CRISPR-Cas-Based Diagnostics in Biomedicine: Principles, Applications, and Future Trajectories
Abstract
1. Introduction
2. Fundamental Principles of CRISPR-Cas Systems in Diagnostics
2.1. Cas9 (Type II)
2.2. Cas12a (Type V)
2.3. Cas13a (Type VI)
2.4. Cas12b (Type V)
2.5. Cas14a (Type V)
2.6. Cas10 (Type III)
2.7. Cas3 (Type I)
3. Integrated Technologies Enhancing CRISPR Diagnostics
3.1. Nucleic Acid Amplification
3.2. Biosensor Platforms
3.3. Readout Mechanisms
4. Diverse Applications of CRISPR Diagnostics
4.1. Infectious Diseases
4.2. Bacterial Pathogens
4.3. Viral Pathogens
4.4. Parasitic Infections
4.5. Food, Agriculture and Environmental Monitoring
4.6. Cancer Diagnostics
4.7. Genetic Disorders
5. Key Advantages of CRISPR-Based Diagnostic Assays
5.1. Speed and Rapid Turnaround Times
5.2. High Sensitivity and Specificity
5.3. Portability and Suitability for Point-of-Care (POC) Testing
5.4. Cost-Effectiveness and Reduced Equipment Requirements
5.5. Visual Detection Capabilities
5.6. Multiplexing and Versatility
5.7. Reduced Contamination Risk
5.8. Amplification-Free Detection
6. Challenges and Limitations in CRISPR Diagnostics
6.1. Achieving Consistent Ultra-High Sensitivity Without Preamplification
6.2. Specificity Issues
6.3. PAM Dependency
6.4. Background Noise and False Positives
6.5. Complex Sample Preparation Requirements
6.6. Clinical Implementation Hurdles and Regulatory Pathways
7. Future Perspectives and Emerging Trends
7.1. AI Integration
7.2. Universal CRISPR Platforms
7.3. Enhanced Clinical Translation, Commercialization, and Regulatory Aspects
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| ARDS | Acute Respiratory Distress Syndrome |
| Cas | CRISPR-associated |
| CLIA | Clinical Laboratory Improvement Amendments |
| cOA | Cyclic Oligoadenylate |
| CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
| crRNA | CRISPR RNA |
| dCas9 | Catalytically Inactive version of Cas9 |
| DENV | Dengue Virus |
| DSB | Double-Strand Break |
| EUA | Emergency Use Authorization |
| EV | Extracellular Vesicle |
| FDA | Food and Drug Administration |
| GBS | Group B Streptococcus |
| HAdV | Human Adenoviruses |
| HPV | Human Papillomavirus |
| IBDV | Infectious Bursal Disease Virus |
| IP | Intellectual Property |
| IVD | In Vitro Diagnostic |
| IVDR | In Vitro Diagnostic Regulation |
| LAMP | Loop-Mediated Isothermal Amplification |
| LFA | Lateral Flow Assay |
| LOD | Limit of Detection |
| MCDA | Multiple Cross Displacement Amplification |
| miRNA | microRNA |
| MPXV | Monkeypox Virus |
| PAM | Protospacer Adjacent Motif |
| PCA3 | Prostate Cancer Associated 3 |
| PFS | Protospacer Flanking Site |
| PMA | Premarket Approval |
| POC | Point-of-Care |
| PSA | Prostate-Specific Antigen |
| RAA | Recombinase Aided Amplification |
| RPA | Recombinase Polymerase Amplification |
| SERS | Surface-Enhanced Raman Spectroscopy |
| SFTSV | Severe Fever with Thrombocytopenia Syndrome Virus |
| sgRNA | Single Guide RNA |
| SNP | Single-Nucleotide Polymorphism |
| ssDNA | Single-Stranded DNA |
| ssRNA | Single-Stranded RNA |
| TB | Mycobacterium tuberculosis |
| ToLCKV | Tomato Leaf Curl Karnataka Virus |
References
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-Guided Human Genome Engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J.; Joung, J.; Collins, J.J.; Zhang, F. Multiplexed and Portable Nucleic Acid Detection Platform with Cas13, Cas12a and Csm6. Science 2018, 360, 439–444. [Google Scholar] [CrossRef]
- Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Cheng, Q.-X.; Wang, J.-M.; Li, X.-Y.; Zhang, Z.-L.; Gao, S.; Cao, R.-B.; Zhao, G.-P.; Wang, J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Knott, G.J.; Thornton, B.W.; Lobba, M.J.; Liu, J.-J.; Al-Shayeb, B.; Watters, K.E.; Doudna, J.A. Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nat. Struct. Mol. Biol. 2019, 26, 315–321. [Google Scholar] [CrossRef]
- Kellner, M.J.; Koob, J.G.; Gootenberg, J.S.; Abudayyeh, O.O.; Zhang, F. SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat. Protoc. 2019, 14, 2986–3012. [Google Scholar] [CrossRef]
- Brandsma, E.; Verhagen, H.J.M.P.; van de Laar, T.J.W.; Claas, E.C.J.; Cornelissen, M.; Akker, E.v.D. Rapid, Sensitive, and Specific Severe Acute Respiratory Syndrome Coronavirus 2 Detection: A Multicenter Comparison Between Standard Quantitative Reverse-Transcriptase Polymerase Chain Reaction and CRISPR-Based DETECTR. J. Infect. Dis. 2020, 223, 206–213. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Wu, N.; Wu, J.; Wang, G.; Zhao, G.-P.; Wang, J. HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation. ACS Synth. Biol. 2019, 8, 2228–2237. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.; Wang, B.; Lou, J.; Ni, P.; Jin, Y.; Chen, S.; Duan, G.; Zhang, R. Application of CRISPR/Cas Systems in the Nucleic Acid Detection of Infectious Diseases. Diagnostics 2022, 12, 2455. [Google Scholar] [CrossRef] [PubMed]
- Leung, R.K.-K.; Cheng, Q.-X.; Wu, Z.-L.; Khan, G.; Liu, Y.; Xia, H.-Y.; Wang, J. CRISPR-Cas12-based nucleic acids detection systems. Methods 2022, 203, 276–281. [Google Scholar] [CrossRef]
- Kadam, U.S.; Cho, Y.; Park, T.Y.; Hong, J.C. Aptamer-based CRISPR-Cas powered diagnostics of diverse biomarkers and small molecule targets. Appl. Biol. Chem. 2023, 66, 13. [Google Scholar] [CrossRef]
- Kadam, U.S.; Hong, J.C. Advances in aptameric biosensors designed to detect toxic contaminants from food, water, human fluids, and the environment. Trends Environ. Anal. Chem. 2022, 36, e00184. [Google Scholar] [CrossRef]
- Rahimi, S.; Balusamy, S.R.; Perumalsamy, H.; Ståhlberg, A.; Mijakovic, I. CRISPR-Cas target recognition for sensing viral and cancer biomarkers. Nucleic Acids Res. 2024, 52, 10040–10067. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef]
- Padane, A.; Hamidou, Z.H.; Drancourt, M.; Saad, J.; Bekal, S. CRISPR-Based Detection, Identification and Typing of Mycobacterium tuberculosis Complex Lineages. Microbiol. Spectr. 2023, 11, e0271722. [Google Scholar] [CrossRef]
- Lin, Z.; Song, Z.; Yu, H.; Zhou, Y.; Liu, D.; Zhang, P.; Wei, L.; Dai, G.; Liang, G.; He, Z.; et al. Ultra-sensitive in situ detection of intracellular Mycobacterium tuberculosis with CRISPR/Cas12a. Front. Immunol. 2025, 16, 1597654. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Li, S.; Zhu, X.; Wang, X.; Huang, J.; Yang, X.; Tai, J. LAMP-CRISPR-Cas12-based diagnostic platform for detection of Mycobacterium tuberculosis complex using real-time fluorescence or lateral flow test. Microchim. Acta 2021, 188, 347. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Fang, T.; Cai, Q.; Li, H.; Li, H.; Sun, H.; Zhu, M.; Dai, L.; Shao, Y.; Cai, L.; et al. Rapid detection of Mycobacterium tuberculosis in sputum using CRISPR-Cas12b combined with cross-priming amplification in a single reaction. J. Clin. Microbiol. 2024, 62, e00923-23. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xiao, G.; Li, P.; Xu, Y.; Fan, X.; Tian, L.; Zhang, S.; Zhang, G. Plasma-based ultrasensitive detection of Mycobacterium tuberculosis ESAT6/CFP10 fusion antigen using a CRISPR-driven aptamer fluorescence testing (CRAFT). Biosens. Bioelectron. 2025, 284, 117566. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhou, M.; Deng, W.; Gao, Q.; Li, Z.; Wu, L.; Liang, D. Sensitive and visual detection of SARS-CoV-2 using RPA-Cas12a one-step assay with ssDNA-modified crRNA. Anal. Chim. Acta 2024, 1309, 342693. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, X.; Jiang, Y.; Zhang, Y.; Zhao, S.; Hu, J.; Hu, F.; Peng, N. A miniaturized RPA-CRISPR/Cas12a-based nucleic acid diagnostic platform for rapid and simple self-testing of SARS-CoV-2. Anal. Chim. Acta 2024, 1338, 343593. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Jiang, Y.; Zhang, D.; Li, T.; Fu, L.; Dou, X.; Cabrera, A. One-tube detection of Salmonella Typhimurium using LAMP and CRISPR-Cas12b. Microbiol. Spectr. 2024, 12, e0127124. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; You, W.; Xu, H.; Lin, K.; Guo, J.; Bian, Y.; Guo, X.; Li, Q.; Hua, C.; Zhang, R.; et al. An extraction-free one-step pathogen detection system (Ex-opods) based on LAMP and CRISPR-Cas12b. Microchem. J. 2025, 213, 113724. [Google Scholar] [CrossRef]
- Ahamed, A.; Khalid, M.A.U.; Dong, M.; Politza, A.J.; Zhang, Z.; Kshirsagar, A.; Liu, T.; Guan, W. Sensitive and specific CRISPR-Cas12a assisted nanopore with RPA for Monkeypox detection. Biosens. Bioelectron. 2023, 246, 115866. [Google Scholar] [CrossRef]
- Guo, J.; Shan, Y.; Hu, G.; Zhu, X.; Zhao, K.; Wu, T.; Qiao, Q.; Chi, Y.; Cui, L.; Ge, Y. Rapid visual detection of Monkeypox virus by one-step LAMP-CRISPR/Cas12b assay. Virol. J. 2025, 22, 151. [Google Scholar] [CrossRef]
- Wang, X.; Yang, R.; Tang, T.; Zhou, Y.; Chen, H.; Jiang, Y.; Zhang, S.; Qin, S.; Wang, M.; Wang, C. One-pot MCDA-CRISPR-Cas-based detection platform for point-of-care testing of severe acute respiratory syndrome coronavirus 2. Front. Microbiol. 2024, 15, 1503356. [Google Scholar] [CrossRef]
- Zhou, T.; Shen, G.; Zhong, L.; Chen, G.; Meng, L.; He, W.; Liu, J.; Yang, S.; Luo, Y.; Wang, X. crRNA array-mediated CRISPR/Cas12a coupling with dual RPA for highly sensitive detection of Streptomyces aureofaciens Tü117 from hypertension with multi-signal output. Biosens. Bioelectron. 2025, 282, 117493. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, X.; Ma, X.; Wang, R.; Chen, S.; Li, F.; Li, Z.; Carroll, K.C. One-Pot Isothermal LAMP-CRISPR-Based Assay for Klebsiella pneumoniae Detection. Microbiol. Spectr. 2022, 10, e0154522. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Liu, R.; Xie, L.; Yang, H.; Ge, S.; Yu, J. Strand displacement amplification triggered 3D DNA roller assisted CRISPR/Cas12a electrochemiluminescence cascaded signal amplification for sensitive detection of Ec-16S rDNA. Anal. Chim. Acta 2024, 1291, 342213. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, F.; Yang, L.; Guo, X.; Dong, X.; Niu, M.; Jiang, Y.; Li, L.; Li, H.; Sun, Y. Imunocapture Magnetic Beads Enhanced and Ultrasensitive CRISPR-Cas13a-Assisted Electrochemical Biosensor for Rapid Detection of SARS-CoV-2. Biosensors 2023, 13, 597. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhang, T.; Zhang, S.; Johnston, M.; Zheng, X.; Shan, Y.; Liu, T.; Huang, Z.; Qian, F.; Xie, Z.; et al. A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics. Biosens. Bioelectron. 2021, 178, 113027. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhou, Q.; Shi, J.; Gao, H.; Huang, D.; Xue, H.; Wang, H.; Zhang, Z.; Yang, S.; Zhang, J.; et al. CRISPR-empowered electrochemical biosensor for target amplification-free and sensitive detection of miRNA. Talanta 2023, 266, 125125. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Lv, H.; Liang, J.; Yan, C.; Song, C.; Wang, L. Rapid and accurate SERS assay of disease-related nucleic acids based on isothermal cascade signal amplifications of CRISPR/Cas13a system and catalytic hairpin assembly. Biosens. Bioelectron. 2024, 253, 116196. [Google Scholar] [CrossRef]
