MoS2 Nanoflower-Based Colorimetric and Photothermal Dual-Mode Lateral Flow Immunoassay for Highly Sensitive Detection of Pathogens
Abstract
1. Introduction
2. Experimental Section
2.1. Preparation of MoS2 Nanoflowers
2.2. Preparation of Antibody-Modified MoS2
2.3. Fabrication of LFIA Strip
2.4. The Performance of the MoS2-dLFIA for Detection of Pathogen
3. Results and Discussion
3.1. Characterization of Fe3O4@MoS2@Pt
3.2. Photothermal Performance of MoS2 Nanoflowers
3.3. Principle of the dLFIA for Detection of SARS-CoV-2 NP
3.4. Application Feasibility Analysis of the Proposed dLFIA
3.5. Optimization of Experimental Parameters for MoS2 Nanoflowers Mediated dLFIA
3.6. Performance of the MoS2 Nanoflowers Mediated dLFIA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Liu, J.; Zhou, X. A CRISPR-based and post-amplification coupled SARS-CoV-2 detection with a portable evanescent wave biosensor. Biosens. Bioelectron. 2021, 190, 113418. [Google Scholar] [CrossRef]
- Tao, K.; Tzou, P.L.; Nouhin, J.; Gupta, R.K.; de Oliveira, T.; Kosakovsky Pond, S.L.; Fera, D.; Shafer, R.W. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 2021, 22, 757–773. [Google Scholar] [CrossRef]
- Truong, P.L.; Yin, Y.; Lee, D.; Ko, S.H. Advancement in COVID-19 detection using nanomaterial-based biosensors. Exploration 2023, 3, 20210232. [Google Scholar] [CrossRef]
- de Araujo, W.R.; Lukas, H.; Torres, M.D.T.; Gao, W.; de la Fuente-Nunez, C. Low-Cost Biosensor Technologies for Rapid Detection of COVID-19 and Future Pandemics. ACS Nano 2024, 18, 1757–1777. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Rho, W.-Y.; Park, S.-m.; Jun, B.-H. Optical nanomaterial-based detection of biomarkers in liquid biopsy. J. Hematol. Oncol. 2024, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Lai, K.; Zhang, L.; Lai, X.; Deng, S.; Peng, J.; Lai, W. J-Aggregated Fluorescence Nanoparticles with Multichromatic Performance Enable Sensitive LFIA Platform. Nano Lett. 2025, 25, 9237–9244. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shen, W.; Li, Z.; Xia, X.; Li, J.; Xu, C.; Zheng, S.; Gu, B. 3D Film-Like Nanozyme with a Synergistic Amplification Effect for the Ultrasensitive Immunochromatographic Detection of Respiratory Viruses. ACS Nano 2024, 18, 25865–25879. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, S.; Zhang, W.; Li, D.; Peng, Y.; Tanemura, M.; Huang, Z.; Liu, M.; Yang, Y. Wheatgrass-inspired MoSe2@Pt heterojunctions with enhanced catalytic and photothermal functionalities for highly sensitive pathogen diagnosis based on machine learning. Sens. Actuators B Chem. 2025, 426, 137020. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, R.; Yi, J.; Wang, Y.; Hu, H.; Qi, C.; Lai, W.; Guo, Y.; Xianyu, Y. “Four-In-One” Multifunctional Dandelion-Like Gold@platinum Nanoparticles-Driven Multimodal Lateral Flow Immunoassay. Small 2024, 20, 2310869. [Google Scholar] [CrossRef]
- Zhu, Y.; Ao, L.; Chu, S.; Liao, Y.; Wang, J.; Hu, J.; Huang, L. Semiconductor Nanoplatelets Based Host-Guest Assembly Structure with High Color Purity for Hue-Recognizable Lateral Flow Immunoassay. Adv. Funct. Mater. 2024, 34, 2316147. [Google Scholar] [CrossRef]
