Kinetics and Activation Strategies in Toehold-Mediated and Toehold-Free DNA Strand Displacement
Abstract
1. Introduction
2. Proximity-Inducing Nucleic Acid Strand Displacement
2.1. Kinetic Foundation of Strand Displacement Reaction
2.2. Toehold-Mediated Strand Displacement Reaction
3. Activation and Regulation Strategies
3.1. Canonical Toehold
3.1.1. Toehold Length
3.1.2. Internal Toehold
3.1.3. Toehold Exchange
3.1.4. Steric Hindrance on Toehold
3.2. Non-Canonical Toehold Interactions
3.2.1. Metallo Activation
3.2.2. Non-Canonical Nucleic Acid Motifs
3.2.3. Binding-Induced Proximity
3.2.4. Small Molecule Interactions
3.3. Remote Toehold
3.4. Associative Activation
3.5. Hierarchical Activation
3.6. Toehold-Free Strand Displacement
3.7. Enzyme Participation Methods
3.8. Non-Specific Global Tuning Factors
4. Advanced Dynamic Control
4.1. Nucleic-Acid-Only Network
4.2. Dissipative Control by External Stimuli
4.3. In Situ Generation of Nucleic Acid
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, Y.; Zhao, X.S. Kinetics and Dynamics of DNA Hybridization. Acc. Chem. Res. 2011, 44, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wei, B.; Xiao, S.; Yao, D.; Li, H.; Xu, H.; Song, T.; Li, X.; Liang, H. Recent Advances in Molecular Machines Based on Toehold-Mediated Strand Displacement Reaction. Quant. Biol. 2017, 5, 25–41. [Google Scholar] [CrossRef]
- Simmel, F.C.; Yurke, B.; Singh, H.R. Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chem. Rev. 2019, 119, 6326–6369. [Google Scholar] [CrossRef]
- Wong, K.L.; Liu, J. Factors and Methods to Modulate DNA Hybridization Kinetics. Biotechnol. J. 2021, 16, 2000338. [Google Scholar] [CrossRef]
- Li, S.; Zhu, L.; Lin, S.; Xu, W. Toehold-Mediated Biosensors: Types, Mechanisms and Biosensing Strategies. Biosens. Bioelectron. 2023, 220, 114922. [Google Scholar] [CrossRef]
- Le, P.; Ahmed, N.; Yeo, G.W. Illuminating RNA Biology through Imaging. Nat. Cell Biol. 2022, 24, 815–824. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. PCR Past, Present and Future. Biotechniques 2020, 69, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Bögels, B.W.A.; Wang, F.; Xu, C.; Dou, H.; Mann, S.; Fan, C.; de Greef, T.F.A. DNA as a Universal Chemical Substrate for Computing and Data Storage. Nat. Rev. Chem. 2024, 8, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhan, Y.; Zhang, Y.; Mao, C.; Xie, X.; Lin, Y. The Biological Applications of DNA Nanomaterials: Current Challenges and Future Directions. Signal Transduct. Target. Ther. 2021, 6, 351. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, L.; Dai, T.; Qin, Z.; Lu, H.; Zhang, L.; Zhou, F. Liquid-Liquid Phase Separation in Human Health and Diseases. Signal Transduct. Target. Ther. 2021, 6, 290. [Google Scholar] [CrossRef]
- Canary, J.W.; Yan, H. Nadrian C. (Ned) Seeman (1945–2021). Nat. Nanotechnol. 2022, 17, 108. [Google Scholar] [CrossRef]
- Yurke, B.; Turberfield, A.J.; Mills, A.P.; Simmel, F.C.; Neumann, J.L. A DNA-Fuelled Molecular Machine Made of DNA. Nature 2000, 406, 605–608. [Google Scholar] [CrossRef]
- DeLuca, M.; Shi, Z.; Castro, C.E.; Arya, G. Dynamic DNA Nanotechnology: Toward Functional Nanoscale Devices. Nanoscale Horiz. 2020, 5, 182–201. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Winfree, E. Control of DNA Strand Displacement Kinetics Using Toehold Exchange. J. Am. Chem. Soc. 2009, 131, 17303–17314. [Google Scholar] [CrossRef]