- Liu, F.; Chen, L.; Zhu, L.; Liu, J.; Li, M.; Chen, Y.; Yang, G.; Qu, L. Aptamer-Amplified and CRISPR-Cas12a-Assisted Dual-Mode PEC-SERS Biosensor for Ultrasensitive Detection of Inflammatory Bowel Disease Biomarkers. Anal. Chem. 2025, 97, 14377–14387. [Google Scholar] [CrossRef]
- Sam, I.K.; Chen, Y.-Y.; Ma, J.; Li, S.-Y.; Ying, R.-Y.; Li, L.-X.; Ji, P.; Wang, S.-J.; Xu, J.; Bao, Y.-J.; et al. TB-QUICK: CRISPR-Cas12b-assisted rapid and sensitive detection of Mycobacterium tuberculosis. J. Infect. 2021, 83, 54–60. [Google Scholar] [CrossRef]
- Muriuki, R.; Ndichu, M.; Githigia, S.; Svitek, N. CRISPR-Cas-Based Pen-Side Diagnostic Tests for Anaplasma marginale and Babesia bigemina. Microorganisms 2024, 12, 2595. [Google Scholar] [CrossRef]
- Paenkaew, S.; Jaito, N.; Pradit, W.; Chomdej, S.; Nganvongpanit, K.; Siengdee, P.; Buddhachat, K. RPA/CRISPR-cas12a as a specific, sensitive and rapid method for diagnosing Ehrlichia canis and Anaplasma platys in dogs in Thailand. Vet. Res. Commun. 2023, 47, 1601–1613. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Feng, S.; Stejskal, V.; Opit, G.; Li, Z.; Campbell, J. An advanced approach for rapid visual identification of Liposcelis bostrychophila (Psocoptera: Liposcelididae) based on CRISPR/Cas12a combined with RPA. J. Econ. EÈntomol. 2023, 116, 1911–1921. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Wu, L.-A.; Ko, C.-N.; Wang, X.; Lin, C.; Liu, J.; Ling, L.; Wang, J. Nicking enzyme-free strand displacement amplification-assisted CRISPR-Cas-based colorimetric detection of prostate-specific antigen in serum samples. Anal. Chim. Acta 2022, 1195, 339479. [Google Scholar] [CrossRef]
- Koo, B.; Kim, D.-E.; Kweon, J.; Jin, C.E.; Kim, S.-H.; Kim, Y.; Shin, Y. CRISPR/dCas9-mediated biosensor for detection of tick-borne diseases. Sens. Actuators B Chem. 2018, 273, 316–321. [Google Scholar] [CrossRef]
- Ganbaatar, U.; Liu, C. NEXT CRISPR: An enhanced CRISPR-based nucleic acid biosensing platform using extended crRNA. Sens. Actuators B Chem. 2022, 369, 132296. [Google Scholar] [CrossRef]
- Phan, Q.A.; Truong, L.B.; Medina-Cruz, D.; Dincer, C.; Mostafavi, E. CRISPR/Cas-powered nanobiosensors for diagnostics. Biosens. Bioelectron. 2022, 197, 113732. [Google Scholar] [CrossRef] [PubMed]
- Compiro, P.; Chomta, N.; Nimnual, J.; Sunantawanit, S.; Payungporn, S.; Rotcheewaphan, S.; Keawsapsak, P. CRISPR-Cas12a-based detection and differentiation of Mycobacterium spp. Clin. Chim. Acta 2024, 567, 120101. [Google Scholar] [CrossRef] [PubMed]
- Ai, J.-W.; Zhou, X.; Xu, T.; Yang, M.; Chen, Y.; He, G.-Q.; Pan, N.; Cai, Y.; Li, Y.; Wang, X.; et al. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis. Emerg. Microbes Infect. 2019, 8, 1361–1369. [Google Scholar] [CrossRef]
- Zheng, S.-Y.; Ma, L.-L.; Wang, X.-L.; Lu, L.-X.; Ma, S.-T.; Xu, B.; Ouyang, W. RPA-Cas12aDS: A visual and fast molecular diagnostics platform based on RPA-CRISPR-Cas12a method for infectious bursal disease virus detection. J. Virol. Methods 2022, 304, 114523. [Google Scholar] [CrossRef]
- Ramadan, N.K.; Gaber, N.; Ali, N.M.; Amer, O.S.; Soliman, H. SHERLOCK, a novel CRISPR-Cas13a-based assay for detection of infectious bursal disease virus. J. Virol. Methods 2025, 337, 115185. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, Y.; Li, X.; Choi, J.-W.; Guo, J.; Luo, H.; Li, C. Development of a single-tube RPA/CRISPR-cas12a detection platform for monkeypox virus. Biosens. Bioelectron. 2025, 278, 117221. [Google Scholar] [CrossRef]
- Gan, T.; Yu, J.; Deng, Z.; He, J. ERA-CRISPR/Cas12a system: A rapid, highly sensitive and specific assay for Mycobacterium tuberculosis. Front. Cell. Infect. Microbiol. 2024, 14, 1454076. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, Z.; Hu, A.; Cui, J.; Yang, K.; Liu, Y.; Deng, G.; Zhu, C.; Zhu, L. Rapid One-Tube RPA-CRISPR/Cas12 Detection Platform for Methicillin-Resistant Staphylococcus aureus. Diagnostics 2022, 12, 829. [Google Scholar] [CrossRef]
- Cao, X.; Chang, Y.; Tao, C.; Chen, S.; Lin, Q.; Ling, C.; Huang, S.; Zhang, H.; Rogovskyy, A.S. Cas12a/Guide RNA-Based Platforms for Rapidly and Accurately Identifying Staphylococcus aureus and Methicillin-Resistant S. aureus. Microbiol. Spectr. 2023, 11, e0487022. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, B.; Cui, Q.; Wang, P.; Dzantiev, B.B.; Wan, Y.; Wu, J.; Yang, Z. A signal-off Cas14a1-based platform for highly specific detection of methicillin-resistant Staphylococcus aureus. Anal. Chim. Acta 2023, 1256, 341154. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Q.; Yan, C.; Xu, J.; Qin, X.; Wang, J.; Chen, W.; Yao, L.; Huang, L.; Qin, P. CRISPR/Cas9 bridged recombinase polymerase amplification with lateral flow biosensor removing potential primer-dimer interference for robust Staphylococcus aureus assay. Sens. Actuators B Chem. 2022, 369, 132293. [Google Scholar] [CrossRef]
- Zhou, J.; Yin, L.; Dong, Y.; Peng, L.; Liu, G.; Man, S.; Ma, L. CRISPR-Cas13a based bacterial detection platform: Sensing pathogen Staphylococcus aureus in food samples. Anal. Chim. Acta 2020, 1127, 225–233. [Google Scholar] [CrossRef]
- Ma, Y.; Wei, H.; Wang, Y.; Cheng, X.; Chen, H.; Yang, X.; Zhang, H.; Rong, Z.; Wang, S. Efficient magnetic enrichment cascade single-step RPA-CRISPR/Cas12a assay for rapid and ultrasensitive detection of Staphylococcus aureus in food samples. J. Hazard. Mater. 2024, 465, 133494. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xu, Y.; Zhou, W.; Shi, L.; Shi, W.; Pu, L.; Jiang, J. Rapid detection of Klebsiella pneumoniae based on one-tube RPA-CRISPR/Cas12a system. Clin. Chim. Acta 2025, 573, 120281. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Liang, L.; Liao, C.; Zhou, Z.; Long, S.; Yi, X.; Wang, C.; Wei, C.; Cai, J.; Li, X.; et al. A rapid and ultra-sensitive dual readout platform for Klebsiella pneumoniae detection based on RPA-CRISPR/Cas12a. Front. Cell. Infect. Microbiol. 2024, 14, 1362513. [Google Scholar] [CrossRef]
- Fu, J.; Mo, R.; Li, Z.; Xu, S.; Cheng, X.; Lu, B.; Shi, S. An extraction-free one-pot assay for rapid detection of Klebsiella pneumoniae by combining RPA and CRISPR/Cas12a. Biosens. Bioelectron. 2024, 267, 116740. [Google Scholar] [CrossRef]
- Gong, J.; Zhang, D.; Fu, L.; Dong, Y.; Wu, K.; Dou, X.; Wang, C. A One-Pot Convenient RPA-CRISPR-Based Assay for Salmonella enterica Serovar Indiana Detection. Microorganisms 2024, 12, 519. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, H.; Xu, H.; Peng, Y.; Yao, B.; Chen, Z.; Yang, J.; Adeloju, S.; Chen, W. One-pot RPA-CRISPR/Cas12a integrated dual-mode electrochemical lateral flow strip for ultrasensitive and precise detection of Salmonella. Biosens. Bioelectron. 2025, 285, 117529. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, Y.; Zhou, L.; Zhou, J.; Xiao, F.; Ma, L.; Wang, Y.; Tai, J. Development of the CRISPR-Cas12a-Based Biosensing System for Rapid, Ultrasensitive, and Highly Specific Detection of Streptococcus pyogenes. ACS Omega 2025, 10, 9768–9777. [Google Scholar] [CrossRef]
- Cheng, Y.; Lyu, J.; Han, J.; Feng, L.; Li, X.; Li, P.; Zhang, S.; Zang, W.; Ponraj, V.P. A specific and ultrasensitive Cas12a/crRNA assay with recombinase polymerase amplification and lateral flow biosensor technology for the rapid detection of Streptococcus pyogenes. Microbiol. Spectr. 2024, 12, e0034524. [Google Scholar] [CrossRef]
- Salvà-Serra, F.; Jaén-Luchoro, D.; Jakobsson, H.E.; Gonzales-Siles, L.; Karlsson, R.; Busquets, A.; Gomila, M.; Bennasar-Figueras, A.; Russell, J.E.; Fazal, M.A.; et al. Complete genome sequences of Streptococcus pyogenes type strain reveal 100%-match between PacBio-solo and Illumina-Oxford Nanopore hybrid assemblies. Sci. Rep. 2020, 10, 11656. [Google Scholar] [CrossRef]
- Liu, H.; Xu, L.; Xiu, Y.; Ta, N.; Xu, Q.; Fan, Y.; Li, K.; Zhao, H.; Piao, D.; Ren, F.; et al. A CRISPR/cas13a-assisted precise and portable test for Brucella nucleic acid detection. Front. Cell. Infect. Microbiol. 2025, 15, 1545953. [Google Scholar] [CrossRef] [PubMed]
- Etemadzadeh, A.; Salehipour, P.; Motlagh, F.M.; Khalifeh, M.; Asadbeigi, A.; Tabrizi, M.; Shirkouhi, R.; Modarressi, M.H. An Optimized CRISPR/Cas12a Assay to Facilitate the BRAF V600E Mutation Detection. J. Clin. Lab. Anal. 2024, 38, e25101. [Google Scholar] [CrossRef]
- Palacín-Aliana, I.; García-Romero, N.; Carrión-Navarro, J.; Puig-Serra, P.; Torres-Ruiz, R.; Rodríguez-Perales, S.; Viñal, D.; González-Rumayor, V.; Ayuso-Sacido, Á. ddPCR Overcomes the CRISPR-Cas13a-Based Technique for the Detection of the BRAF p.V600E Mutation in Liquid Biopsies. Int. J. Mol. Sci. 2024, 25, 10902. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Oh, S.-W. Rapid and visual detection of Escherichia coli O157:H7 using an RPA-CRISPR/Cas12a-based syringe filter. Microchem. J. 2025, 208, 112624. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, H.; Hu, A.; Cui, X.; Shi, C.; Lu, Z.; Meng, F.; Lv, F.; Zhao, H.; Bie, X. Establishment of LAMP-CRISPR/Cas12a for rapid detection of Escherichia coli O157:H7 and one-pot detection. Food Microbiol. 2024, 124, 104622. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Oh, S.-W. Filtration-based LAMP-CRISPR/Cas12a system for the rapid, sensitive and visualized detection of Escherichia coli O157:H7. Talanta 2022, 241, 123186. [Google Scholar] [CrossRef]
- Huang, M.; Zhu, Y.; Bing, X.; Du, M.; Du, X.; Jia, M. Restriction endonuclease-mediated PAM-free CRISPR/Cas12a strategy for one-pot sensitive detection of Escherichia coli O157:H7. Chem. Eng. J. 2025, 506, 160330. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Zhang, L.; Liu, S.; Zhang, M.; Wang, J.; Ning, B.; Peng, Y.; He, J.; Hu, Y.; et al. CRISPR-Cas9 Triggered Two-Step Isothermal Amplification Method for E. coli O157:H7 Detection Based on a Metal–Organic Framework Platform. Anal. Chem. 2020, 92, 3032–3041. [Google Scholar] [CrossRef] [PubMed]
- Batra, R.; Nelles, D.A.; Pirie, E.; Blue, S.M.; Marina, R.J.; Wang, H.; Chaim, I.A.; Thomas, J.D.; Zhang, N.; Nguyen, V.; et al. Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9. Cell 2017, 170, 899–912.e10. [Google Scholar] [CrossRef] [PubMed]