- Zhao, J.; Han, H.; Liu, Z.; Chen, J.; Liu, X.; Sun, Y.; Wang, B.; Zhao, B.; Pang, Y.; Xiao, R. Portable fluorescent lateral flow assay for ultrasensitive point-of-care analysis of acute myocardial infarction related microRNA. Anal. Chim. Acta 2024, 1295, 342306. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Liu, Z.; Fang, F.; Zhao, S.; Li, Y.; Xu, M.; Peng, Y.; Chen, H.; Yuan, F.; Zhang, W.; et al. Next-Generation Rapid and Ultrasensitive Lateral Flow Immunoassay for Detection of SARS-CoV-2 Variants. ACS Sens. 2023, 8, 3733–3743. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wu, Y.; Fan, X.; Peng, J.; Wang, X.; Xiong, Y.; Huang, X. Magnetic-plasmonic blackbody enhanced lateral flow immunoassay of staphylococcal enterotoxin B. Food Chem. 2025, 465, 142130. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, W.; Zhang, Q.; Li, P.; Tang, X. Self-Assembly Multivalent Fluorescence-Nanobody Coupled Multifunctional Nanomaterial with Colorimetric Fluorescence and Photothermal to Enhance Immunochromatographic Assay. ACS Nano 2023, 17, 19359–19371. [Google Scholar] [CrossRef]
- Shi, D.; Yin, Y.; Li, X.; Yuan, J. Signal-Boosted Electrochemical Lateral Flow Immunoassay for Early Point-of-Care Detection of Liver Cancer Biomarker. ACS Sens. 2024, 9, 5293–5301. [Google Scholar] [CrossRef]
- Yang, Q.; Zuo, W.; Song, J.; Zeng, S.; Meng, X.; Ding, Z.; Hu, Q.; Tan, X.; Zhang, D.; Dai, J.; et al. Dual-Enhanced Lateral Flow Immunoassay: Synergizing Oriented Antibody Anchoring and Nanozyme Catalytic Amplification for Ultrasensitive Cancer Detection. Anal. Chem. 2025, 97, 16942–16949. [Google Scholar] [CrossRef]
- Fu, Y.; Li, Y.; Long, Z.; Dong, X.; Zhang, Y.; Li, K.; Shen, H.; Fang, H.; Cui, W. A Wireless Cytosensor Based on a Bionic Dandelion Isothermal Amplification System for Ultrasensitive Detection of Circulating Tumor Cells. ACS Nano 2025, 19, 23732–23745. [Google Scholar] [CrossRef]
- Atta, S.; Zhao, Y.; Sanchez, S.; Seedial, D.; Devadhasan, J.P.; Summers, A.J.; Gates-Hollingsworth, M.A.; Pflughoeft, K.J.; Gu, J.; Montgomery, D.C.; et al. Plasmonic-Enhanced Colorimetric Lateral Flow Immunoassays Using Bimetallic Silver-Coated Gold Nanostars. ACS Appl. Mater. Interfaces 2024, 16, 54907–54918. [Google Scholar] [CrossRef]
- Cheng, S.; Luo, L.; Bao, M.; Bao, T.; Gao, Y.; Wu, Z.; Zhang, X.; Wang, S.; Wen, W. A dual-mode colorimetric/photothermal lateral flow biosensor based on Au/Ti3C2TX for HIV-DNA detection. Anal. Chim. Acta. 2025, 1338, 343588. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, X.; Liu, H.; Sun, B. Amino-Acid-Encoded Supramolecular Self-Assembly Architectures: Near-Infrared Fluorescence–Photothermal Temperature Dual-Signal Sensing of Hydrogen Peroxide. ACS Sustain. Chem. Eng. 2024, 12, 4803–4812. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, B.; Shen, C.; Wu, D.; Fan, H.; Zhao, J.; Li, H.; Zeng, Z.; Luo, Z.; Ma, L.; et al. Metallic 1T Phase Enabling MoS2 Nanodots as an Efficient Agent for Photoacoustic Imaging Guided Photothermal Therapy in the Near-Infrared-II Window. Small 2020, 16, 2004173. [Google Scholar] [CrossRef]
