CRISPR-Enhanced Colorimetric Aptasensor for Adenosine Triphosphate Detection Based on MoS2-Based Nanozymes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Apparatus
2.3. Preparation of MoS2-Based Nanoenzymes
2.4. Preparation of the CRISPR-Enhanced Colorimetric Biosensor
3. Results and Discussion
3.1. Characterization of MoS2-PBNCs-AuNPs Nanozymes
3.2. ssDNA-Enhanced Catalytic Activity of MoS2-PBNCs-AuNPs Nanozymes
3.3. Detection Feasibility of CRISPR-Enhanced Colorimetric Aptasensor
3.4. Optimization of Experimental Conditions
3.5. Analytical Performance of the CRISPR-Enhanced Colorimetric Aptasensor
3.6. Reproducibility, Stability, and Practical Applicability of This CRISPR-Enhanced Aptasensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dennis, P.B.; Jaeschke, A.; Saitoh, M.; Fowler, B.; Kozma, S.C.; Thomas, G. Mammalian TOR: A Homeostatic ATP Sensor. Science 2001, 294, 1102–1105. [Google Scholar] [CrossRef]
- Knowles, J.R. Enzyme-Catalyzed Phosphoryl Transfer Reactions. Annu. Rev. Biochem. 1980, 49, 877–919. [Google Scholar] [CrossRef]
- Khlyntseva, S.V.; Bazel’, Y.R.; Vishnikin, A.B.; Andruch, V. Methods for the determination of adenosine triphosphate and other adenine nucleotides. J. Anal. Chem. 2009, 64, 657–673. [Google Scholar] [CrossRef]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef]
- Nakano, M.; Imamura, H.; Sasaoka, N.; Yamamoto, M.; Uemura, N.; Shudo, T.; Fuchigami, T.; Takahashi, R.; Kakizuka, A. ATP Maintenance via Two Types of ATP Regulators Mitigates Pathological Phenotypes in Mouse Models of Parkinson’s Disease. EBioMedicine 2017, 22, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Zhang, Y.; Simmering, J.E.; Schultz, J.L.; Li, Y.; Fernandez-Carasa, I.; Consiglio, A.; Raya, A.; Polgreen, P.M.; Narayanan, N.S.; et al. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J. Clin. Investig. 2019, 129, 4539–4549. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.J.; Guo, L.; Phensy, A.; Tian, J.; Wang, L.; Tandon, N.; Gauba, E.; Lu, L.; Pascual, J.M.; Kroener, S.; et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer’s disease. Nat. Commun. 2016, 7, 11483. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef]
- Law, A.S.; Hafen, P.S.; Brault, J.J. Liquid chromatography method for simultaneous quantification of ATP and its degradation products compatible with both UV–Vis and mass spectrometry. J. Chromatogr. B 2022, 1206, 123351. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Chang, H.-T. Analysis of Adenosine Triphosphate and Glutathione through Gold Nanoparticles Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2007, 79, 4852–4859. [Google Scholar] [CrossRef]
- Ocsoy, I.; Gulbakan, B.; Shukoor, M.I.; Xiong, X.; Chen, T.; Powell, D.H.; Tan, W. Aptamer-Conjugated Multifunctional Nanoflowers as a Platform for Targeting, Capture, and Detection in Laser Desorption Ionization Mass Spectrometry. ACS Nano 2012, 7, 417–427. [Google Scholar] [CrossRef]
- Li, X.; Liao, X.; Liu, Y.-M. A microfluidic platform integrating paper adsorption-based sample clean-up and voltage-assisted liquid desorption electrospray ionization mass spectrometry for biological sample analysis. Talanta 2020, 217, 121106. [Google Scholar] [CrossRef]