- Picco, G.; Chen, E.D.; Alonso, L.G.; Behan, F.M.; Gonçalves, E.; Bignell, G.; Matchan, A.; Fu, B.; Banerjee, R.; Anderson, E.; et al. Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening. Nat. Commun. 2019, 10, 2198. [Google Scholar] [CrossRef]
- Doench, J.G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E.W.; Donovan, K.F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.; et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016, 34, 184–191. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Li, T.; Fan, T.; Meng, C.; Li, C.; Kang, J.; Chai, L.; Hao, Y.; Tang, Y.; et al. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl. Sci. Rev. 2022, 9, nwac104. [Google Scholar] [CrossRef]
- Sandler, S.E.; Weckman, N.E.; Yorke, S.; Das, A.; Chen, K.; Gutierrez, R.; Keyser, U.F. Sensing the DNA-mismatch tolerance of catalytically inactive Cas9 via barcoded DNA nanostructures in solid-state nanopores. Nat. Biomed. Eng. 2023, 8, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Pardee, K.; Green, A.A.; Takahashi, M.K.; Braff, D.; Lambert, G.; Lee, J.W.; Ferrante, T.; Ma, D.; Donghia, N.; Fan, M.; et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell 2016, 165, 1255–1266. [Google Scholar] [CrossRef]
- Singpant, P.; Tubsuwan, A.; Sakdee, S.; Ketterman, A.J.; Jearawiriyapaisarn, N.; Kurita, R.; Nakamura, Y.; Songdej, D.; Tangprasittipap, A.; Bhukhai, K.; et al. Recombinant Cas9 protein production in an endotoxin-free system and evaluation with editing the BCL11A gene in human cells. Protein Expr. Purif. 2023, 210, 106313. [Google Scholar] [CrossRef]
- Qing, M.; Huang, C.; Li, Y.; Yu, Q.; Hu, Q.; Zhou, J.; Yuan, R.; Bai, L. Dithiothreitol Facilitates LbCas12a with Expanded PAM Preference for Ultrasensitive Nucleic Acid Detection. Anal. Chem. 2025, 97, 6286–6294. [Google Scholar] [CrossRef]
- Liu, P.-F.; Zhao, K.-R.; Liu, Z.-J.; Wang, L.; Ye, S.-Y.; Liang, G.-X. Cas12a-based electrochemiluminescence biosensor for target amplification-free DNA detection. Biosens. Bioelectron. 2021, 176, 112954. [Google Scholar] [CrossRef]
- Goméz-Quintero, O.S.; Morales-Moreno, M.D.; Valdés-Galindo, E.G.; Cárdenas-Guerra, R.E.; Hernandez-Garcia, A. Enhanced production of functional CRISPR-AsCas12a protein in Escherichia coli. Protein Expr. Purif. 2025, 232, 106722. [Google Scholar] [CrossRef]
- Yu, H.L.; Cao, Y.; Lu, X.; Hsing, I.-M. Detection of rare variant alleles using the AsCas12a double-stranded DNA trans-cleavage activity. Biosens. Bioelectron. 2021, 189, 113382. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Yoon, J.; Song, J.; Park, H.G. CRISPR/Cas12a collateral cleavage activity for simple and rapid detection of protein/small molecule interaction. Biosens. Bioelectron. 2021, 194, 113587. [Google Scholar] [CrossRef] [PubMed]
- Kurbatov, L.K.; Radko, S.P.; Kravchenko, S.V.; Kiseleva, O.I.; Durmanov, N.D.; Lisitsa, A.V. Single Stage Purification of CRISPR/Cas13a Nuclease via Metal-Chelating Chromatography Following Heterologous Expression with the Preservation of Collateral Ribonuclease Activity. Appl. Biochem. Microbiol. 2020, 56, 671–677. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Zhang, J.; Jiang, Q.; Qiao, B.; He, B.; Yin, W.; Qiao, J.; Liu, Y. Split crRNA with CRISPR-Cas12a enabling highly sensitive and multiplexed detection of RNA and DNA. Nat. Commun. 2024, 15, 8432. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.; Yun, D.; Jung, C. One-pot RPA/CRISPR-Cas12a assay with photomodulated aptamer-based inhibitors. Sens. Actuators B Chem. 2024, 412, 135790. [Google Scholar] [CrossRef]
- Wu, H.; Cao, X.; Meng, Y.; Richards, D.; Wu, J.; Ye, Z.; Demello, A.J. DropCRISPR: A LAMP-Cas12a based digital method for ultrasensitive detection of nucleic acid. Biosens. Bioelectron. 2022, 211, 114377. [Google Scholar] [CrossRef] [PubMed]
- Martin, O.L.; Lynch, C.R.; Fleming, R. Advancing forensic body fluid identification: A comparative analysis of RT-LAMP+CRISPR-Cas12a and established mRNA-based methods. Forensic Sci. Int. Genet. 2025, 78, 103297. [Google Scholar] [CrossRef]
- Lynch, C.R.; Martin, O.L.; Billington, C.; Fleming, R. Towards the identification of body fluids using RT-LAMP isothermal amplification coupled with CRISPR-Cas12a. Forensic Sci. Int. Genet. 2025, 74, 103167. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Lin, C.; Mo, G.; Xi, B.; Li, A.; Huang, D.; Wan, Y.; Chen, F.; Liang, Y.; Zuo, Q.; et al. Rapid and accurate detection of SARS-CoV-2 mutations using a Cas12a-based sensing platform. Biosens. Bioelectron. 2022, 198, 113857. [Google Scholar] [CrossRef] [PubMed]
- Peduti, G.P.; Diniz, M.C. Evaluation of the RT-LAMP/CRISPR-Cas12 diagnostic method for SARS-COV-2. Acta Sci. Heal. Sci. 2023, 45, e62103. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Lin, H.; Chen, D.; Sun, J.; Xie, Y.; Wang, X.; Ma, P.; Nie, Y.; Mei, H.; et al. Development of a Broadly Applicable Cas12a-Linked Beam Unlocking Reaction for Sensitive and Specific Detection of Respiratory Pathogens Including SARS-CoV-2. ACS Chem. Biol. 2021, 16, 491–500. [Google Scholar] [CrossRef]
- Ma, Y.; Mou, Q.; Yan, P.; Yang, Z.; Xiong, Y.; Yan, D.; Zhang, C.; Zhu, X.; Lu, Y. A highly sensitive and selective fluoride sensor based on a riboswitch-regulated transcription coupled with CRISPR-Cas13a tandem reaction. Chem. Sci. 2021, 12, 11740–11747. [Google Scholar] [CrossRef]
- Knott, G.J.; East-Seletsky, A.; Cofsky, J.C.; Holton, J.M.; Charles, E.; O’COnnell, M.R.; A Doudna, J. Guide-bound structures of an RNA-targeting A-cleaving CRISPR–Cas13a enzyme. Nat. Struct. Mol. Biol. 2017, 24, 825–833. [Google Scholar] [CrossRef]
- Carter, L.J.; Garner, L.V.; Smoot, J.W.; Li, Y.; Zhou, Q.; Saveson, C.J.; Sasso, J.M.; Gregg, A.C.; Soares, D.J.; Beskid, T.R.; et al. Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Cent. Sci. 2020, 6, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Sheng, Y.; Zhang, T.; Zhou, S.; Zhu, Y.; Qian, F.; Liu, M.; Xu, W.; Zhang, D.; Hu, J. The CRISPR-Cas13a Gemini System for noncontiguous target RNA activation. Nat. Commun. 2024, 15, 2901. [Google Scholar] [CrossRef]
- Barnes, K.G.; Lachenauer, A.E.; Nitido, A.; Siddiqui, S.; Gross, R.; Beitzel, B.; Siddle, K.J.; Freije, C.A.; Dighero-Kemp, B.; Mehta, S.B.; et al. Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time. Nat. Commun. 2020, 11, 4131. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, R.-R.; Xian, W.-D.; Xiong, M.; Xiao, M.; Li, W.-J. A novel thermal Cas12b from a hot spring bacterium with high target mismatch tolerance and robust DNA cleavage efficiency. Int. J. Biol. Macromol. 2020, 147, 376–384. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Macaluso, N.C.; Pizzano, B.L.; Cash, M.N.; Spacek, J.; Karasek, J.; Miller, M.R.; Lednicky, J.A.; Dinglasan, R.R.; Salemi, M.; et al. A thermostable Cas12b from Brevibacillus leverages one-pot discrimination of SARS-CoV-2 variants of concern. EBioMedicine 2022, 77, 103926. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Rananaware, S.R.; Yang, L.G.; Macaluso, N.C.; Ocana-Ortiz, J.E.; Meister, K.S.; Pizzano, B.L.; Sandoval, L.S.W.; Hautamaki, R.C.; Fang, Z.R.; et al. Engineering highly thermostable Cas12b via de novo structural analyses for one-pot detection of nucleic acids. Cell Rep. Med. 2023, 4, 101037. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, L.; Xu, S.; Chen, Y. Innovative nucleic acid detection of Clostridioides difficile utilizing the PAM-unconventional, one-step LAMP/CRISPR-Cas12b detection platforms. Front. Cell. Infect. Microbiol. 2025, 15, 1594271. [Google Scholar] [CrossRef]
- Li, T.; Chen, S.; Chen, X.; Yang, S.; Huang, H.; Xu, J.; Liu, Y.; Zhang, J.; Cao, L.; Kang, Z.; et al. CRISPR-based sensing platform for the Group B streptococcus screening in pregnant women. Anal. Chim. Acta 2025, 1370, 344390. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Zhao, J.; Bai, J.; Zhang, Y.; Zhu, Y.; Zhang, W.; Wang, C.; Langford, P.R.; Liu, S.; et al. A CRISPR-Cas12a-based platform facilitates the detection and serotyping of Streptococcus suis serotype 2. Talanta 2023, 267, 125202. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Ge, L.; Wang, H.; Chen, F. CRISPR-Cas12a-activated proximity catalytic hairpin assembly strategy for sensitive gene analysis in Streptococcus mutans. Microchem. J. 2024, 201, 110530. [Google Scholar] [CrossRef]
- Jiang, L.; Zeng, W.; Wu, W.; Deng, Y.; He, F.; Liang, W.; Huang, M.; Huang, H.; Li, Y.; Wang, X.; et al. Development and Clinical Evaluation of a CRISPR-Based Diagnostic for Rapid Group B Streptococcus Screening. Emerg. Infect. Dis. 2021, 27, 2379–2388. [Google Scholar] [CrossRef]
- Yang, X.; Lu, L.; Luo, Y.; Wang, Q.; Wang, J.; Ren, Y.; Wu, Y.; Negahdary, M.; Yunusov, K.E.; Yuldoshov, S.A.; et al. Homemade isothermal amplification-initiated Cas14a assay for rapid quantitative detection of aquatic RNA virus gene with no PAM. Aquaculture 2025, 595, 741661. [Google Scholar] [CrossRef]
- Wei, Y.; Hu, Y.; Wang, L.; Liu, C.; Abdullaewich, Y.S.; Yang, Z.; Mao, H.; Wan, Y. Ultrasensitive detection of Salmonella typhi using a PAM-free Cas14a-based biosensor. Biosens. Bioelectron. 2024, 259, 116408. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Wei, Y.; Wang, P.; Ge, X.; Li, C.; Wang, A.; Yang, Z.; Wan, Y.; Li, J. Combining tag-specific primer extension and magneto-DNA system for Cas14a-based universal bacterial diagnostic platform. Biosens. Bioelectron. 2021, 185, 113262. [Google Scholar] [CrossRef]
- Lai, Y.; Guo, K.; Zhu, C.; Lv, Y.; Wu, H.; Zhang, L.; Jiang, M.; Pang, Y.; Zhao, J.; Wang, R.; et al. Cas14VIDet: A visual instant method free from PAM restriction for antibiotic resistance bacteria detection. Biosens. Bioelectron. 2024, 268, 116884. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, M.; Zhang, C.; Li, Z.; Feng, M.; Wu, L.; Zhou, M.; Liang, D. Cas14a1-Mediated Nucleic Acid Diagnostics for Spinal Muscular Atrophy. Biosensors 2022, 12, 268. [Google Scholar] [CrossRef]
- Ge, X.; Meng, T.; Tan, X.; Wei, Y.; Tao, Z.; Yang, Z.; Song, F.; Wang, P.; Wan, Y. Cas14a1-mediated nucleic acid detectifon platform for pathogens. Biosens. Bioelectron. 2021, 189, 113350. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, Y.; Meng, T.; Yang, X.; Lu, L.; Yang, H.; Hou, H.; Negahdary, M.; Wan, Y.; Song, F.; et al. Cas14a1-advanced LAMP for ultrasensitive and visual Pathogen diagnostic. Talanta 2023, 269, 125458. [Google Scholar] [CrossRef]
- Wei, Y.; Tao, Z.; Wan, L.; Zong, C.; Wu, J.; Tan, X.; Wang, B.; Guo, Z.; Zhang, L.; Yuan, H.; et al. Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection. Biosens. Bioelectron. 2022, 211, 114282. [Google Scholar] [CrossRef]