- Kumar, R.; Zheng, W.; Liu, X.; Zhang, J.; Kumar, M. MoS2-Based Nanomaterials for Room-Temperature Gas Sensors. Adv. Mater. Technol. 2020, 5, 1901062. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, Y.; Lin, C.; Xu, M.; Zhao, S.; Masaki, T.; Yang, Y. Research progress and application of two-dimensional materials for surface-enhanced Raman scattering. Surf. Sci. Technol. 2024, 2, 14. [Google Scholar] [CrossRef]
- Bu, T.; Jia, P.; Sun, X.; Liu, Y.; Wang, Q.; Wang, L. Hierarchical molybdenum disulfide nanosheets based lateral flow immunoassay for highly sensitive detection of tetracycline in food samples. Sens. Actuators B Chem. 2020, 320, 128440. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, S.; Lin, C.; Li, Y.; Zhang, W.; Peng, Y.; Xiao, R.; Huang, Z.; Yang, Y. Dual-Mode Lateral Flow Immunoassay Based on “Pompon Mum”-Like Fe3O4@MoS2@Pt Nanotags for Sensitive Detection of Viral Pathogens. ACS Appl. Mater. Interfaces 2024, 16, 11172–11184. [Google Scholar] [CrossRef]
- Yin, X.; Tian, Y.; Chen, Y.; Dou, L.; Guo, J.; Hou, J.; Wang, Y.; Sun, J.; Wang, J.; Zhang, D. Accurate immunochromatography with colorimetric/photothermal dual-readout to detect nitrofurazone metabolites. Sens. Actuators B Chem. 2023, 380, 13323. [Google Scholar] [CrossRef]
- Zheng, S.; Xia, X.; Tian, B.; Xu, C.; Zhang, T.; Wang, S.; Wang, C.; Gu, B. Dual-color MoS2@QD nanosheets mediated dual-mode lateral flow immunoassay for flexible and ultrasensitive detection of multiple drug residues. Sens. Actuators B Chem. 2024, 403, 135142. [Google Scholar] [CrossRef]
- Jiang, H.; Du, Y.; Chen, L.; Qian, M.; Yang, Y.; Huo, T.; Yan, X.; Ye, T.; Han, B.; Wang, Y.; et al. Multimodal theranostics augmented by transmembrane polymer-sealed nano-enzymatic porous MoS2 nanoflowers. Int. J. Pharm. 2020, 586, 119606. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, Y.; Chen, Y.; Hu, S.; Chen, H.; Xiao, W.; Liu, G.; Tang, Y.; Shi, J.; He, Z.; et al. A MoS2 nanoflower and gold nanoparticle-modified surface plasmon resonance biosensor for a sensitivity-improved immunoassay. J. Mater. Chem. C 2020, 8, 6861–6868. [Google Scholar] [CrossRef]
- Mao, H.; Fu, Y.; Yang, H.; Zhang, S.; Liu, J.; Wu, S.; Wu, Q.; Ma, T.; Song, X.-M. Structure-activity relationship toward electrocatalytic nitrogen reduction of MoS2 growing on polypyrrole/graphene oxide affected by pyridinium-type ionic liquids. Chem. Eng. J. 2021, 425, 131769. [Google Scholar] [CrossRef]
- Ahmad, M.H.; Akhond, M.R.; Islam, M.J.; Rahaman, M.; Alam, R.B.; Ul-hamid, A.; Islam, M.R. A combined experimental and theoretical study on the structural, optical and electronic properties of hetero interface-functionalized MoS2/Co3O4 nanocomposite. Surf. Interf. 2023, 37, 102750. [Google Scholar] [CrossRef]