- Ouldridge, T.E.; Šulc, P.; Romano, F.; Doye, J.P.K.; Louis, A.A. DNA Hybridization Kinetics: Zippering, Internal Displacement and Sequence Dependence. Nucleic Acids Res. 2013, 41, 8886–8895. [Google Scholar] [CrossRef] [PubMed]
- Ashwood, B.; Tokmakoff, A. Kinetics and Dynamics of Oligonucleotide Hybridization. Nat. Rev. Chem. 2025, 9, 305–327. [Google Scholar] [CrossRef]
- Reynaldo, L.P.; Vologodskii, A.V.; Neri, B.P.; Lyamichev, V.I. The Kinetics of Oligonucleotide Replacements. J. Mol. Biol. 2000, 297, 511–520. [Google Scholar] [CrossRef]
- Green, C.; Tibbetts, C. Reassociation Rate Limited Displacement of DNA Strands by Branch Migration. Nucleic Acids Res. 1981, 9, 1905–1918. [Google Scholar] [CrossRef] [PubMed]
- Panyutin, I.G.; Hsieh, P. The Kinetics of Spontaneous DNA Branch Migration. Proc. Natl. Acad. Sci. USA 1994, 91, 2021–2025. [Google Scholar] [CrossRef] [PubMed]
- Britten, R.J.; Davidson, E.H. Studies on Nucleic Acid Reassociation Kinetics: Empirical Equations Describing DNA Reassociation. Proc. Natl. Acad. Sci. USA 1976, 73, 415–419. [Google Scholar] [CrossRef]
- Broker, T.R.; Lehman, I.R. Branched DNA Molecules: Intermediates in T4 Recombination. J. Mol. Biol. 1971, 60, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Quartin, R.S.; Plewinska, M.; Wetmur, J.G. Branch Migration Mediated DNA Labeling and Cloning. Biochemistry 1989, 28, 8676–8682. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Seelig, G. Dynamic DNA Nanotechnology Using Strand-Displacement Reactions. Nat. Chem. 2011, 3, 103–113. [Google Scholar] [CrossRef]
- SantaLucia, J. A Unified View of Polymer, Dumbbell, and Oligonucleotide DNA Nearest-Neighbor Thermodynamics. Proc. Natl. Acad. Sci. USA 1998, 95, 1460–1465. [Google Scholar] [CrossRef]
- Bommarito, S.; Peyret, N.; Jr, J.S. Thermodynamic Parameters for DNA Sequences with Dangling Ends. Nucleic Acids Res. 2000, 28, 1929–1934. [Google Scholar] [CrossRef] [PubMed]
- SantaLucia, J.; Hicks, D. The Thermodynamics of DNA Structural Motifs. Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 415–440. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, J.N.; Wolfe, B.R.; Pierce, N.A. Nucleic Acid Sequence Design via Efficient Ensemble Defect Optimization. J. Comput. Chem. 2011, 32, 439–452. [Google Scholar] [CrossRef]
- Huguet, J.M.; Ribezzi-Crivellari, M.; Bizarro, C.V.; Ritort, F. Derivation of Nearest-Neighbor DNA Parameters in Magnesium from Single Molecule Experiments. Nucleic Acids Res. 2017, 45, 12921–12931. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Takahashi, S.; Ohyama, T.; Endoh, T.; Tateishi-Karimata, H.; Sugimoto, N. Nearest-Neighbor Parameters for Predicting DNA Duplex Stability in Diverse Molecular Crowding Conditions. Proc. Natl. Acad. Sci. USA 2020, 117, 14194–14201. [Google Scholar] [CrossRef]
- Zadeh, J.N.; Steenberg, C.D.; Bois, J.S.; Wolfe, B.R.; Pierce, M.B.; Khan, A.R.; Dirks, R.M.; Pierce, N.A. NUPACK: Analysis and Design of Nucleic Acid Systems. J. Comput. Chem. 2011, 32, 170–173. [Google Scholar] [CrossRef]
- Fornace, M.E.; Huang, J.; Newman, C.T.; Porubsky, N.J.; Pierce, M.B.; Pierce, N.A. NUPACK: Analysis and Design of Nucleic Acid Structures, Devices, and Systems. ChemRxiv 2022. [Google Scholar] [CrossRef]