- Lang, W.; Wu, Z.-W.; Li, J.; Chen, Y.; Cao, Q.-Y. A novel coumarin-linked tetraphenylethene fluorescent probe for simultaneous sensing of ATP and GSH. Sens. Actuators B Chem. 2024, 412, 135772. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, B.; Li, D.; Yu, Z.; Gan, N. Dual-Mode Biosensor for Simultaneous and Rapid Detection of Live and Whole Salmonella typhimurium Based on Bioluminescence and Fluorescence Detection. Biosensors 2023, 13, 401. [Google Scholar] [CrossRef]
- Tan, K.-Y.; Li, C.-Y.; Li, Y.-F.; Fei, J.; Yang, B.; Fu, Y.-J.; Li, F. Real-Time Monitoring ATP in Mitochondrion of Living Cells: A Specific Fluorescent Probe for ATP by Dual Recognition Sites. Anal. Chem. 2017, 89, 1749–1756. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, X.; Zhao, D.; Jia, Y.-K.; Wang, Y.-Q.; Li, W.; Liu, Z.-P.; Wang, J.-D. An Entropy-Driven Multipedal DNA Walker Microsensor for In Situ Electrochemical Detection of ATP. Anal. Chem. 2024, 96, 20656–20664. [Google Scholar] [CrossRef]
- Wang, X.; Yu, T.; Kang, J.; Li, L.; Zhang, D.; Xu, B. Engineered XDNA-YPEP hydrogel with enhanced antifouling capability for ultrasensitive electrochemical assay of adenosine triphosphate in human serum. Sens. Actuators B Chem. 2024, 418, 136256. [Google Scholar] [CrossRef]
- Wang, P.; Cheng, Z.; Chen, Q.; Qu, L.; Miao, X.; Feng, Q. Construction of a paper-based electrochemical biosensing platform for rapid and accurate detection of adenosine triphosphate (ATP). Sens. Actuators B Chem. 2018, 256, 931–937. [Google Scholar] [CrossRef]
- Nishimasu, H.; Shi, X.; Ishiguro, S.; Gao, L.; Hirano, S.; Okazaki, S.; Noda, T.; Abudayyeh, O.O.; Gootenberg, J.S.; Mori, H.; et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 2018, 361, 1259–1262. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhang, F.; Li, H.; Chen, Z.; Yan, M.; Li, L.; Qu, F. CRISPR/Cas systems accelerating the development of aptasensors. TrAC Trends Anal. Chem. 2022, 158, 116775. [Google Scholar] [CrossRef]
- Xin, X.; Su, J.; Cui, H.; Wang, L.; Song, S. Recent Advances in Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated Proteins System-Based Biosensors. Biosensors 2025, 15, 155. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Zhao, Y.; Lv, K.; Ai, L.; Wu, Z.; Song, Z.; Zhang, J. Probiotic bacterial adsorption coupled with CRISPR/Cas12a system for mercury (II) ions detection. Biosens. Bioelectron. 2024, 263, 116627. [Google Scholar] [CrossRef]
- Qu, Z.; Li, M.; Fu, H.; Li, X.; Li, R.; Liu, B.; Zou, L. DNAzyme-mediated CRISPR/Cas12a bioassay for label-free fluorescence detection of copper(II) ions and dipicolinic acid. Microchem. J. 2025, 210, 112924. [Google Scholar] [CrossRef]
- Gong, S.; Song, K.; Zhang, S.; Zhou, P.; Pan, W.; Li, N.; Tang, B. CRISPR-Cas12a-mediated dual-enzyme cascade amplification for sensitive colorimetric detection of HPV-16 target and ATP. Talanta 2023, 266, 125050. [Google Scholar] [CrossRef]