- Chen, J.; Ren, B.; Wang, Z.; Wang, Q.; Bi, J.; Sun, X. Multiple Isothermal Amplification Coupled with CRISPR–Cas14a for the Naked-eye and Colorimetric Detection of Aflatoxin B1. ACS Appl. Mater. Interfaces 2023, 15, 55423–55432. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Yang, X.; Qiao, Y.; Wei, Y.; Shang, W.; Cai, H.; Luo, X.; Hou, H.; Dzantiev, B.B.; Wan, Y.; et al. Ligation-dependent Cas14a1-Activated biosensor for one-pot pathogen diagnostic. Anal. Chim. Acta 2023, 1271, 341470. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Yu, Z.; Wang, S.; Qiu, J.; Huang, Y.; Chen, X.; Zhang, Y.; Wang, C.; Zhang, X.; Liang, Y.; et al. Universal Amplification-Free RNA Detection by Integrating CRISPR-Cas10 with Aptameric Graphene Field-Effect Transistor. Nano-Micro Lett. 2025, 17, 242. [Google Scholar] [CrossRef] [PubMed]
- Nasef, M.; Khweis, S.A.; Dunkle, J.A. The effect of crRNA–target mismatches on cOA-mediated interference by a type III-A CRISPR-Cas system. RNA Biol. 2022, 19, 1293–1304. [Google Scholar] [CrossRef]
- López-Valls, M.; Escalona-Noguero, C.; Rodríguez-Díaz, C.; Pardo, D.; Castellanos, M.; Milán-Rois, P.; Martínez-Garay, C.; Coloma, R.; Abreu, M.; Cantón, R.; et al. CASCADE: Naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles. Anal. Chim. Acta 2022, 1205, 339749. [Google Scholar] [CrossRef]
- Yoshimi, K.; Takeshita, K.; Yamayoshi, S.; Shibumura, S.; Yamauchi, Y.; Yamamoto, M.; Yotsuyanagi, H.; Kawaoka, Y.; Mashimo, T. CRISPR-Cas3-based diagnostics for SARS-CoV-2 and influenza virus. iScience 2022, 25, 103830. [Google Scholar] [CrossRef]
- Hu, T.; Ji, Q.; Ke, X.; Zhou, H.; Zhang, S.; Ma, S.; Yu, C.; Ju, W.; Lu, M.; Lin, Y.; et al. Repurposing Type I-A CRISPR-Cas3 for a robust diagnosis of human papillomavirus (HPV). Commun. Biol. 2024, 7, 858. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, T.; Wang, M.; Ledesma-Amaro, R.; Lu, Y.; Hu, X.; Zhang, T.; Yang, M.; Li, Y.; Xiang, J.; et al. CRISPR-Cas13a cascade-based viral RNA assay for detecting SARS-CoV-2 and its mutations in clinical samples. Sens. Actuators B Chem. 2022, 362, 131765. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Van, A.B.; Koprowski, K.; Wester, M.; Valera, E.; Bashir, R. Amplification-free, OR-gated CRISPR-Cascade reaction for pathogen detection in blood samples. Proc. Natl. Acad. Sci. USA 2025, 122, e2420166122. [Google Scholar] [CrossRef]
- He, W.; Liao, K.; Li, R.; Peng, W.; Qian, B.; Zeng, D.; Tang, F.; Xue, F.; Jung, Y.S.; Dai, J. Development of a CRISPR/Cas12a-based fluorescent detection method of Senecavirus A. BMC Veter- Res. 2024, 20, 258. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Hsieh, K.; Chen, L.; Kaushik, A.; Trick, A.Y.; Wang, T. Digital CRISPR/Cas-Assisted Assay for Rapid and Sensitive Detection of SARS-CoV-2. Adv. Sci. 2020, 8, 2003564. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Sánchez, E.; Tehseen, M.; Mahas, A.; Marsic, T.; Aman, R.; Rao, G.S.; Alhamlan, F.S.; Alsanea, M.S.; Al-Qahtani, A.A.; et al. Bio-SCAN: A CRISPR/dCas9-Based Lateral Flow Assay for Rapid, Specific, and Sensitive Detection of SARS-CoV-2. ACS Synth. Biol. 2021, 11, 406–419. [Google Scholar] [CrossRef]
- Mukama, O.; Nie, C.; Habimana, J.d.D.; Meng, X.; Ting, Y.; Songwe, F.; Al Farga, A.; Mugisha, S.; Rwibasira, P.; Zhang, Y.; et al. Synergetic performance of isothermal amplification techniques and lateral flow approach for nucleic acid diagnostics. Anal. Biochem. 2020, 600, 113762. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, Z.; Shi, K.; Yang, D.; Bian, Z.; Li, Y.; Gou, H.; Jiang, Z.; Yang, N.; Chu, P.; et al. RPA-CRISPR/Cas12a-Based Detection of Haemophilus parasuis. Animals 2023, 13, 3317. [Google Scholar] [CrossRef]
- Deng, X.; Wang, W.; Tao, Y.; Yao, L.; Li, Y.; Huang, X.; He, J. Application of a rapid and sensitive RPA-CRISPR/Cas12a assay for BCSP31-based Brucella detection. J. Microbiol. Methods 2025, 235, 107148. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.; Zhao, H.; Liang, L.; Chen, M.; Yang, X. A novel one-pot RPA-CRISPR/Cas13a diagnostic system for rapid and specific detection of HAdV infections. Sens. Actuators B Chem. 2025, 435, 137611. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Q.; Wang, K.; Zhang, Q.; Ma, C.; Yang, G.; Xie, Y.; Mauk, M.G.; Fu, S.; Chen, L. RPA-CRISPR-Cas-Mediated Dual Lateral Flow Assay for the Point-of-Care Testing of HPV16 and HPV18. Bioconjugate Chem. 2024, 35, 1797–1804. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Ma, Z.; Zhou, L.; Li, N.; Yu, S.; Wang, F.; An, R. Visual detection of HPV16 using a photoactivatable CRISPR–Cas12 system. Chem. Commun. 2025, 61, 4383–4386. [Google Scholar] [CrossRef]
- Zhan, X.; Zhou, J.; Jiang, Y.; An, P.; Luo, B.; Lan, F.; Ying, B.; Wu, Y. DNA tetrahedron-based CRISPR bioassay for treble-self-amplified and multiplex HPV-DNA detection with elemental tagging. Biosens. Bioelectron. 2023, 229, 115229. [Google Scholar] [CrossRef]
- Ye, J.; Shen, Y.; Lin, Z.; Xu, L.; Wang, L.; Lin, X.; Huang, B.; Ma, Z.; Yu, Z.; Lin, D.; et al. A CRISPR/Cas12a-Assisted SERS Nanosensor for Highly Sensitive Detection of HPV DNA. ACS Sens. 2025, 10, 4286–4296. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Zhao, H.; Li, B.; Yan, S.; Wang, L.; Tang, Y.; Li, Z.; Bai, D.; Li, C.; Lin, Y.; et al. CRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms. Hum. Mol. Genet. 2018, 28, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Tan, J.; Liu, B.; Xiao, M.; Xia, Q. Field-deployable viral diagnostic tools for dengue virus based on Cas13a and Cas12a. Anal. Chim. Acta 2024, 1316, 342838. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Dhangur, P.; Kalichamy, A.; Singh, R. RT-RPA Assisted CRISPR/Cas12a Based One-Pot Rapid and Visual Detection of the Pan-Dengue Virus. J. Med Virol. 2025, 97, e70219. [Google Scholar] [CrossRef]
- Wu, Y.; Zhan, J.; Shan, Z.; Li, Y.; Liu, Y.; Li, Y.; Wang, Y.; Liu, Z.; Wen, X.; Wang, X. CRISPR-Cas13a-based detection method for avian influenza virus. Front. Microbiol. 2023, 14, 1288951. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, S.; Ma, Y.; Li, Y.; Deng, G.; Shi, J.; Wang, X. Rapid detection of avian influenza virus based on CRISPR-Cas12a. Virol. J. 2023, 20, 261. [Google Scholar] [CrossRef]
- Peng, D.; Kurup, S.P.; Yao, P.Y.; Minning, T.A.; Tarleton, R.L.; Johnson, P.J. CRISPR-Cas9-Mediated Single-Gene and Gene Family Disruption in Trypanosoma cruzi. mBio 2015, 6, e02097-14. [Google Scholar] [CrossRef]
- Ortiz-Rodríguez, L.A.; Cabanzo, R.; Jaimes-Dueñez, J.; Mendez-Sanchez, S.C.; Duque, J.E. TropD-detector a CRISPR/LbCas12a-based system for rapid screening of Trypanosoma cruzi in Chagas vectors and reservoirs. Sci. Rep. 2025, 15, 19107. [Google Scholar] [CrossRef] [PubMed]
- Bruch, R.; Baaske, J.; Chatelle, C.; Meirich, M.; Madlener, S.; Weber, W.; Dincer, C.; Urban, G.A. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics. Adv. Mater. 2019, 31, e1905311. [Google Scholar] [CrossRef]
- Shan, X.; Gong, F.; Yang, Y.; Qian, J.; Tan, Z.; Tian, S.; He, Z.; Ji, X. Nucleic Acid Amplification-Free Digital Detection Method for SARS-CoV-2 RNA Based on Droplet Microfluidics and CRISPR–Cas13a. Anal. Chem. 2023, 95, 16489–16495. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, H.; Lin, F.; Zhou, L.; Zhu, Z.; Yang, C. Sensitive and automated detection of bacteria by CRISPR/Cas12a-assisted amplification with digital microfluidics. Sens. Actuators B Chem. 2023, 381, 133409. [Google Scholar] [CrossRef]
- He, C.; Zhu, W.; Zhang, X.; Wu, W.; Tan, J.; Li, B.; Huang, D.; Chen, Y.; Xiang, Z.; Huang, L.; et al. Sensitive and Visualized Detection of Hantavirus Using CRISPR/Cas12a Based on AutoCORDSv2 Design. J. Med Virol. 2025, 97, e70460. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, X.; Wang, Y.; Han, N.; Liu, L.; Wei, H.; Tu, Z.; Gu, Z.; Song, R.; Wang, S.; et al. Two-Dimensional Nanozyme-Catalyzed Colorimetric CRISPR Assay for the Microfluidic Detection of Monkeypox Virus. Anal. Chem. 2025, 97, 4407–4415. [Google Scholar] [CrossRef]
- Álvarez-Rodríguez, A.; Li, Z.; Jin, B.-K.; Stijlemans, B.; Geldhof, P.; Magez, S. A CRISPR-Cas-based recombinase polymerase amplification assay for ultra-sensitive detection of active Trypanosoma brucei evansi infections. Front. Mol. Biosci. 2025, 12, 1512970. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wu, H.; Chen, X.; Wu, F.; Ma, G.; Du, A.; Yang, Y. RPA-CRISPR/Cas9-based method for the detection of Toxoplasma gondii: A proof of concept. Veter- Parasitol. 2024, 327, 110115. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, M.; Yang, S.; Xing, C.; Li, Q.; Zhu, Y.; Ji, Y.; Du, Y. CRISPR/Cas12a combined with RPA for detection of T. gondii in mouse whole blood. Parasites Vectors 2023, 16, 256. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Fan, J.; Chu, H.; Gao, Y.; Fang, J.; Wu, Q.; Ding, H.; Zhuo, X.; Kong, Q.; Lv, H.; et al. RPA-CRISPR/Cas12a-LFA combined with a digital visualization instrument to detect Toxoplasma gondii in stray dogs and cats in Zhejiang province, China. Microbiol. Spectr. 2024, 12, e0399823. [Google Scholar] [CrossRef]
- Shashikala, T.; Yogi, D.; Akshay, K.; Ashok, K.; Nagesha, S.N.; Manamohan, M.; Jha, G.K.; Asokan, R. CRISPR/Cas12a mediated rapid and efficient detection of Tomato Leaf Curl Karnataka Virus without amplification. Biocatal. Agric. Biotechnol. 2025, 64, 103528. [Google Scholar] [CrossRef]
- Tian, Q.; Zhou, H.; Zhao, Z.; Zhang, Y.; Zhao, W.; Cai, L.; Guo, T. Single and dual RPA-CRISPR/Cas assays for point-of-need detection of Stewart’s wilt pathogen (Pantoea stewartii subsp. stewartii) of corn and Maize dwarf mosaic virus. Pest Manag. Sci. 2024, 81, 1988–1999. [Google Scholar] [CrossRef]
- Lewald, K.M.; Song, W.; Eweis-LaBolle, D.; Truong, C.; E Godfrey, K.; Chiu, J.C.; Tamborindeguy, C. Probe-based quantitative PCR and RPA-Cas12a molecular diagnostics for detection of the tomato pest Phthorimaea absoluta (Lepidoptera: Gelechiidae). J. Econ. EÈntomol. 2023, 116, 993–1001. [Google Scholar] [CrossRef]
- Otari, S.; Bapat, V.A.; Lakkakula, J.; Kadam, U.S.; Suprasanna, P. Advancements in bionanotechnological applications for climate-smart agriculture and food production. Biocatal. Agric. Biotechnol. 2024, 57, 103117. [Google Scholar] [CrossRef]
- Jaybhaye, S.G.; Chavhan, R.L.; Hinge, V.R.; Deshmukh, A.S.; Kadam, U.S. CRISPR-Cas assisted diagnostics of plant viruses and challenges. Virology 2024, 597, 110160. [Google Scholar] [CrossRef] [PubMed]
- Wani, A.K.; Akhtar, N.; Mir, T.U.G.; Chopra, C.; Singh, R.; Hong, J.C.; Kadam, U.S. CRISPR/Cas12a-based biosensors for environmental monitoring and diagnostics. Environ. Technol. Innov. 2024, 34, 103625. [Google Scholar] [CrossRef]