- Wang, C.; Bae, J.H.; Zhang, D.Y. Native Characterization of Nucleic Acid Motif Thermodynamics via Non-Covalent Catalysis. Nat. Commun. 2016, 7, 10319. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.A.; Xu, J.; Traynor, S.M.; Chen, H.; Eljabu, F.; Wu, X.; Yan, H.; Li, F. DNA Balance for Native Characterization of Chemically Modified DNA. J. Am. Chem. Soc. 2021, 143, 13655–13663. [Google Scholar] [CrossRef]
- Srinivas, N.; Ouldridge, T.E.; Šulc, P.; Schaeffer, J.M.; Yurke, B.; Louis, A.A.; Doye, J.P.K.; Winfree, E. On the Biophysics and Kinetics of Toehold-Mediated DNA Strand Displacement. Nucleic Acids Res. 2013, 41, 10641–10658. [Google Scholar] [CrossRef]
- Hinckley, D.M.; Lequieu, J.P.; de Pablo, J.J. Coarse-Grained Modeling of DNA Oligomer Hybridization: Length, Sequence, and Salt Effects. J. Chem. Phys. 2014, 141, 035102. [Google Scholar] [CrossRef]
- Walbrun, A.; Wang, T.; Matthies, M.; Šulc, P.; Simmel, F.C.; Rief, M. Single-Molecule Force Spectroscopy of Toehold-Mediated Strand Displacement. Nat. Commun. 2024, 15, 7564. [Google Scholar] [CrossRef]
- Zhang, J.X.; Fang, J.Z.; Duan, W.; Wu, L.R.; Zhang, A.W.; Dalchau, N.; Yordanov, B.; Petersen, R.; Phillips, A.; Zhang, D.Y. Predicting DNA Hybridization Kinetics from Sequence. Nat. Chem. 2018, 10, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Irmisch, P.; Ouldridge, T.E.; Seidel, R. Modeling DNA-Strand Displacement Reactions in the Presence of Base-Pair Mismatches. J. Am. Chem. Soc. 2020, 142, 11451–11463. [Google Scholar] [CrossRef]
- Kundu, N.; Young, B.E.; Sczepanski, J.T. Kinetics of Heterochiral Strand Displacement from PNA–DNA Heteroduplexes. Nucleic Acids Res. 2021, 49, 6114–6127. [Google Scholar] [CrossRef]
- Liu, H.; Hong, F.; Smith, F.; Goertz, J.; Ouldridge, T.; Stevens, M.M.; Yan, H.; Šulc, P. Kinetics of RNA and RNA:DNA Hybrid Strand Displacement. ACS Synth. Biol. 2021, 10, 3066–3073. [Google Scholar] [CrossRef] [PubMed]
- Todisco, M.; Szostak, J.W. Hybridization Kinetics of Out-of-Equilibrium Mixtures of Short RNA Oligonucleotides. Nucleic Acids Res. 2022, 50, 9647–9662. [Google Scholar] [CrossRef]
- Mayer, T.; Oesinghaus, L.; Simmel, F.C. Toehold-Mediated Strand Displacement in Random Sequence Pools. J. Am. Chem. Soc. 2022, 145, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Hu, F.; Li, J.; Shang, J.; Liu, X.; Zeng, Y.; Wu, Q.; Wang, F. External Stimulation-Controlled Dynamic DNA Devices for Biosensing and Biomedical Applications. Sci. China Chem. 2023, 66, 3105–3115. [Google Scholar] [CrossRef]
- Green, S.J.; Lubrich, D.; Turberfield, A.J. DNA Hairpins: Fuel for Autonomous DNA Devices. Biophys. J. 2006, 91, 2966–2975. [Google Scholar] [CrossRef]
- Lysne, D.; Hachigian, T.; Thachuk, C.; Lee, J.; Graugnard, E. Leveraging Steric Moieties for Kinetic Control of DNA Strand Displacement Reactions. J. Am. Chem. Soc. 2023, 145, 16691–16703. [Google Scholar] [CrossRef]
- Zhu, J.; Haynes, C.J.E.; Kieffer, M.; Greenfield, J.L.; Greenhalgh, R.D.; Nitschke, J.R.; Keyser, U.F. FeII4L4 Tetrahedron Binds to Nonpaired DNA Bases. J. Am. Chem. Soc. 2019, 141, 11358–11362. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, G.A.; Li, F. Plug-and-Play Module for Reversible and Continuous Control of DNA Strand Displacement Kinetics. J. Am. Chem. Soc. 2024, 146, 6516–6521. [Google Scholar] [CrossRef]