- Hu, H.; Guo, S.; Li, Y.; Dong, K.; Lu, Y.; Ye, K.; Li, L.; Zhou, X.; Cheng, L.; Xiao, X. Spatially blocked split CRISPR-Cas12a system for ultra-sensitive and versatile small molecule activation and detection. Nat. Commun. 2025, 16, 5035. [Google Scholar] [CrossRef]
- Song, Y.; Shi, J.; Wu, Y.; Huang, K.-J.; Tan, X. Tailoring high-energy self-powered sensing system by Walker-mediated CRISPR/Cas12a cascade signal amplification and hybridization chain reaction for ultrasensitive microRNA detection. Sens. Actuators B Chem. 2023, 399, 134821. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.-T.; Zhang, T.-Y.; Wang, H.-Y.; Zhang, X.; Wu, Z.-Q.; Zhao, W.-W.; Chen, H.-Y.; Xu, J.-J. An Ultrasensitive and Efficient microRNA Nanosensor Empowered by the CRISPR/Cas Confined in a Nanopore. Nano Lett. 2023, 24, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Ke, Y.; Maboyi, N.; Zhi, X.; Yan, S.; Li, F.; Zhao, B.; Jia, X.; Song, S.; Ding, X. CRISPR/Cas12a Powered DNA Framework-Supported Electrochemical Biosensing Platform for Ultrasensitive Nucleic Acid Analysis. Small Methods 2021, 5, 2100935. [Google Scholar] [CrossRef]
- Chen, Q.; Tian, T.; Xiong, E.; Wang, P.; Zhou, X. CRISPR/Cas13a Signal Amplification Linked Immunosorbent Assay for Femtomolar Protein Detection. Anal. Chem. 2019, 92, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Liu, J.; Liu, S.; Liu, Y.; Xiao, Y.; Zhang, Z.; Zhou, W.; Jiang, Y.; Fang, X. Ultrasensitive Point-of-Care Detection of Protein Markers Using an Aptamer-CRISPR/Cas12a-Regulated Liquid Crystal Sensor (ALICS). Anal. Chem. 2024, 96, 866–875. [Google Scholar] [CrossRef]
- Ding, X.; Yin, K.; Li, Z.; Lalla, R.V.; Ballesteros, E.; Sfeir, M.M.; Liu, C. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Rahimi, S.; Balusamy, S.R.; Perumalsamy, H.; Ståhlberg, A.; Mijakovic, I. CRISPR-Cas target recognition for sensing viral and cancer biomarkers. Nucleic Acids Res. 2024, 52, 10040–10067. [Google Scholar] [CrossRef]
- Kasputis, T.; He, Y.; Ci, Q.; Chen, J. On-Site Fluorescent Detection of Sepsis-Inducing Bacteria using a Graphene-Oxide CRISPR-Cas12a (GO-CRISPR) System. Anal. Chem. 2024, 96, 2676–2683. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Xing, G.; Lin, J.; Li, Y.; Lin, Y.; Chen, S.; Lin, J.-M. Multiplex bacteria detection using one-pot CRISPR/Cas13a-based droplet microfluidics. Biosens. Bioelectron. 2023, 243, 115771. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiong, Q.; Zhu, Y.; Zhang, C.; Li, Z.; Chen, Z.; Zhang, Y.; Deng, X.; Tao, Y.; Xu, S. CRISPR/Cas12a-Enabled Amplification-Free Colorimetric Visual Sensing Strategy for Point-of-Care Diagnostics of Biomarkers. Anal. Chem. 2024, 97, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Yin, B.; Zhang, Q.; Li, C.; Chen, J.; Huang, Y.; Hao, J.; Yi, C.; Zhang, Y.; Wong, S.H.D.; et al. A CRISPR-Cas12a-mediated dual-mode luminescence and colorimetric nucleic acid biosensing platform based on upconversion nanozyme. Biosens. Bioelectron. 2024, 270, 116963. [Google Scholar] [CrossRef]
- Kim, J.U.; Kim, J.M.; Thamilselvan, A.; Nam, K.-H.; Kim, M.I. Colorimetric and Electrochemical Dual-Mode Detection of Thioredoxin 1 Based on the Efficient Peroxidase-Mimicking and Electrocatalytic Property of Prussian Blue Nanoparticles. Biosensors 2024, 14, 185. [Google Scholar] [CrossRef]