- Sheng, A.; Zeng, B.; Jin, H.; Wang, K.; Wang, S.; Ma, L.; Yu, L.; Tian, L. Dynamic DNA assembly-assisted CRISPR/Cas12a system for lung cancer-associated miRNA analysis. Mater. Today Bio 2025, 32, 101671. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Fan, T.; Chen, H.; Huang, Y.; Lai, X.; Feng, S.; Ding, Z.; Chen, Y.; Jiang, Y. Development of a multi-miRNA detection platform for enhanced diagnostics of colorectal cancer. Biosens. Bioelectron. 2025, 287, 117639. [Google Scholar] [CrossRef]
- Jin, X.; Feng, S.; Lv, W.; Shen, D.; Li, B. Split activator ligation assay: A CRISPR/Cas12a-enabled biosensor for the genotyping of cancer-associated miRNA single-nucleotide polymorphisms. Sens. Actuators B Chem. 2025, 442, 138134. [Google Scholar] [CrossRef]
- Liu, Q.; Han, C.; Chang, X.; Zhang, Z.; Jia, C.; Zhang, L. Dual-Amplification CRISPR Biosensor for Ultrasensitive miRNA Detection: A Powerful Tool for Cancer and Immune Monitoring. Anal. Chem. 2025, 97, 11157–11164. [Google Scholar] [CrossRef]
- Kang, J.; Kim, H.; Lee, Y.; Lee, H.; Park, Y.; Jang, H.; Kim, J.; Lee, M.; Jeong, B.; Byun, J.; et al. Unveiling Cas12j Trans-Cleavage Activity for CRISPR Diagnostics: Application to miRNA Detection in Lung Cancer Diagnosis. Adv. Sci. 2024, 11, e2402580. [Google Scholar] [CrossRef]
- Hongdan, G.; Yao, D.; Qiang, C.; Meng, H.; Xiaorong, L.; Zhihao, X.; Dongli, M. A multiplex recombinase polymerase amplification assay combined with CRISPR/Cas12a for the detection of respiratory syncytial virus and respiratory adenovirus. J. Int. Med Res. 2024, 52, 03000605231223083. [Google Scholar] [CrossRef]
- Chang, Y.; Deng, Y.; Li, T.; Wang, J.; Wang, T.; Tan, F.; Li, X.; Tian, K. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a. Transbound. Emerg. Dis. 2019, 67, 564–571. [Google Scholar] [CrossRef]
- Khamwut, A.; Nimnual, J.; Chomta, N.; Nimsamer, P.; Mayuramart, O.; Kaewsapsak, P.; Pasittungkul, S.; Poovorawan, Y.; Payungporn, S. Detection of respiratory syncytial virus based on RT-RPA and CRISPR-Cas12a. Exp. Biol. Med. 2025, 250, 10387. [Google Scholar] [CrossRef]
- Tan, Q.; Shi, Y.; Duan, C.; Li, Q.; Gong, T.; Li, S.; Duan, X.; Xie, H.; Li, Y.; Chen, L. Simple, sensitive, and visual detection of 12 respiratory pathogens with one-pot-RPA-CRISPR/Cas12a assay. J. Med Virol. 2024, 96, e29624. [Google Scholar] [CrossRef]
- Chen, W.; Wu, S.; Li, G.; Duan, X.; Sun, X.; Li, S.; Zhao, Y.; Gu, D.; Zeng, G.; Liu, H. Accurate diagnosis of prostate cancer with CRISPR-based nucleic acid test strip by simultaneously identifying PCA3 and KLK3 genes. Biosens. Bioelectron. 2023, 220, 114854. [Google Scholar] [CrossRef]
- Zhu, Z.; Chung, Y.-M.; Sergeeva, O.; Kepe, V.; Berk, M.P.; Li, J.; Ko, H.-K.; Li, Z.; Petro, M.; DiFilippo, F.P.; et al. Loss of dihydrotestosterone-inactivation activity promotes prostate cancer castration resistance detectable by functional imaging. J. Biol. Chem. 2018, 293, 17829–17837. [Google Scholar] [CrossRef] [PubMed]
- Xiang, R.R.; Lee, S.-A.; Tyndall, C.F.; Bhatia, A.R.; Yin, J.; Singler, C.; Hauk, B.J.; Kipp, M.P.; Takeda, D.Y. CRISPR screening identifies regulators of enhancer-mediated androgen receptor transcription in advanced prostate cancer. Cell Rep. 2025, 44, 115312. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Li, L.; Li, C.; Li, Z.; Wu, Y.; Kuang, H.; Ma, P.; Huang, L.; Liu, J.; Tian, G. Dumbbell probe-bridged CRISPR/Cas13a and nicking-mediated DNA cascade reaction for highly sensitive detection of colorectal cancer-related microRNAs. Biosens. Bioelectron. 2025, 273, 117190. [Google Scholar] [CrossRef] [PubMed]
- Kohabir, K.A.; Nooi, L.O.; Brink, A.; Brakenhoff, R.H.; Sistermans, E.A.; Wolthuis, R.M. In Vitro CRISPR-Cas12a-Based Detection of Cancer-Associated TP53 Hotspot Mutations Beyond the crRNA Seed Region. CRISPR J. 2023, 6, 127–139. [Google Scholar] [CrossRef]
- Tan, C.; Xie, G.; Wu, S.; Song, C.; Zhang, J.; Yi, X.; Wang, J.; Tang, H. Simultaneous detection of breast cancer biomarkers circROBO1 and BRCA1 based on a CRISPR-Cas13a/Cas12a system. Biosens. Bioelectron. 2024, 258, 116373. [Google Scholar] [CrossRef]
- Amoasii, L.; Li, H.; Zhang, Y.; Min, Y.-L.; Sanchez-Ortiz, E.; Shelton, J.M.; Long, C.; Mireault, A.A.; Bhattacharyya, S.; McAnally, J.R.; et al. In vivo non-invasive monitoring of dystrophin correction in a new Duchenne muscular dystrophy reporter mouse. Nat. Commun. 2019, 10, 4537. [Google Scholar] [CrossRef]
- Hafford-Tear, N.J.; Tsai, Y.-C.; Sadan, A.N.; Sanchez-Pintado, B.; Zarouchlioti, C.; Maher, G.J.; Liskova, P.; Tuft, S.J.; Hardcastle, A.J.; Clark, T.A.; et al. CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy–associated TCF4 triplet repeat. Anesthesia Analg. 2019, 21, 2092–2102. [Google Scholar] [CrossRef]
- Mou, H.; Ozata, D.M.; Smith, J.L.; Sheel, A.; Kwan, S.-Y.; Hough, S.; Kucukural, A.; Kennedy, Z.; Cao, Y.; Xue, W. CRISPR-SONIC: Targeted somatic oncogene knock-in enables rapid in vivo cancer modeling. Genome Med. 2019, 11, 21. [Google Scholar] [CrossRef]
- Li, N.; Chinthalapally, M.; Holden, V.K.; Deepak, J.; Dhilipkannah, P.; Fan, J.M.; Todd, N.W.; Jiang, F. Profiling Plasma Cytokines by A CRISPR-ELISA Assay for Early Detection of Lung Cancer. J. Clin. Med. 2022, 11, 6923. [Google Scholar] [CrossRef]
- Shariq, M.; Khan, M.F.; Raj, R.; Ahsan, N.; Singh, R.; Kumar, P. CRISPR-based diagnostic approaches: Implications for rapid management of future pandemics (Review). Mol. Med. Rep. 2023, 27, 13005. [Google Scholar] [CrossRef]
- Ding, X.; Yin, K.; Li, Z.; Lalla, R.V.; Ballesteros, E.; Sfeir, M.M.; Liu, C. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat. Commun. 2020, 11, 4711. [Google Scholar] [CrossRef] [PubMed]
- Kan, X.; Wu, Y.; Zhang, X.; Zeng, Z.; Lou, C.; Wu, L.; Huang, X.; Wang, X.; Huang, B.; Ren, L. Palm Multidiagnostic of Mycoplasma pneumoniae, Chlamydia pneumoniae, Haemophilus influenzae, and Streptococcus pneumoniae Using One-Tube CRISPR/Cas12a. Transbound. Emerg. Dis. 2024, 2024, 12. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Wan, L.; Xiao, F.; Huang, X.; Zhou, J.; Wang, Y.; Tai, J. Rapid and sensitive detection of human adenovirus types 3 and 7 using CRISPR-Cas12b coupled with multiple cross displacement amplification. Infect. Med. 2025, 4, 100181. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, H.; Song, Z.; Chen, S.; Xu, J.; Yang, J.; Zheng, C.; Liu, Y.; Zhang, J.; Cao, L.; et al. Palm-sized CRISPR sensing platform for on-site Mycoplasma pneumoniae detection. Biosens. Bioelectron. 2025, 281, 117458. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Wang, W.; Yu, Q.; Zhang, M.; Xue, F.; Fan, B.; Zhang, T.; Gao, Y.; Li, J.; Meng, X.; et al. MASTR Pouch: Palm-size lab for point-of-care detection of Mpox using recombinase polymerase amplification and CRISPR technology. Sens. Actuators B Chem. 2023, 390, 133950. [Google Scholar] [CrossRef]
- Márquez-Costa, R.; Montagud-Martínez, R.; Marqués, M.-C.; Albert, E.; Navarro, D.; Daròs, J.-A.; Ruiz, R.; Rodrigo, G. Multiplexable and Biocomputational Virus Detection by CRISPR-Cas9-Mediated Strand Displacement. Anal. Chem. 2023, 95, 9564–9574. [Google Scholar] [CrossRef]
- Hu, F.; Liu, Y.; Zhao, S.; Zhang, Z.; Li, X.; Peng, N.; Jiang, Z. A one-pot CRISPR/Cas13a-based contamination-free biosensor for low-cost and rapid nucleic acid diagnostics. Biosens. Bioelectron. 2022, 202, 113994. [Google Scholar] [CrossRef]
- Shrikrishna, N.S.; Mahari, S.; Gandhi, S. Sensing of trans-cleavage activity of CRISPR/Cas12a for detection of Salmonella. Int. J. Biol. Macromol. 2023, 258, 128979. [Google Scholar] [CrossRef]
- Yin, D.; Yin, L.; Wang, J.; Dai, Y.; Shen, X.; Zhao, R.; Qi, K.; Pan, X. Visual detection of fowl adenovirus serotype 4 via a portable CRISPR/Cas13a-based lateral flow assay. Avian Pathol. 2023, 52, 438–445. [Google Scholar] [CrossRef]
- Khudeir, M.A.; Alsultan, A.S.; Khudhair, Y.I. Novel CRISPR/Cas13- based assay for diagnosis of avian infectious bronchitis. Iraqi J. Veter- Sci. 2024, 38, 63–69. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, T.; Liu, L.; Chen, S.; Li, J.; Zhang, Y.; Chen, J.; Yang, C.; Huang, J.; Huang, T.; et al. Rapid field visual detection of avian metapneumovirus by integrating MIRA pre-amplification with CRISPR-Cas13a to enhance sensitivity and specificity: Innovative technologies well-suited for real-time large-scale epidemiological surveillance. Int. J. Biol. Macromol. 2025, 318, 144966. [Google Scholar] [CrossRef] [PubMed]
- Marqués, M.-C.; Ruiz, R.; Montagud-Martínez, R.; Márquez-Costa, R.; Albert, S.; Domingo-Calap, P.; Rodrigo, G. CRISPR-Cas12a-Based Detection of SARS-CoV-2 Harboring the E484K Mutation. ACS Synth. Biol. 2021, 10, 3595–3599. [Google Scholar] [CrossRef] [PubMed]
- Rauch, J.N.; Valois, E.; Ponce-Rojas, J.C.; Aralis, Z.; Lach, R.S.; Zappa, F.; Audouard, M.; Solley, S.C.; Vaidya, C.; Costello, M.; et al. Comparison of Severe Acute Respiratory Syndrome Coronavirus 2 Screening Using Reverse Transcriptase–Quantitative Polymerase Chain Reaction or CRISPR-Based Assays in Asymptomatic College Students. JAMA Netw. Open 2021, 4, e2037129. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, K.; Shimizu, T.; Imai, T.; Ko, R.; Kawai, Y.; Omae, Y.; Tokunaga, K.; Frith, M.C.; Yamano, Y.; Mitsuhashi, S. Cost-Effective Cas9-Mediated Targeted Sequencing of Spinocerebellar Ataxia Repeat Expansions. J. Mol. Diagn. 2023, 26, 85–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Quan, X.; Li, Y.; Guo, H.; Kong, F.; Lu, J.; Teng, L.; Wang, J.; Wang, D. Visual detection of SARS-CoV-2 with a CRISPR/Cas12b-based platform. Talanta 2022, 253, 124093. [Google Scholar] [CrossRef]
- Wu, Y.-X.; Sadiq, S.; Jiao, X.-H.; Zhou, X.-M.; Wang, L.-L.; Xie, X.-R.; Khan, I.; Wu, P. CRISPR/Cas13a-mediated visual detection: A rapid and robust method for early detection of Nosema bombycis in silkworms. Insect Biochem. Mol. Biol. 2024, 175, 104203. [Google Scholar] [CrossRef]
- Kang, H.; Yang, X.; Jiang, R.; Gao, P.; Zhang, Y.; Zhou, L.; Ge, X.; Han, J.; Guo, X.; Yang, H. Ultrasensitive and visual detection of pseudorabies virus based on CRISPR-Cas12b system. Microb. Pathog. 2025, 203, 107447. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Xiong, Q.; Zhu, Y.; Zhang, C.; Li, Z.; Chen, Z.; Zhang, Y.; Deng, X.; Tao, Y.; Xu, S. CRISPR/Cas12a-Enabled Amplification-Free Colorimetric Visual Sensing Strategy for Point-of-Care Diagnostics of Biomarkers. Anal. Chem. 2024, 97, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Li, J.; Quan, S.; Wang, Y.; Jiang, G.; Wang, Y.; Huang, H.; Jiao, W.; Shen, A. Development and preliminary assessment of a CRISPR–Cas12a-based multiplex detection of Mycobacterium tuberculosis complex. Front. Bioeng. Biotechnol. 2023, 11, 1233353. [Google Scholar] [CrossRef]