- Ding, W.; Deng, W.; Zhu, H.; Liang, H. Metallo-Toeholds: Controlling DNA Strand Displacement Driven by Hg(II) Ions. Chem. Commun. 2013, 49, 9953–9955. [Google Scholar] [CrossRef]
- Wang, L.-L.; Zhang, Q.-L.; Wang, Y.; Liu, Y.; Lin, J.; Xie, F.; Xu, L. Controllable DNA Strand Displacement by Independent Metal–Ligand Complexation. Chem. Sci. 2021, 12, 8698–8705. [Google Scholar] [CrossRef]
- Takahashi, S.; Sugimoto, N. Watson–Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life. Acc. Chem. Res. 2021, 54, 2110–2120. [Google Scholar] [CrossRef]
- Tang, W.; Wang, H.; Wang, D.; Zhao, Y.; Li, N.; Liu, F. DNA Tetraplexes-Based Toehold Activation for Controllable DNA Strand Displacement Reactions. J. Am. Chem. Soc. 2013, 135, 13628–13631. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, C. Reporting Transient Molecular Events by DNA Strand Displacement. Chem. Commun. 2014, 50, 8239–8241. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, H.; Wang, Z.; Li, X.; Li, X.-F.; Le, X.C. Dynamic DNA Assemblies Mediated by Binding-Induced DNA Strand Displacement. J. Am. Chem. Soc. 2013, 135, 2443–2446. [Google Scholar] [CrossRef] [PubMed]
- Kankanamalage, D.V.D.W.; Tran, J.H.T.; Beltrami, N.; Meng, K.; Zhou, X.; Pathak, P.; Isaacs, L.; Burin, A.L.; Ali, M.F.; Jayawickramarajah, J. DNA Strand Displacement Driven by Host–Guest Interactions. J. Am. Chem. Soc. 2022, 144, 16502–16511. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, G.; Qing, M. Click Chemistry-Accelerated DNA Strand Displacement Reaction. Anal. Chem. 2025, 97, 15384–15392. [Google Scholar] [CrossRef]
- Genot, A.J.; Zhang, D.Y.; Bath, J.; Turberfield, A.J. Remote Toehold: A Mechanism for Flexible Control of DNA Hybridization Kinetics. J. Am. Chem. Soc. 2011, 133, 2177–2182. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Chen, Y.; Lin, R.; Li, T.; Liu, F.; Li, N. Modulating the DNA Strand-Displacement Kinetics with the One-Sided Remote Toehold Design for Differentiation of Single-Base Mismatched DNA. RSC Adv. 2016, 6, 74913–74916. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, L.; Jiang, W. A Binding-Induced Sutured Toehold Activation for Controllable DNA Strand Displacement Reactions. Chem. Commun. 2015, 51, 2903–2906. [Google Scholar] [CrossRef]
- Lai, W.; Ren, L.; Tang, Q.; Qu, X.; Li, J.; Wang, L.; Li, L.; Fan, C.; Pei, H. Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA. ACS Nano 2018, 12, 7093–7099. [Google Scholar] [CrossRef]
- Zhang, Q.-L.; Wang, L.-L.; Liu, Y.; Lin, J.; Xu, L. A Kinetically Controlled Platform for Ligand-Oligonucleotide Transduction. Nat. Commun. 2021, 12, 4654. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. Expanding the Rule Set of DNA Circuitry with Associative Toehold Activation. J. Am. Chem. Soc. 2012, 134, 263–271. [Google Scholar] [CrossRef]
- Li, F.; Lin, Y.; Le, X.C. Binding-Induced Formation of DNA Three-Way Junctions and Its Application to Protein Detection and DNA Strand Displacement. Anal. Chem. 2013, 85, 10835–10841. [Google Scholar] [CrossRef]
- Ranallo, S.; Sorrentino, D.; Ricci, F. Orthogonal Regulation of DNA Nanostructure Self-Assembly and Disassembly Using Antibodies. Nat. Commun. 2019, 10, 5509. [Google Scholar] [CrossRef]