- Wang, R.; Liu, H.; Xu, T.; Zhang, Y.; Gu, C.; Jiang, T. SERS-based recyclable immunoassay mediated by 1T-2H mixed-phase magnetic molybdenum disulfide probe and 2D graphitic carbon nitride substrate. Biosens. Bioelectron. 2023, 227, 115160. [Google Scholar] [CrossRef]
- Chen, G.; Ren, X.; Li, Z.; Chen, H.; Lei, H.; Zhang, G.; Huang, D.; Fu, N. Effective degradation of phenol using magnetic MoS2/SnFe2O4 composite activated peroxysulfate: Mechanism study and catalytic performance evaluation. J. Environ. Chem. Eng. 2025, 13, 116731. [Google Scholar] [CrossRef]
- Francis, M.K.; Santhosh, N.; Govindaraj, R.; Ahmed, N.; Balaji, C. Bifacial DSSC fabricated using low-temperature processed 3D flower like MoS2-high conducting carbon composite counter electrodes. Mater. Today Commun. 2021, 27, 102208. [Google Scholar] [CrossRef]
- Hu, J.; Xie, Y.; Zhou, X.; Zhang, Z. Engineering Hollow Porous Carbon-Sphere-Confined MoS2 with Expanded (002) Planes for Boosting Potassium-Ion Storage. ACS Appl. Mater. Interfaces 2019, 12, 1232–1240. [Google Scholar] [CrossRef]
- Liu, J.; Jia, Z.; Zhou, W.; Liu, X.; Zhang, C.; Xu, B.; Wu, G. Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 2022, 429, 132253. [Google Scholar] [CrossRef]
- Wu, H.; Bu, T.; Sun, B.; Xi, J.; Cao, Y.; Wang, Y.; Xuan, C.; Feng, Q.; Yan, H.; Wang, L. “Three-in-One” Multifunctional Hollow Nanocages with Colorimetric Photothermal Catalytic Activity for Enhancing Sensitivity in Biosensing. Anal. Chem. 2024, 96, 4825–4834. [Google Scholar] [CrossRef] [PubMed]
- Cavalera, S.; Pezzoni, G.; Grazioli, S.; Brocchi, E.; Baselli, S.; Lelli, D.; Colitti, B.; Serra, T.; Nardo, F.D.; Chiarello, M.; et al. Investigation of the “Antigen Hook Effect” in Lateral Flow Sandwich Immunoassay: The Case of Lumpy Skin Disease Virus Detection. Biosensors 2022, 12, 739. [Google Scholar] [CrossRef] [PubMed]
- Xi, D.; Xiao, M.; Cao, J.; Zhao, L.; Xu, N.; Long, S.; Fan, J.; Shao, K.; Sun, W.; Yan, X.; et al. NIR Light—Driving Barrier—Free Group Rotation in Nanoparticles with an 88.3% Photothermal Conversion Efficiency for Photothermal Therapy. Adv. Mater. 2020, 32, 1907855. [Google Scholar] [CrossRef]
- Wang, S.; Riedinger, A.; Li, H.; Fu, C.; Liu, H.; Li, L.; Liu, T.; Tan, L.F.; Barthel, M.J.; Pugliese, G.; et al. Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects. Acs Nano 2015, 9, 1788–1800. [Google Scholar] [CrossRef]
- Liu, D.; Tu, Q.; Han, Y.; Wang, X.; Kang, Q.; Wang, P.; Guo, W. A dual-modal colorimetric and photothermal assay for glutathione based on MnO2 nanosheets synthesized with eco-friendly materials. Anal. Bioanal. Chem. 2020, 412, 8443–8450. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.; Li, S.; Chen, C.; Xu, L.; Huang, P.; Liu, F.; Su, Y.; Qi, M.; Yu, C.; et al. In situ supramolecular polymerization-enhanced self-assembly of polymer vesicles for highly efficient photothermal therapy. Nat. Commun. 2020, 11, 1724. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Ge, Y.; Wang, X.; Lu, Z.; Wang, T.; Zhang, H.; Du, S. Rapid and sensitive multimode detection of Salmonella typhimurium based on the photothermal effect and peroxidase-like activity of MoS2@Au nanocomposite. Sens. Actuators B Chem. 2021, 326, 128807. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, H.; Deng, S.; Xiao, X.; Xiong, Y.; Peng, J.; Lai, W. An integrated colorimetric and photothermal lateral flow immunoassay based on bimetallic Ag-Au urchin-like hollow structures for the sensitive detection of E. coli O157:H7. Biosens. Bioelectron. 2023, 225, 115090. [Google Scholar] [CrossRef]
