO 13485-ready | [26] |
| QD Bioconjugate PSA Sensor | PSA (Prostate Cancer) | Serum | 1 ng/mL | ~15 min | Centrifugation, filtration | CLIA waiver pending | [28] |
| SERS Gold NP Tumor Sensor | CEA, HER2 | Serum | 0.5 ng/mL | <5 min | Protein removal | IVD-R compliant | [27] |
| AFM Cantilever BRAF Sensor | BRAF mutation | Saliva | 0.8 ng/mL | <5 min | Buffering, hybridization | ISO 13485-ready | [28] |
| SEA Nanostrip (Schistosomiasis) | Soluble Egg Antigen | Stool | 220 fg/mL | <10 min | Filtration, antigen capture | Field trial validated | [58] |
| CNT Breath VOC Sensor | VOCs (Lung Cancer) | Breath | 0.5 ppb | ~12 s | Humidity control | CLIA waiver in progress | [24] |
| Fe3O4 Nanozyme Ebola Sensor | EBV Glycoprotein | Plasma | 220 fg/mL | <10 min | Plasma separation | Emergency use authorized | [25] |
| ZnS QD Glucose Sensor | Glucose | Sweat | 0.018 mg/dL | <30 s | pH adjustment | ISO 13485-ready | [26] |
| Microfluidic K-Ras Sensor | K-Ras mutation | Buccal swab | 1:10,000 ratio | ~5 min | DNA extraction | IVD-R compliant | [51] |
| Screen-Printed Bilharzia Sensor | S. mansoni antibodies | Serum | 0.1 µg/mL | <15 min | Antigen immobilization | Field trial validated | [58] |
| IoT-Integrated Lactate Sensor | Lactate | Sweat | 0.02 mmol/L | <20 s | Electrolyte balancing | ISO 13485-ready | [30] |
| SPR Nanoantenna Ebola Sensor | EBV antigen | Plasma | 220 fg/mL | <10 min | Refractive index calibration | Emergency use authorized | [25] |
| Nanosensor Type/Platform | Classification | Target Analyte | Performance Metrics | Reference |
|---|---|---|---|---|
| Graphene-based glucose nanosensor | Biological (enzymatic/non-enzymatic) | Glucose | LOD: 0.0054 mg/dL; Linear range: 0.18–900.78 mg/dL | [26,32] |
| SERS nanosensor | Chemical/Optical | Tumor markers | Signal enhancement > 106; Specificity > 90%; SNR > 30 dB | [27,38,44] |
| Quantum dot bioconjugates | Biological/Optical | PSA (prostate-specific antigen) | LOD: 1 ng/mL; Imaging accuracy: 93% | [46] |
| AFM cantilever nanosensor | Physical/Mechanical | BRAF mutation, transcription factors | Sensitivity: 92%; Response time < 5 min | [47,49] |
| Ebola virus nanosensor (plasmonic nanoantenna) | Biological/Optical | EBV antigen | LOD: 220 fg/mL; Sensitivity: 95.8%; Time-to-result < 10 min | [25] |
| Wearable cardiac nanosensor | Biological/Electrochemical | BNP, CRP, LDL | Continuous monitoring; Cloud-based transmission | [50] |
| Microfluidic nucleic acid nanosensor | Biological | K-Ras mutation | Detection at 1:10,000 mutant-to-wild-type ratio | [51] |
| Nanozyme-strip (Fe3O4 MNPs) | Biological/Catalytic | Ebola glycoprotein | Colorimetric detection; Rapid point-of-care | [25] |
| HIV nano-microfluidic sensor | Biological | HIV viral load | Single-particle detection < 10 nm; Rapid viral quantification | [53] |
| Schistosomiasis AuNP nanosensor | Biological/Immunosensor | Soluble egg antigen (SEA) | Sensitivity: 92%; Specificity: 88%; Cost < $1/test | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Sun, J.; Xue, N.; Hassan, J.N.A.; Abbas, A. Nano-Engineered Sensor Systems for Disease Diagnostics: Advances in Smart Healthcare Applications. Biosensors 2025, 15, 777. https://doi.org/10.3390/bios15120777
Ma T, Sun J, Xue N, Hassan JNA, Abbas A. Nano-Engineered Sensor Systems for Disease Diagnostics: Advances in Smart Healthcare Applications. Biosensors. 2025; 15(12):777. https://doi.org/10.3390/bios15120777
Chicago/Turabian StyleMa, Tianjun, Jianhai Sun, Ning Xue, Jamal N. A. Hassan, and Adeel Abbas. 2025. "Nano-Engineered Sensor Systems for Disease Diagnostics: Advances in Smart Healthcare Applications" Biosensors 15, no. 12: 777. https://doi.org/10.3390/bios15120777
APA StyleMa, T., Sun, J., Xue, N., Hassan, J. N. A., & Abbas, A. (2025). Nano-Engineered Sensor Systems for Disease Diagnostics: Advances in Smart Healthcare Applications. Biosensors, 15(12), 777. https://doi.org/10.3390/bios15120777