- Guo, Y.; Yao, D.; Zheng, B.; Sun, X.; Zhou, X.; Wei, B.; Xiao, S.; He, M.; Li, C.; Liang, H. pH-Controlled Detachable DNA Circuitry and Its Application in Resettable Self-Assembly of Spherical Nucleic Acids. ACS Nano 2020, 14, 8317–8327. [Google Scholar] [CrossRef]
- Sun, X.; Yao, D.; Liang, H. pH-Controlled Resettable Modular DNA Strand-Displacement Circuits. Nano Lett. 2023, 23, 11540–11547. [Google Scholar] [CrossRef]
- Hu, P.; Li, M.; Wei, X.; Yang, B.; Li, Y.; Li, C.-Y.; Du, J. Cooperative Toehold: A Mechanism to Activate DNA Strand Displacement and Construct Biosensors. Anal. Chem. 2018, 90, 9751–9760. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, W.; Tang, X.; Li, Z.; Wu, Y.; Xiao, X. Fine and Bidirectional Regulation of Toehold-Mediated DNA Strand Displacement by a Wedge-like DNA Tool. Chem. Commun. 2020, 56, 8794–8797. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hu, Q.; Zhang, W.; Li, W.; Zhang, W.; Ming, Z.; Li, L.; Chen, N.; Wang, H.; Xiao, X. Multifunctional Clip Strand for the Regulation of DNA Strand Displacement and Construction of Complex DNA Nanodevices. ACS Nano 2021, 15, 11573–11584. [Google Scholar] [CrossRef] [PubMed]
- Ang, Y.S.; Yung, L.-Y.L. Dynamically Elongated Associative Toehold for Tuning DNA Circuit Kinetics and Thermodynamics. Nucleic Acids Res. 2021, 49, 4258–4265. [Google Scholar] [CrossRef]
- Yin, P.; Choi, H.M.T.; Calvert, C.R.; Pierce, N.A. Programming Biomolecular Self-Assembly Pathways. Nature 2008, 451, 318–322. [Google Scholar] [CrossRef]
- Prokup, A.; Hemphill, J.; Liu, Q.; Deiters, A. Optically Controlled Signal Amplification for DNA Computation. ACS Synth. Biol. 2015, 4, 1064–1069. [Google Scholar] [CrossRef]
- Yang, X.; Tang, Y.; Traynor, S.M.; Li, F. Regulation of DNA Strand Displacement Using an Allosteric DNA Toehold. J. Am. Chem. Soc. 2016, 138, 14076–14082. [Google Scholar] [CrossRef] [PubMed]
- Weng, Z.; Yu, H.; Luo, W.; Guo, Y.; Liu, Q.; Zhang, L.; Zhang, Z.; Wang, T.; Dai, L.; Zhou, X.; et al. Cooperative Branch Migration: A Mechanism for Flexible Control of DNA Strand Displacement. ACS Nano 2022, 16, 3135–3144. [Google Scholar] [CrossRef]
- Cabello-Garcia, J.; Bae, W.; Stan, G.-B.V.; Ouldridge, T.E. Handhold-Mediated Strand Displacement: A Nucleic Acid Based Mechanism for Generating Far-from-Equilibrium Assemblies through Templated Reactions. ACS Nano 2021, 15, 3272–3283. [Google Scholar] [CrossRef]
- Cabello-Garcia, J.; Mukherjee, R.; Bae, W.; Stan, G.-B.V.; Ouldridge, T.E. Information Propagation through Enzyme-Free Catalytic Templating of DNA Dimerization with Weak Product Inhibition. Nat. Chem. 2025, 17, 1179–1187. [Google Scholar] [CrossRef]
- Kang, H.; Lin, T.; Xu, X.; Jia, Q.-S.; Lakerveld, R.; Wei, B. DNA Dynamics and Computation Based on Toehold-Free Strand Displacement. Nat. Commun. 2021, 12, 4994. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Q. DNA Logic Circuit Based on a Toehold-Independent Strand Displacement Reaction Network. Nano Lett. 2025, 25, 3464–3470. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, M.P. Non-Complementary Strand Commutation as a Fundamental Alternative for Information Processing by DNA and Gene Regulation. Nat. Chem. 2023, 15, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Takezawa, Y.; Mori, K.; Huang, W.-E.; Nishiyama, K.; Xing, T.; Nakama, T.; Shionoya, M. Metal-Mediated DNA Strand Displacement and Molecular Device Operations Based on Base-Pair Switching of 5-Hydroxyuracil Nucleobases. Nat. Commun. 2023, 14, 4759. [Google Scholar] [CrossRef]