- Zhi, W.; Wang, L.; Dai, L.; Xu, J.; He, T.; Zong, X.; Xu, J.; Cai, H.; Pi, J.; Sun, P.; et al. SERS-based lateral flow immunoassay for rapid and sensitive sensing of nucleocapsid protein toward SARS-CoV-2 screening in clinical samples. Anal. Chim. Acta 2025, 1360, 344149. [Google Scholar] [CrossRef]
- Li, C.; Lu, J.; Xiang, C.; Zhang, E.; Tian, X.; Zhang, L.; Li, T.; Li, C. Au@Pt@Pd nanozymes based lateral flow immunoassay for quantitative detection of SARS-CoV-2 nucleocapsid protein in nasal swab samples. Microchim. Acta 2024, 191, 730. [Google Scholar] [CrossRef]
- Srithong, P.; Chaiyo, S.; Pasomsub, E.; Rengpipat, S.; Chailapakul, O.; Praphairaksit, N. A novel delayed lateral flow immunoassay for enhanced detection of SARS-CoV-2 spike antigen. Microchim. Acta 2022, 189, 386. [Google Scholar] [CrossRef]
- Hao, W.; Huang, Y.; Wang, L.; Liang, J.; Yang, S.; Su, L.; Zhang, X. Smartphone-Based Photothermal Lateral Flow Immunoassay Using Rhenium Diselenide Nanosheet. ACS Appl. Mater. Interfaces 2023, 15, 9665–9674. [Google Scholar] [CrossRef]
- Li, X.; Yu, D.; Li, H.; Sun, R.; Zhang, Z.; Zhao, T.; Guo, G.; Zeng, J.; Wen, C.-Y. High-density Au nanoshells assembled onto Fe3O4 nanoclusters for integrated enrichment and photothermal/colorimetric dual-mode detection of SARS-CoV-2 nucleocapsid protein. Biosens. Bioelectron. 2023, 241, 115688. [Google Scholar] [CrossRef]
Target | Added | Found | Recovery (%) | CV (%) |
---|---|---|---|---|
SARS-CoV-2 NP (log g·mL−1) | −8 | −7.73 | 96.6 | 5.7 |
−9 | −9.28 | 100.1 | 7.6 | |
−10 | −10.45 | 104.5 | 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Zhao, S.; Peng, Y.; Yang, Y. MoS2 Nanoflower-Based Colorimetric and Photothermal Dual-Mode Lateral Flow Immunoassay for Highly Sensitive Detection of Pathogens. Biosensors 2025, 15, 661. https://doi.org/10.3390/bios15100661
Xu M, Zhao S, Peng Y, Yang Y. MoS2 Nanoflower-Based Colorimetric and Photothermal Dual-Mode Lateral Flow Immunoassay for Highly Sensitive Detection of Pathogens. Biosensors. 2025; 15(10):661. https://doi.org/10.3390/bios15100661
Chicago/Turabian StyleXu, Meimei, Shuai Zhao, Yusi Peng, and Yong Yang. 2025. "MoS2 Nanoflower-Based Colorimetric and Photothermal Dual-Mode Lateral Flow Immunoassay for Highly Sensitive Detection of Pathogens" Biosensors 15, no. 10: 661. https://doi.org/10.3390/bios15100661
APA StyleXu, M., Zhao, S., Peng, Y., & Yang, Y. (2025). MoS2 Nanoflower-Based Colorimetric and Photothermal Dual-Mode Lateral Flow Immunoassay for Highly Sensitive Detection of Pathogens. Biosensors, 15(10), 661. https://doi.org/10.3390/bios15100661