- Hao, L.; Zhao, R.T.; Welch, N.L.; Tan, E.K.W.; Zhong, Q.; Harzallah, N.S.; Ngambenjawong, C.; Ko, H.; Fleming, H.E.; Sabeti, P.C.; et al. CRISPR-Cas-amplified urinary biomarkers for multiplexed and portable cancer diagnostics. Nat. Nanotechnol. 2023, 18, 798–807. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Liang, B.; Xu, H.; Chen, L.; Ye, Z.; Wu, Z.; Wang, X. CRISPR/Cas12a-based assay for the rapid and high-sensitivity detection of Streptococcus agalactiae colonization in pregnant women with premature rupture of membrane. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 8. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, Y.; Zhang, C.; Wei, X.; Zhang, M. Biosensing Intestinal Alkaline Phosphatase by Pregnancy Test Strips Based on Target-Triggered CRISPR-Cas12a Activity to Monitor Intestinal Inflammation. Anal. Chem. 2023, 95, 14111–14118. [Google Scholar] [CrossRef]
- Junior, D.W.; Pontes, R.G.; Hryniewicz, B.M.; Kubota, L.T. Exploring a CRISPR/Cas12a-powered impedimetric biosensor for amplification-free detection of a pathogenic bacterial DNA. Biosens. Bioelectron. 2025, 285, 117607. [Google Scholar] [CrossRef]
- Rad, M.B.; Hakimian, F.; Mohebbi, S.R.; Yadegar, A.; Ghourchian, H. LAMP-CRISPR/Cas12a-based impedimetric biosensor powered by Fe3O4@Au-(S-polyA-S)-Au for detection of SARS-CoV-2. Microchim. Acta 2024, 191, 644. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Wei, S.; Wang, J.; Zhang, Y.; Lin, H.; Fu, H.; Liu, Y.; Gao, Q.; Zhang, H.; et al. CRISPR CLAMP: Attomolar level of multiple miRNAs. Chem. Eng. J. 2025, 511, 161990. [Google Scholar] [CrossRef]
- Naqvi, M.M.; Lee, L.; Montaguth, O.E.T.; Diffin, F.M.; Szczelkun, M.D. CRISPR–Cas12a-mediated DNA clamping triggers target-strand cleavage. Nat. Chem. Biol. 2022, 18, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Hu, L.; Ying, L.; Zhao, Z.; Chu, P.K.; Yu, X.-F. A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat. Commun. 2018, 9, 5012. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Guo, J.; Liu, J.; Sinha, S. CRISPR-M: Predicting sgRNA off-target effect using a multi-view deep learning network. PLoS Comput. Biol. 2024, 20, e1011972. [Google Scholar] [CrossRef]
- Dong, J.; Ma, W.; Zhou, S.; Li, X.; Deng, L.; Hou, C.; Huo, D. Tri-Mode CRISPR-Based Biosensor for miRNA Detection: Enhancing Clinical Diagnostics with Cross-Validation. Anal. Chem. 2025, 97, 10938–10946. [Google Scholar] [CrossRef]
- Khan, K.A.; Duceppe, M.-O. Cross-reactivity and inclusivity analysis of CRISPR-based diagnostic assays of coronavirus SARS-CoV-2. PeerJ 2021, 9, e12050. [Google Scholar] [CrossRef]
- Wu, Y.; Chang, D.; Chang, Y.; Zhang, Q.; Liu, Y.; Brennan, J.D.; Li, Y.; Liu, M. Nucleic Acid Enzyme-Activated CRISPR-Cas12a With Circular CRISPR RNA for Biosensing. Small 2023, 19, e2303007. [Google Scholar] [CrossRef]
- Wu, X.; Pi, N.-N.; Deng, F.; Tang, S.-Y.; Zhang, C.-C.; Zhu, L.; Sun, F.-F.; He, X.-Y.; Li, H.-Q.; Zhao, S.-L.; et al. Circular DNA enhanced amplification-free CRISPR/Cas12a assays for end-user friendly ultra-sensitive Porphyromonas gingivalis diagnosis. Microchem. J. 2024, 207, 111983. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, F.; Zhao, Y.; Liu, Z.; Yao, X.; Zhang, J. Tetrahedron supported CRISPR/Cas13a cleavage for electrochemical detection of circular RNA in bladder cancer. Biosens. Bioelectron. 2022, 222, 114982. [Google Scholar] [CrossRef]
- Sha, L.; Yao, J.; Yang, S.; Hu, M.; Zhou, Q.; Zhao, J.; Bei, Y.; Cao, Y. Collaborative CRISPR-Cas System-Enabled Detection of Circulating Circular RNA for Reliable Monitoring of Acute Myocardial Infarction. Small 2024, 20, e2402895. [Google Scholar] [CrossRef]
- Song, P.; Zhang, P.; Qin, K.; Su, F.; Gao, K.; Liu, X.; Li, Z. CRISPR/Cas13a induced exponential amplification for highly sensitive and specific detection of circular RNA. Talanta 2022, 246, 123521. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Li, W.; Xie, Q.; Zang, Z.; Liu, C. Enhancement of CRISPR-Cas12a system through universal circular RNA design. Cell Rep. Methods 2025, 5, 101076. [Google Scholar] [CrossRef]
- Bagheri, N.; Chamorro, A.; Idili, A.; Porchetta, A. PAM-Engineered Toehold Switches as Input-Responsive Activators of CRISPR-Cas12a for Sensing Applications. Angew. Chem. Int. Ed. Engl. 2024, 63, e202319677. [Google Scholar] [CrossRef]
- Song, Y.; Long, J.; Wang, H.; Tang, W.; Yang, W.; Zheng, Y.; Yuan, R.; Zhang, D.; Gu, B.; Nian, W. High-efficiency detection of APE1 using a defective PAM-driven CRISPR-Cas12a self-catalytic biosensor. Biosens. Bioelectron. 2025, 279, 117410. [Google Scholar] [CrossRef]
- Chen, S.; Wang, R.; Peng, S.; Xie, S.; Lei, C.; Huang, Y.; Nie, Z. PAM-less conditional DNA substrates leverage trans-cleavage of CRISPR-Cas12a for versatile live-cell biosensing. Chem. Sci. 2022, 13, 2011–2020. [Google Scholar] [CrossRef]
- Long, K.; Liu, H.; Yang, N.; Li, J.; Hou, C.; Yang, M.; Huang, Z.; Huo, D. Selenium-enhanced recombinase polymerase amplification-CRISPR/Cas12a: A low-noise single-tube assay for human papillomavirus 16 ultrasensitive detection. Int. J. Biol. Macromol. 2025, 310, 143468. [Google Scholar] [CrossRef] [PubMed]
- Aiamsa-At, P.; Sunantawanit, S.; Chumroenvidhayakul, R.; Nakarin, F.; Sanguanrat, P.; Sritunyalucksana, K.; Chaijarasphong, T. A novel dual CRISPR-Cas assay for detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) in penaeid shrimp without false positives from its endogenous viral elements (EVEs). Aquaculture 2025, 595, 741452. [Google Scholar] [CrossRef]
- Trung, N.T.; Son, L.H.P.; Hien, T.X.; Quyen, D.T.; Bang, M.H. CRISPR-Cas12a combination to alleviate the false-positive in loop-mediated isothermal amplification-based diagnosis of Neisseria meningitidis. BMC Infect. Dis. 2022, 22, 429. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Li, Y.; Qiao, L.; Goldys, E. A CRISPR/Cas12a-assisted on-fibre immunosensor for ultrasensitive small protein detection in complex biological samples. Anal. Chim. Acta 2022, 1192, 339351. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Y.; Tian, Y.; Zhang, K.; Shao, J. Electrochemical detection of miR-21 in complex samples via entropy-driven amplification and CRISPR-Cas13a cleavage. Microchem. J. 2025, 213, 113918. [Google Scholar] [CrossRef]
- Gou, S.; Liu, Y.; Li, Q.; Qiu, L.; Liu, Z.; Zhao, Y. CRISPR/Cas12-mediated detection of GI and GII Norovirus in different food samples. J. Food Sci. 2025, 90, e70160. [Google Scholar] [CrossRef]
- Qiu, E.; Jin, S.; Xiao, Z.; Chen, Q.; Wang, Q.; Liu, H.; Xie, C.; Chen, C.; Li, Z.; Han, S. CRISPR-based detection of Helicobacter pylori in stool samples. Helicobacter 2021, 26, e12828. [Google Scholar] [CrossRef]
- Ren, W.; Zhou, Y.; Li, H.; Shang, Y.; Zhang, X.; Yuan, J.; Li, S.; Li, C.; Pang, Y. Development and clinical evaluation of a CRISPR/Cas13a-based diagnostic test to detect Mycobacterium tuberculosis in clinical specimens. Front. Microbiol. 2023, 14, 1117085. [Google Scholar] [CrossRef]
- Wang, T.; Bai, L.; Wang, G.; Han, J.; Wu, L.; Chen, X.; Zhang, H.; Feng, J.; Wang, Y.; Wang, R.; et al. SATCAS: A CRISPR/Cas13a-based simultaneous amplification and testing platform for one-pot RNA detection and SNPs distinguish in clinical diagnosis. Biosens. Bioelectron. 2024, 263, 116636. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, Y.; Shin, S.; Lee, S.-T.; Cho, J.Y.; Lee, K.-A. Application of CRISPR/Cas9-based mutant enrichment technique to improve the clinical sensitivity of plasma EGFR testing in patients with non-small cell lung cancer. Cancer Cell Int. 2022, 22, 82. [Google Scholar] [CrossRef] [PubMed]
- Huyen, D.T.; Reboud, J.; Quyen, D.T.; Cooper, J.M.; Velavan, T.P.; Trung, N.T.; Song, L.H. An isothermal CRISPR- based lateral flow assay for detection of Neisseria meningitidis. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 28. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Lin, H.; Lu, X.; Wu, X.; Zhu, Y.; Zhao, Z.; Li, Y.; Borje, S.; Lui, G.C.; Lee, S.S.; et al. Benchtop to at-home test: Amplicon-depleted CRISPR-regulated loop mediated amplification at skin-temperature for viral load monitoring. Biosens. Bioelectron. 2024, 267, 116866. [Google Scholar] [CrossRef]
- Van Dongen, J.E.; Berendsen, J.T.; Steenbergen, R.D.; Wolthuis, R.; Eijkel, J.C.; Segerink, L.I. Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities. Biosens. Bioelectron. 2020, 166, 112445. [Google Scholar] [CrossRef]
- Mathew, B.J.; Vyas, A.K.; Khare, P.; Gupta, S.; Nema, R.K.; Nema, S.; Gupta, S.; Chaurasiya, S.K.; Biswas, D.; Singh, A.K. Laboratory diagnosis of COVID-19: Current status and challenges. Iran. J. Microbiol. 2021, 13, 1–7. [Google Scholar] [CrossRef]
- Xue, M.; Gonzalez, D.H.; Osikpa, E.; Gao, X.; Lillehoj, P.B. Rapid and automated interpretation of CRISPR-Cas13-based lateral flow assay test results using machine learning. Sens. Diagn. 2024, 4, 171–181. [Google Scholar] [CrossRef]
- Ai, J.; Deng, J.; Hu, J.; Pu, X.; Yuan, T.; Teng, Y.; Li, H.; Chen, B.; Du, J.; Jiang, L.; et al. PAM-Independent CRISPR-Cas12a System for Specific Assays of Single Nucleotide Variants. JACS Au 2025, 5, 1392–1401. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, W.; Chen, X.; Zhang, X.; Zhu, J.; Li, S.; Wu, C.; Tian, Z.; Sui, G. Fully Automated CRISPR-LAMP Platform for SARS-CoV-2 Delta and Omicron Variants. Anal. Chem. 2022, 94, 15472–15480. [Google Scholar] [CrossRef]
- Chen, F.-E.; Lee, P.-W.; Trick, A.Y.; Park, J.S.; Chen, L.; Shah, K.; Mostafa, H.; Carroll, K.C.; Hsieh, K.; Wang, T.-H. Point-of-care CRISPR-Cas-assisted SARS-CoV-2 detection in an automated and portable droplet magnetofluidic device. Biosens. Bioelectron. 2021, 190, 113390. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Ren, X.; Wen, Q.; Xing, G.; Liu, Y.; Xu, X.; Wei, Y.; Ji, Y.; Liu, T.; Song, H.; et al. Automatic Microfluidic Harmonized RAA-CRISPR Diagnostic System for Rapid and Accurate Identification of Bacterial Respiratory Tract Infections. Anal. Chem. 2024, 96, 6282–6291. [Google Scholar] [CrossRef]
- Chen, J.; Yang, D.; Ji, D.; Guo, B.; Guo, Y.; Lin, H.; Zhang, R.; Chang, Z.; Lu, Y.; Zhu, G.; et al. A Fully Automated Point-of-Care Device Using Organic Electrochemical Transistor-Enhanced CRISPR/Cas12a for Amplification-Free Nucleic Acid Detection. Adv. Funct. Mater. 2025, 35, 2420701. [Google Scholar] [CrossRef]
- Yin, K.; Ding, X.; Li, Z.; Sfeir, M.M.; Ballesteros, E.; Liu, C. Autonomous lab-on-paper for multiplexed, CRISPR-based diagnostics of SARS-CoV-2. Lab a Chip 2021, 21, 2730–2737. [Google Scholar] [CrossRef]