- Madhanagopal, B.R.; Chandrasekaran, A.R. DNA Nanotechnology in the Undergraduate Laboratory: Toehold-Less Strand Displacement in Switchback DNA. JACS Au 2025, 5, 1069–1075. [Google Scholar] [CrossRef]
- Walker, G.T.; Fraiser, M.S.; Schram, J.L.; Little, M.C.; Nadeau, J.G.; Malinowski, D.P. Strand Displacement Amplification—An Isothermal, in Vitro DNA Amplification Technique. Nucleic Acids Res. 1992, 20, 1691–1696. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, Y.; Pan, L. Fuzzy DNA Strand Displacement: A Strategy to Decrease the Complexity of DNA Network Design. Angew. Chem. Int. Ed. 2020, 59, 14979–14985. [Google Scholar] [CrossRef] [PubMed]
- Khodakov, D.A.; Khodakova, A.S.; Linacre, A.; Ellis, A.V. Toehold-Mediated Nonenzymatic DNA Strand Displacement as a Platform for DNA Genotyping. J. Am. Chem. Soc. 2013, 135, 5612–5619. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Walther, A. Fuel-Driven Transient DNA Strand Displacement Circuitry with Self-Resetting Function. J. Am. Chem. Soc. 2020, 142, 21102–21109. [Google Scholar] [CrossRef]
- Singh, A.; Patel, G.; Patel, S.S. Twinkle-Catalyzed Toehold-Mediated DNA Strand Displacement Reaction. J. Am. Chem. Soc. 2023, 145, 24522–24534. [Google Scholar] [CrossRef]
- Montagud-Martínez, R.; Heras-Hernández, M.; Goiriz, L.; Daròs, J.-A.; Rodrigo, G. CRISPR-Mediated Strand Displacement Logic Circuits with Toehold-Free DNA. ACS Synth. Biol. 2021, 10, 950–956. [Google Scholar] [CrossRef]
- Kang, H.; Yang, Y.; Wei, B. Synthetic Molecular Switches Driven by DNA-Modifying Enzymes. Nat. Commun. 2024, 15, 3781. [Google Scholar] [CrossRef]
- Moriyama, R.; Shimada, N.; Kano, A.; Maruyama, A. DNA Assembly and Re-Assembly Activated by Cationic Comb-Type Copolymer. Biomaterials 2011, 32, 2351–2358. [Google Scholar] [CrossRef]
- Wang, J.; Shimada, N.; Maruyama, A. Cationic Copolymer-Augmented DNA Hybridization Chain Reaction. ACS Appl. Mater. Interfaces 2022, 14, 39396–39403. [Google Scholar] [CrossRef]
- Xu, J.; Wang, G.A.; Gao, L.; Wu, L.; Lei, Q.; Deng, H.; Li, F. Enabling Programmable Dynamic DNA Chemistry Using Small-Molecule DNA Binders. Nat. Commun. 2023, 14, 4248. [Google Scholar] [CrossRef] [PubMed]
- Seelig, G.; Soloveichik, D.; Zhang, D.Y.; Winfree, E. Enzyme-Free Nucleic Acid Logic Circuits. Science 2006, 314, 1585–1588. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, N.; Parkin, J.; Seelig, G.; Winfree, E.; Soloveichik, D. Enzyme-Free Nucleic Acid Dynamical Systems. Science 2017, 358, eaal2052. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Shu, W.; Wang, S.; Yue, L.; Tan, W. Bioinspired Nucleic Acid-Based Bandpass Filters and Their Concentration-Adaptive Functions. J. Am. Chem. Soc. 2025, 147, 12786–12799. [Google Scholar] [CrossRef]
- Del Grosso, E.; Irmisch, P.; Gentile, S.; Prins, L.J.; Seidel, R.; Ricci, F. Dissipative Control over the Toehold-Mediated DNA Strand Displacement Reaction. Angew. Chem. Int. Ed. 2022, 61, e202201929. [Google Scholar] [CrossRef]
- Bae, W.; Stan, G.-B.V.; Ouldridge, T.E. In Situ Generation of RNA Complexes for Synthetic Molecular Strand-Displacement Circuits in Autonomous Systems. Nano Lett. 2021, 21, 265–271. [Google Scholar] [CrossRef]