- Su, S.; Han, X.; Lu, Z.; Liu, W.; Zhu, D.; Chao, J.; Fan, C.; Wang, L.; Song, S.; Weng, L.; et al. Facile Synthesis of a MoS2–Prussian Blue Nanocube Nanohybrid-Based Electrochemical Sensing Platform for Hydrogen Peroxide and Carcinoembryonic Antigen Detection. ACS Appl. Mater. Interfaces 2017, 9, 12773–12781. [Google Scholar] [CrossRef]
- Zhu, Z.; Gong, L.; Miao, X.; Chen, C.; Su, S. Prussian Blue Nanoparticle Supported MoS2 Nanocomposites as a Peroxidase-Like Nanozyme for Colorimetric Sensing of Dopamine. Biosensors 2022, 12, 260. [Google Scholar] [CrossRef]
- Huang, N.; Wen, J.; Yi, D.; Wei, Z.; Long, Y.; Zheng, H. Colorimetric detection of ATP by inhibiting the Peroxidase-like activity of carbon dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 268, 120658. [Google Scholar] [CrossRef]
- Shimizu, M.; Aikawa, S.; Fukushima, Y. Colorimetric Detection of ATP by a Chlorophosphonazo III -based Mg2+ Complex in Aqueous Solution via Indicator Displacement Approach. J. Fluoresc. 2022, 33, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Nan, D.; Yang, H.; Pan, S.; Liu, H.; Hu, X. Quercetin@ZIF-90 as a novel antioxidant for label-free colorimetric ATP sensing at neutral pH. Sens. Actuators B Chem. 2020, 304, 127324. [Google Scholar] [CrossRef]
- Yin, S.-J.; Chen, G.-Y.; Zhang, C.-Y.; Wang, J.-L.; Yang, F.-Q. Zeolitic imidazolate frameworks as light-responsive oxidase-like mimics for the determination of adenosine triphosphate and discrimination of phenolic pollutants. Microchim. Acta 2022, 190, 25. [Google Scholar] [CrossRef]
Sensor | Linear Range (μM) | Limit of Detection (μM) | Ref. |
---|---|---|---|
Carbon dot-based sensor | 0.05–2 μM | 0.034 μM | [40] |
Chlorophosphonazo III-Mg2+ complex-based sensor | 0–30 μM | 1.55 μM | [41] |
Quercetin@ZIF-90-based sensor | 2–80 μM | 0.58 μM | [42] |
Zeolitic imidazolate framework-based sensor | 10–240 μM | 3.85 μM | [43] |
CRISPR-mediated sensor | 5–50 μM | 2.5 μM | [24] |
CRISPR-enhanced aptasensor | 0.5–5 μM | 0.14 μM | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Ma, H.; Yao, H.; Yuan, Y.; Miao, X.; Su, S. CRISPR-Enhanced Colorimetric Aptasensor for Adenosine Triphosphate Detection Based on MoS2-Based Nanozymes. Biosensors 2025, 15, 651. https://doi.org/10.3390/bios15100651
Zhu Z, Ma H, Yao H, Yuan Y, Miao X, Su S. CRISPR-Enhanced Colorimetric Aptasensor for Adenosine Triphosphate Detection Based on MoS2-Based Nanozymes. Biosensors. 2025; 15(10):651. https://doi.org/10.3390/bios15100651
Chicago/Turabian StyleZhu, Zhiqiang, Haojie Ma, Huashan Yao, Yuan Yuan, Xiangyang Miao, and Shao Su. 2025. "CRISPR-Enhanced Colorimetric Aptasensor for Adenosine Triphosphate Detection Based on MoS2-Based Nanozymes" Biosensors 15, no. 10: 651. https://doi.org/10.3390/bios15100651
APA StyleZhu, Z., Ma, H., Yao, H., Yuan, Y., Miao, X., & Su, S. (2025). CRISPR-Enhanced Colorimetric Aptasensor for Adenosine Triphosphate Detection Based on MoS2-Based Nanozymes. Biosensors, 15(10), 651. https://doi.org/10.3390/bios15100651