- Cheng, X.; Yan, Y.; Chen, X.; Duan, J.; Zhang, D.; Yang, T.; Gou, X.; Zhao, M.; Ding, S.; Cheng, W. CRISPR/Cas12a-Modulated fluorescence resonance energy transfer with nanomaterials for nucleic acid sensing. Sens. Actuators B Chem. 2021, 331, 129458. [Google Scholar] [CrossRef]
- Zuo, T.; Shen, C.; Xie, Z.; Xu, G.; Wei, F.; Yang, J.; Zhu, X.; Hu, Q.; Zhao, Z.; Tang, B.Z.; et al. FRAME: Flap endonuclease 1-engineered PAM module for precise and sensitive modulation of CRISPR/Cas12a trans-cleavage activity. Nucleic Acids Res. 2024, 52, 11884–11894. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Niu, Y.; Liu, H.; Zhu, Y. A modularized universal strategy by integrating CRISPR/Cas with nanoporous materials for ultrasensitive determination of nucleic acids. Chem. Eng. J. 2025, 506, 160065. [Google Scholar] [CrossRef]
- Hu, M.; Cheng, X.; Wu, T. Modular CRISPR/Cas12a synergistic activation platform for detection and logic operations. Nucleic Acids Res. 2024, 52, 7384–7396. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, H.; Tang, Y.; Li, B. A Universal CRISPR/Cas12a-Assisted Methodology Based on Duplex Switch Structure to Detect Multiple Types of Targets. Anal. Sens. 2023, 3, e202300018. [Google Scholar] [CrossRef]
- Zhao, R.; Xiao, Y.; Tang, Y.; Lu, B.; Li, B. Label-Free and Universal CRISPR/Cas12a-Based Detection Platform for Nucleic Acid Biomarkers. ACS Sens. 2024, 9, 4803–4810. [Google Scholar] [CrossRef]
- Liu, P.; Lin, Y.; Zhuo, X.; Zeng, J.; Chen, B.; Zou, Z.; Liu, G.; Xiong, E.; Yang, R. Universal crRNA Acylation Strategy for Robust Photo-Initiated One-Pot CRISPR–Cas12a Nucleic Acid Diagnostics. Angew. Chem. Int. Ed. Engl. 2024, 63, e202401486. [Google Scholar] [CrossRef] [PubMed]
- Park, B.J.; Heo, S.T.; Kim, M.; Yoo, J.R.; Bae, E.J.; Kang, S.Y.; Park, S.; Han, K.R.; Lee, K.H.; Lee, J.M.; et al. A CRISPR-Cas12a-based universal rapid scrub typhus diagnostic method targeting 16S rRNA of Orientia tsutsugamushi. PLoS Neglected Trop. Dis. 2025, 19, e0012826. [Google Scholar] [CrossRef]
- Ding, L.; Wu, Y.; Liu, L.-E.; He, L.; Yu, S.; Effah, C.Y.; Liu, X.; Qu, L.; Wu, Y. Universal DNAzyme walkers-triggered CRISPR-Cas12a/Cas13a bioassay for the synchronous detection of two exosomal proteins and its application in intelligent diagnosis of cancer. Biosens. Bioelectron. 2023, 219, 114827. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Zhao, Z.; Wang, C.; Zhou, C.; Wu, X.; Gao, B.; Wang, L.; Man, S.; Cheng, X.; Wu, Q.; et al. Development and evaluation of a CRISPR/Cas12a-based diagnostic test for rapid detection and genotyping of HR-HPV in clinical specimens. Microbiol. Spectr. 2025, 13, e0225324. [Google Scholar] [CrossRef]
- Deivarajan, H.R.; R, P.S.; Elamurugan, V.; Vs, A.; P, R.; Chelliah, D.; S, H.V.; Gr, E.N.; M, K.; Nandhakumar, D.; et al. Clinical Evaluation of a Novel CRISPR-Cas12a-Based RID-MyC Assay for the Diagnosis of Fungal Endophthalmitis. Ophthalmol. Retin. 2024, 9, 444–452. [Google Scholar] [CrossRef]
- Teng, J.; Zou, Y.; Wang, J. CRISPR/Cas Systems with Integrated Nucleic Acid Detection Technologies Facilitate Innovative Applications. Chin. J. Lasers 2025, 52, 0307202. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, W.; Zhang, K. Innovative ALP detection: Combining CRISPR/Cas12a collateral cleavage and toehold-mediated DNA amplification. Microchem. J. 2025, 215, 114354. [Google Scholar] [CrossRef]
- del Prado, J.A.-N.; Reyes, A.Q.; Leon, J.; La Torre, J.B.; Loli, R.G.; Olejua, A.P.; Chirinos, E.R.C.; Mauricio, F.A.L.; Maguiña, J.L.; Rodriguez-Aliaga, P.; et al. Clinical validation of RCSMS: A rapid and sensitive CRISPR-Cas12a test for the molecular detection of SARS-CoV-2 from saliva. PLoS ONE 2024, 19, e0290466. [Google Scholar] [CrossRef]
- Zhou, S.; Zhao, X.; Meng, F. Method development and clinical validation of LAMP-CRISPR/Cas12a for rapid detection of respiratory pathogens in children. Front. Pediatr. 2025, 13, 1533100. [Google Scholar] [CrossRef]
- Yang, L.; Chen, G.; Wu, J.; Wei, W.; Peng, C.; Ding, L.; Chen, X.; Xu, X.; Wang, X.; Xu, J. A PAM-Free One-Step Asymmetric RPA and CRISPR/Cas12b Combined Assay (OAR-CRISPR) for Rapid and Ultrasensitive DNA Detection. Anal. Chem. 2024, 96, 5471–5477. [Google Scholar] [CrossRef] [PubMed]
- Kachwala, M.J.; Hamdard, F.; Cicek, D.; Dagci, H.; Smith, C.W.; Kalla, N.; Yigit, M.V. Universal CRISPR-Cas12a and Toehold RNA Cascade Reaction on Paper Substrate for Visual Salmonella Genome Detection. Adv. Heal. Mater. 2024, 13, e2400508. [Google Scholar] [CrossRef]
- Lin, W.; Huang, M.; Fu, H.; Yu, L.; Chen, Y.; Chen, L.; Lin, Y.; Wen, T.; Luo, X.; Cong, Y. An EXPAR-CRISPR/Cas12a Assay for Rapid Detection of Salmonella. Curr. Microbiol. 2025, 82, 262. [Google Scholar] [CrossRef]
- Pascual-Garrigos, A.; Lozano-Torres, B.; Das, A.; Molloy, J.C. Colorimetric CRISPR Biosensor: A Case Study with Salmonella Typhi. ACS Sens. 2025, 10, 717–724. [Google Scholar] [CrossRef]
- Ma, L.; Yin, L.; Li, X.; Chen, S.; Peng, L.; Liu, G.; Ye, S.; Zhang, W.; Man, S. A smartphone-based visual biosensor for CRISPR-Cas powered SARS-CoV-2 diagnostics. Biosens. Bioelectron. 2021, 195, 113646. [Google Scholar] [CrossRef]
- Samacoits, A.; Nimsamer, P.; Mayuramart, O.; Chantaravisoot, N.; Sitthi-Amorn, P.; Nakhakes, C.; Luangkamchorn, L.; Tongcham, P.; Zahm, U.; Suphanpayak, S.; et al. Machine Learning-Driven and Smartphone-Based Fluorescence Detection for CRISPR Diagnostic of SARS-CoV-2. ACS Omega 2021, 6, 2727–2733. [Google Scholar] [CrossRef]
- Song, J.; Cha, B.; Moon, J.; Jang, H.; Kim, S.; Jang, J.; Yong, D.; Kwon, H.-J.; Lee, I.-C.; Lim, E.-K.; et al. Smartphone-Based SARS-CoV-2 and Variants Detection System using Colorimetric DNAzyme Reaction Triggered by Loop-Mediated Isothermal Amplification (LAMP) with Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). ACS Nano 2022, 16, 11300–11314. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.V.; Hwang, S.; Lee, S.W.; Jin, E.; Lee, M.-H. Detection of HPV 16 and 18 L1 genes by a nucleic acid amplification-free electrochemical biosensor powered by CRISPR/Cas9. Bioelectrochemistry 2024, 162, 108861. [Google Scholar] [CrossRef] [PubMed]
- Pian, H.; Wang, H.; Wang, H.; Tang, F.; Li, Z. Capillarity-powered and CRISPR/Cas12a-responsive DNA hydrogel distance sensor for highly sensitive visual detection of HPV DNA. Biosens. Bioelectron. 2024, 264, 116657. [Google Scholar] [CrossRef]
- Yu, T.; Rong, Z.; Gu, Z.; Wei, H.; Wang, Y.; Song, R.; Wang, S.; Wang, S. Detection of monkeypox virus based on a convenient and sensitive single-step RPA-CRISPR/Cas12a strategy. RSC Adv. 2024, 14, 14775–14783. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Li, T.; Qiu, M.; Zhang, J.; Wang, Y.; Yuan, W.; Ho, A.H.-P.; Al-Hartomy, O.; Wageh, S.; et al. Ultrasensitive and Specific Clustered Regularly Interspaced Short Palindromic Repeats Empowered a Plasmonic Fiber Tip System for Amplification-Free Monkeypox Virus Detection and Genotyping. ACS Nano 2023, 17, 12903–12914. [Google Scholar] [CrossRef]
- van Dongen, J.E.; Segerink, L.I. Building the Future of Clinical Diagnostics: An Analysis of Potential Benefits and Current Barriers in CRISPR/Cas Diagnostics. ACS Synth. Biol. 2025, 14, 323–331. [Google Scholar] [CrossRef]
- Wang, X.; Deng, X.; Zhang, Y.; Dong, W.; Rao, Q.; Huang, Q.; Tang, F.; Shen, R.; Xu, H.; Jin, Z.; et al. A rapid and sensitive one-pot platform integrating fluorogenic RNA aptamers and CRISPR-Cas13a for visual detection of monkeypox virus. Biosens. Bioelectron. 2024, 257, 116268. [Google Scholar] [CrossRef] [PubMed]
- Low, S.J.; O’NEill, M.T.; Kerry, W.J.; Krysiak, M.; Papadakis, G.; Whitehead, L.W.; Savic, I.; Prestedge, J.; Williams, L.; Cooney, J.P.; et al. Rapid detection of monkeypox virus using a CRISPR-Cas12a mediated assay: A laboratory validation and evaluation study. Lancet Microbe 2023, 4, e800–e810. [Google Scholar] [CrossRef]
- Liang, Y.; Xie, S.-C.; Lv, Y.-H.; He, Y.-H.; Zheng, X.-N.; Cong, W.; Elsheikha, H.M.; Zhu, X.-Q. A novel single-tube LAMP-CRISPR/Cas12b method for rapid and visual detection of zoonotic Toxoplasma gondii in the environment. Infect. Dis. Poverty 2024, 13, 94. [Google Scholar] [CrossRef]
- Huang, S.; Chen, J.; Wang, Q.; Zhang, R.; Zhuang, J.; Huang, R.; Yu, C.; Fang, M.; Zhao, H.; Lei, L. Identification and functional validation of a novel FBN1 variant in a Marfan syndrome family using a zebrafish model. BMC Genom. 2025, 26, 288. [Google Scholar] [CrossRef]
- Sugihara, H.; Kimura, K.; Yamanouchi, K.; Teramoto, N.; Okano, T.; Daimon, M.; Morita, H.; Takenaka, K.; Shiga, T.; Tanihata, J.; et al. Age-Dependent Echocardiographic and Pathologic Findings in a Rat Model with Duchenne Muscular Dystrophy Generated by CRISPR/Cas9 Genome Editing. Int. Hear. J. 2020, 61, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- da Costa, V.; van Vliet, S.J.; Carasi, P.; Frigerio, S.; García, P.A.; Croci, D.O.; Festari, M.F.; Costa, M.; Landeira, M.; Rodríguez-Zraquia, S.A.; et al. The Tn antigen promotes lung tumor growth by fostering immunosuppression and angiogenesis via interaction with Macrophage Galactose-type lectin 2 (MGL2). Cancer Lett. 2021, 518, 72–81. [Google Scholar] [CrossRef] [PubMed]






| Cas-Protein (Type) | Target | Characteristic Cleavage Mechanism | PAM Requirement | Key Diagnostic Feature |
|---|---|---|---|---|
| Cas9 (Type II) | DNA (dsDNA) | Cis-cleavage (double-strand breaks) | Yes (NGG) | Precise gene editing; Mutation detection |
| Cas12a (Type V) | DNA (dsDNA) | Trans-cleavage (ssDNA collateral) | Yes | High sensitivity via signal amplification |
| Cas13a (Type VI) | RNA (ssRNA) | Trans-cleavage (ssRNA collateral) | No (PFS) | Direct RNA detection |
| Cas12b (Type V) | DNA (dsDNA) | Trans-cleavage (ssDNA collateral) | Yes | One-pot/one-step assays |
| Cas14a (Type V) | DNA (ssDNA) | Trans-cleavage (ssDNA collateral) | No | PAM-free targeting for SNPs |
| Cas10 (Type III) | RNA (ssRNA) | Cyclic Oligoadenylate (cOA); indirect reporter cleavage | No | Orthogonal signaling pathway |
| Cas3 (Type I) | DNA (dsDNA) | Processive degradation (helicase + DNase) | Yes | Quantitative DNA degradation |
| Disease Area | Target/Pathogen/Biomarker | Protein | Techniques | Key Metrics (e.g., LOD, Sensitivity/Specificity, Time) |
|---|---|---|---|---|
| Infectious Diseases | ||||
| Bacterial | Mycobacterium tuberculosis DNA | Cas12a | RPA | LOD: 10 copies/reaction [18,19,20,21,22] |
| Bacterial | Staphylococcus aureus DNA | Cas12a | Impedimetric Biosensor | Ultra-sensitive detection [23,24,25,26,27,28] |
| Bacterial | Klebsiella pneumoniae | Cas12a | RPA | Rapid, highly specific [29,30,31,32] |