- Del Grosso, E.; Franco, E.; Prins, L.J.; Ricci, F. Dissipative DNA Nanotechnology. Nat. Chem. 2022, 14, 600–613. [Google Scholar] [CrossRef]
- Kim, J.; Winfree, E. Synthetic in Vitro Transcriptional Oscillators. Mol. Syst. Biol. 2011, 7, 465. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Willner, I. Transient Out-of-Equilibrium Nucleic Acid-Based Dissipative Networks and Their Applications. Adv. Funct. Mater. 2022, 32, 2200799. [Google Scholar] [CrossRef]
- Dong, J.; O’Hagan, M.P.; Willner, I. Switchable and Dynamic G-Quadruplexes and Their Applications. Chem. Soc. Rev. 2022, 51, 7631–7661. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, H.; Yu, B.; Meng, Z.; Zhang, X.; Li, J.; Zheng, L. DNA-Based Dissipative Assembly toward Nanoarchitectonics. Adv. Funct. Mater. 2022, 32, 2201196. [Google Scholar] [CrossRef]
- Penocchio, E.; Rao, R.; Esposito, M. Thermodynamic Efficiency in Dissipative Chemistry. Nat. Commun. 2019, 10, 3865. [Google Scholar] [CrossRef] [PubMed]
- Mejía Morales, J.; Michaelian, K. Photon Dissipation as the Origin of Information Encoding in RNA and DNA. Entropy 2020, 22, 940. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Z.; Zhou, Z.; Ouyang, Y.; Zhang, J.; Ma, X.; Tian, H.; Willner, I. DNAzyme- and Light-Induced Dissipative and Gated DNA Networks. Chem. Sci. 2021, 12, 11204–11212. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.R.; Berengut, J.F.; Bai, C.; Wimberger, L.; Lee, L.K.; Rizzuto, F.J. Light-Activated Assembly of DNA Origami into Dissipative Fibrils. Angew. Chem. 2023, 135, e202314458. [Google Scholar] [CrossRef]
- Wimberger, L.; Rizzuto, F.J.; Beves, J.E. Modulating the Lifetime of DNA Motifs Using Visible Light and Small Molecules. J. Am. Chem. Soc. 2023, 145, 2088–2092. [Google Scholar] [CrossRef]
- Fujii, T.; Rondelez, Y. Predator–Prey Molecular Ecosystems. ACS Nano 2013, 7, 27–34. [Google Scholar] [CrossRef]
- Del Grosso, E.; Ragazzon, G.; Prins, L.J.; Ricci, F. Fuel-Responsive Allosteric DNA-Based Aptamers for the Transient Release of ATP and Cocaine. Angew. Chem. Int. Ed. 2019, 58, 5582–5586. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, S.; Liu, J.; Su, X. A DNA-Based Dissipation System That Synchronizes Multiple Fuels. Chem.–Eur. J. 2023, 29, e202301156. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Liu, Y.; Zhang, L.; Liu, J.; Su, X. Programming Dissipation Systems by DNA Timer for Temporally Regulating Enzyme Catalysis and Nanostructure Assembly. ACS Nano 2022, 16, 14274–14283. [Google Scholar] [CrossRef]
- Ishaqat, A.; Zhang, X.; Herrmann, A. DNA Dissipative System for Controlled Release of Immunostimulatory CpG Oligodeoxynucleotides. Adv. NanoBiomed Res. 2024, 4, 2400082. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, Y.; Lu, X.; Ye, J.; Chen, Z.; Hu, Y.; Shen, C.; Zhao, B.; Kou, E.; Deng, J.; et al. Dynamic Modulation of Multicellular Interactions via ATP-Dissipative DNA Assembly. J. Am. Chem. Soc. 2025, 147, 28277–28288. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Ouyang, Y.; Wang, J.; Willner, I. Dissipative Gated and Cascaded DNA Networks. J. Am. Chem. Soc. 2021, 143, 5071–5079. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Willner, I. Cascaded Dissipative DNAzyme-Driven Layered Networks Guide Transient Replication of Coded-Strands as Gene Models. Nat. Commun. 2022, 13, 4414. [Google Scholar] [CrossRef]
- Bucci, J.; Irmisch, P.; Del Grosso, E.; Seidel, R.; Ricci, F. Orthogonal Enzyme-Driven Timers for DNA Strand Displacement Reactions. J. Am. Chem. Soc. 2022, 144, 19791–19798. [Google Scholar] [CrossRef]
- Bucci, J.; Irmisch, P.; Del Grosso, E.; Seidel, R.; Ricci, F. Timed Pulses in DNA Strand Displacement Reactions. J. Am. Chem. Soc. 2023, 145, 20968–20974. [Google Scholar] [CrossRef]
- Hu, M.; Li, X.; Wu, J.; Yang, M.; Wu, T. DNAzyme-Based Dissipative DNA Strand Displacement for Constructing Temporal Logic Gates. ACS Nano 2024, 18, 2184–2194. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Yang, M.; Cheng, X.; Wu, T. Time-Controlled Authentication Strategies for Molecular Information Transfer. Small 2024, 20, 2400261. [Google Scholar] [CrossRef] [PubMed]
- Adamus, T.; Kortylewski, M. The Revival of CpG Oligonucleotide-Based Cancer Immunotherapies. Współczesna Onkol. 2018, 2018, 56–60. [Google Scholar] [CrossRef]
- Schaffter, S.W.; Strychalski, E.A. Cotranscriptionally Encoded RNA Strand Displacement Circuits. Sci. Adv. 2022, 8, eabl4354. [Google Scholar] [CrossRef]
- Zolaktaf, S.; Dannenberg, F.; Schmidt, M.; Condon, A.; Winfree, E. Predicting DNA Kinetics with a Truncated Continuous-Time Markov Chain Method. Comput. Biol. Chem. 2023, 104, 107837. [Google Scholar] [CrossRef]
- Wang, L.; Li, N.; Cao, M.; Zhu, Y.; Xiong, X.; Li, L.; Zhu, T.; Pei, H. Predicting DNA Reactions with a Quantum Chemistry-Based Deep Learning Model. Adv. Sci. 2024, 11, 2409880. [Google Scholar] [CrossRef] [PubMed]
- Akay, A.; Reddy, H.N.; Galloway, R.; Kozyra, J.; Jackson, A.W. Predicting DNA Toehold-Mediated Strand Displacement Rate Constants Using a DNA-BERT Transformer Deep Learning Model. Heliyon 2024, 10, e28443. [Google Scholar] [CrossRef] [PubMed]
- Long, D.; Shi, P.; Xu, X.; Ren, J.; Chen, Y.; Guo, S.; Wang, X.; Cao, X.; Yang, L.; Tian, Z. Understanding the Relationship between Sequences and Kinetics of DNA Strand Displacements. Nucleic Acids Res. 2024, 52, 9407–9416. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Li, W.; He, K.; Wang, H.; Xu, Y.; Wu, Q.; Wang, L.; Nie, Y. Facilitating crRNA Design by Integrating DNA Interaction Features of CRISPR-Cas12a System. Adv. Sci. 2025, 12, 2501269. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Jin, M.; Peng, C.; Wang, G.A.; Li, F. Kinetics and Activation Strategies in Toehold-Mediated and Toehold-Free DNA Strand Displacement. Biosensors 2025, 15, 683. https://doi.org/10.3390/bios15100683
Wu Y, Jin M, Peng C, Wang GA, Li F. Kinetics and Activation Strategies in Toehold-Mediated and Toehold-Free DNA Strand Displacement. Biosensors. 2025; 15(10):683. https://doi.org/10.3390/bios15100683
Chicago/Turabian StyleWu, Yuqin, Mingguang Jin, Cuizheng Peng, Guan Alex Wang, and Feng Li. 2025. "Kinetics and Activation Strategies in Toehold-Mediated and Toehold-Free DNA Strand Displacement" Biosensors 15, no. 10: 683. https://doi.org/10.3390/bios15100683
APA StyleWu, Y., Jin, M., Peng, C., Wang, G. A., & Li, F. (2025). Kinetics and Activation Strategies in Toehold-Mediated and Toehold-Free DNA Strand Displacement. Biosensors, 15(10), 683. https://doi.org/10.3390/bios15100683