| Bacterial | Salmonella spp. | Cas12a/Cas12b | RPA/LAMP | Rapid, sensitive, visual [33,34,35,36,37] |
| Bacterial | Brucella spp. (BCSP31) | Cas12a | RPA | LOD: 10 copies/reaction (16.6 aM); Ultra-sensitive, accurate [38] |
| Viral | SARS-CoV-2 RNA | Cas12a/Cas13a | RT-RPA/ Smartphone | Time: ~20 min; Sensitivity: 0.5 copies/µL [39,40,41] |
| Viral | Human Adenoviruses (HAdV) | Cas12a | MCDA | Time: ~1 h; LOD: 1.92 copies/µL [42] |
| Viral | Human Papillomavirus (HPV) | Cas12a/Cas9 | Amplification-free | Sensitive, amplification-free [18,43,44,45,46,47] |
| Viral | Infectious Bursal Disease Virus (IBDV) | Cas13a | RT-RPA/LFD | LOD: 5 aM (3 IBDV-RNA molecules); Superior sensitivity [48,49] |
| Viral | Monkeypox Virus (MPXV) | Cas12b | LAMP | Time: ~40 min; LOD: 6.5 copies/reaction; 100% sensitivity/specificity |
| Viral | Dengue Virus (DENV) | Cas13a | RAA | LOD: 10−3 copies·mL−1; 95.8% sensitivity/96.6% specificity [50,51,52,53,54,55,56,57] |
| Parasitic | Anaplasma marginale | Cas12a | RPA/Lateral Flow | LOD: 10−2 DNA copies/µL; Sensitive, user-friendly |
| Parasitic | Toxoplasma gondii | Cas12b | LAMP | Rapid, visual, accessible [58,59,60] |
| Plant Health | Tomato Leaf Curl Karnataka Virus (ToLCKV) | Cas12a | None (amplification-free) | 10-fold lower detection than PCR (0.1 ng) [61] |
| Cancer Diagnostics | ||||
| Biomarker | Cancer-associated miRNAs | Cas12a/Cas13a | RT-RCA | LOD: 0.5 fM; 4–11x higher sensitivity [62,63,64,65,66] |
| Biomarker | BRAF V600E mutation | Cas12a | RPA | LOD: 2%; Time: 75 min [67,68] |
| Biomarker | Prostate Cancer Associated 3 (PCA3) | Cas12a | MIRA | Specificity: 83.3%; Time: 40 min [69] |
| Genetic Disorders | ||||
| Mutation | FBN1 variant (Marfan syndrome) | N/A | Whole Genome Sequencing | Identification of novel variant [70] |
| Disease Modeling | Duchenne Muscular Dystrophy | Cas9 | Gene Editing | Rat model for cardiac function/pathology [71,72] |
| Disease Modeling | Galactosemia | Cas9 | Gene Editing | Mouse model for lung injury [73] |
| Assay Name/Type (or Target) | CRISPR-Cas | Amplification | Detection Method | Limit of Detection (LOD) | Turnaround Time | Sensitivity/Specificity (if Available) | Key Advantage(s) Highlighted |
|---|---|---|---|---|---|---|---|
| SHERLOCK (IBDV) | Cas13a | RT-RPA | Lateral Flow (Visual) | 5 aM | ~1 h | Superior sensitivity to RT-qPCR | Ultrasensitive, POC |
| PalmCS (GBS) | Cas13a | RPA | Fluorescence/Smartphone | 20 copies/reaction | ~20 min | 97.5% sensitivity/100% specificity | Portable, rapid, on-site |
| HAdV-MCDA-CRISPR (HAdV) | Cas12a | MCDA | Fluorescence (Visual) | 1.92 copies/µL | ~1 h | 78/80 positive/48/48 negative | Rapid, highly specific |
| RPA-CRISPR/Cas12a (Brucella) | Cas12a | RPA | Fluorescence (Visual) | 10 copies/reaction (16.6 aM) | ~40 min | High sensitivity/Excellent specificity | Rapid, ultra-sensitive, accurate |
| RPA-CRISPR/Cas12a/Cas13a (SARS-CoV-2) | Cas12a/Cas13a | RT-RPA | Fluorescence/Smartphone | 0.5 copies/µL | ~20 min | High sensitivity | Ultrasensitive, portable, extraction-free |
| LAMP-CRISPR/Cas12b (MPXV) | Cas12b | LAMP | Fluorescence/Naked-eye | 6.5 copies/reaction | ~40 min | 100% sensitivity/100% specificity | One-step, visual, accessible |
| MIRA-CRISPR/Cas12a (Prostate Cancer) | Cas12a | MIRA | Naked-eye (UV light) | 0.01 ng/µL | ~40 min | 83.3% specificity (for PCA3) | Noninvasive, ambient temperature |
| Characteristic | CRISPR-Based Assays | PCR (qPCR)—Gold Standard | Next-Generation Sequencing (NGS) |
|---|---|---|---|
| Sensitivity (LoD) | With amplification, attomolar-range LoD (as low as ~1–5 copies per reaction), comparable to qPCR. Without amplification, higher LoD (103–106 copies), though droplet digital CRISPR improves this. | ~1–5 copies per reaction detectable (typical qPCR LoD). Very high analytical sensitivity for targeted assays. Digital PCR can reach single-copy detection. | Typically requires >103 copies for confident detection unless target is amplified. Can detect variants down to ~1% allele frequency in mixtures, but not used for ultra-low copy single-target detection without pre-amplification. |
| Specificity | Extremely high—sequence-specific recognition by crRNA yields virtually no signal for off-target sequences. Capable of single-nucleotide discrimination with carefully designed guides (e.g., differentiating viral strains with 100% specificity). Low false-positive rates observed in studies. | High—determined by primer/probe design. Generally very specific, but can exhibit off-target amplification or primer-dimer artifacts if poorly designed. Single-base differences often require specialized probes or primers. | Highest—sequences are directly read out, so any off-target amplification can be identified by its sequence. NGS can distinguish every mutation in the target region. False positives mainly come from index misassignment or contamination, not mis-recognition of sequence. |
| Time to Result | Rapid—~30 to 60 min for most assays (including an isothermal amplification if needed). One-pot CRISPR tests can yield results in <30 min in some cases. Minimal sample prep; works at constant temperature. | Moderate—~1.5 to 2 h typical for a qPCR workflow (including sample prep and ~40 PCR cycles). Some rapid PCR systems ~30 min, but standard practice is longer. Requires thermal cycling. | Slow—hours to days. Library prep alone can take 3–10 h; sequencing run spans hours; plus, data analysis. Not suitable for urgent same-day answers in most cases. |
| Cost per Test | Low—Material cost on the order of USD 1 or less per test. Little to no capital equipment needed (simple incubator and reader or even lateral flow strips). Ideal for low-resource settings. | Moderate—Reagents a few dollars per test; however, requires expensive machines and trained personnel, which add to cost in lab settings. Economical at scale in centralized labs, but cost increases for point-of-care deployments due to equipment. | High—Sequencers are expensive; per-sample cost can range from USD 50 up to hundreds (depending on throughput and depth). Not cost-effective for single-target testing; mainly justified when a wealth of information is needed from each sample. |
| Scalability & Throughput | Distributed scalability: Can be deployed in many locations (decentralized testing). In the lab, parallel processing is improving (96-well formats, microfluidics), but it has traditionally lower throughput than PCR. Manual steps (pipetting, etc.) can limit high-throughput automation. New droplet CRISPR systems offer higher throughput potential. | High throughput in central labs: Easily run hundreds of samples on multi-well plates with automation. Scales well for large batch testing (e.g., mass screening). However, each test is individual (one sample, one result), and requires lab infrastructure. | Massively parallel, but in batch mode: Can sequence hundreds of samples and/or hundreds of targets in one run. High throughput for multiplexed analysis, but not in real-time—samples queue for batched runs. Scaling up means running more sequencers and handling big data. |
| Multiplexing (Targets per Test) | Moderate and evolving—small panels (2–5 targets) demonstrated by using multiple Cas enzymes or fluorescent reporters. Advanced methods (e.g., CARMEN droplet array) can test dozens of targets, but not yet routine. Generally, current CRISPR diagnostics are one target per assay, with multiplexing in R&D. | Limited—typically 4–6 targets in a single qPCR (due to distinct fluorescent channels). For more targets, run multiple reactions or use specialized multiplex PCR chemistries. Practical for small panels, but not scalable to dozens of targets in one reaction. | Very high—virtually unlimited targets (e.g., pathogen genome or a panel of 100+ genes) can be assessed simultaneously because each sequenced molecule is effectively an independent detection. Ideal for broad panels, though not needed for simple tests. |
| Ease of Use and Equipment | Designed for point-of-care: minimal equipment (often no electric devices for lateral flow readouts), simple protocol (mix and incubate). Can be performed by minimally trained users, even outside lab environments. Good for field use (e.g., farms, remote clinics). | Requires laboratory setup: precision thermal cycler, controlled environment to avoid contamination, and skilled technicians (especially for interpreting and troubleshooting). Not easily portable, though some cartridge-based PCR devices exist for near-patient use. | Requires advanced lab facilities: DNA sequencers, clean rooms for library prep, and bioinformatics for analysis. Only trained personnel in specialized labs can perform NGS. Not feasible outside a laboratory setting. |
| Regulatory Status (as of 2025) | Emerging—Received EUAs in the U.S. for COVID-19 tests. No fully FDA-approved clinical CRISPR tests yet; undergoing trials. Subject to rigorous IVD regulations (FDA, EU IVDR) which demand extensive validation. Moving toward approvals for infectious diseases and others in coming years. | Established—Decades of use; PCR-based tests are routinely approved by regulatory agencies for diagnostics. Well-defined pathways for clearance (510(k) or PMA), and many FDA-approved PCR kits exist for various diseases. Widely accepted standard in clinical labs. | Established—Used in specialized diagnostics (e.g., comprehensive genomic profiling). Some NGS-based IVDs have FDA approval (especially in oncology). Heavily regulated and used mostly in high-complexity labs. Not typically used for simple infectious disease diagnostics due to overkill nature, but increasingly approved for complex testing (e.g., metagenomic infection diagnosis, cancer gene panels). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Cho, I.-H.; Kadam, U.S. CRISPR-Cas-Based Diagnostics in Biomedicine: Principles, Applications, and Future Trajectories. Biosensors 2025, 15, 660. https://doi.org/10.3390/bios15100660
Zhou Z, Cho I-H, Kadam US. CRISPR-Cas-Based Diagnostics in Biomedicine: Principles, Applications, and Future Trajectories. Biosensors. 2025; 15(10):660. https://doi.org/10.3390/bios15100660
Chicago/Turabian StyleZhou, Zhongwu, Il-Hoon Cho, and Ulhas S. Kadam. 2025. "CRISPR-Cas-Based Diagnostics in Biomedicine: Principles, Applications, and Future Trajectories" Biosensors 15, no. 10: 660. https://doi.org/10.3390/bios15100660
APA StyleZhou, Z., Cho, I.-H., & Kadam, U. S. (2025). CRISPR-Cas-Based Diagnostics in Biomedicine: Principles, Applications, and Future Trajectories. Biosensors, 15(10), 660. https://doi.org/10.3390/bios15100660

