Wearable Sensors for Plants: Status and Prospects
Abstract
:1. Introduction
2. Research Status of Wearable Plant Sensors
2.1. Classification and Principles of Wearable Sensors
2.1.1. Flexible Strain and Pressure Sensor
2.1.2. Flexible Gas Sensors
2.1.3. Flexible Humidity Sensors
2.1.4. Flexible Temperature Sensors
2.2. Material Selection for the Flexible Sensors
2.2.1. Substrate Materials and Packaging Materials
2.2.2. Functional Materials
2.2.3. Electrode Material
Materials | Characteristics | Application Scenarios |
---|---|---|
DMS | Flexibility, scalability, transmittance, gas permeability, hydrophobicity, and adhesion | Flexible substrate, packaging |
Eco-flex | Flexibility, scalability, transmittance, gas permeability, adhesion, and degradability | Flexible substrate |
PU | Flexibility, scalability, transmittance, gas permeability, adhesion, and anti-biological aging | Flexible substrate |
Aquogel | Flexibility, compressibility, high sensitivity, low cost, transmittance, and gas permeability | Flexible substrate |
Aerogel | Flexibility, compressible, high sensitivity, and transmittance | Flexible substrate |
PET | Electrical insulation, strong mechanical properties, transmittance, and printability | Flexible substrate and packaging |
PI | Heat resistance, environmental stability, scalability, and transmittance | Flexible substrate and surface packaging |
Silver nanowire | Conductivity, stability, transmittance, flexure resistance, and scalability | Functional materials and flexible electrodes |
Liquid metal | Low melting point, high conductivity, infinite deformation, good compatibility, and low viscosity | Functional materials and flexible electrodes |
Conductive polymer | Combines easily with substrates and electrical conductivity | Function material |
Carbon-based materials | Transmittance, large specific surface area, high electrical conductivity, elasticity, and thermal conductivity | Functional materials and flexible electrodes |
2.3. New Structural Design of Flexible Sensor
3. Applications of Wearable Plant Sensors
3.1. Detection of Plant Physiological Information
3.1.1. Water Content Detection
3.1.2. Mineral Element Detection
3.1.3. Organic Substance Detection
3.1.4. Electrical Signal Detection
3.1.5. Plant Growth Detection
3.2. Environmental Information Detection
4. Challenges and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, C. State-of-the-art and recommended developmental strategic objectivs of smart agriculture. Smart Agric. 2019, 1, 1–7. [Google Scholar]
- Zhao, C. Current situations and prospects of smart agriculture. J. South China Agric. Univ. 2021, 42, 1–7. [Google Scholar]
- Im, H.; Lee, S.; Naqi, M.; Lee, C.; Kim, S. Flexible PI-based plant drought stress sensor for real-time monitoring system in smart farm. Electronics 2018, 7, 114. [Google Scholar] [CrossRef]
- Koman, V.B.; Lew, T.T.; Wong, M.H.; Kwak, S.Y.; Giraldo, J.P.; Strano, M.S. Persistent drought monitoring using a microfluidic-printed electro-mechanical sensor of stomata in planta. Lab A Chip 2017, 17, 4015–4024. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Allison, L.K.; Andrew, T.L. Vapor-printed polymer electrodes for long-term, on-demand health monitoring. Sci. Adv. 2019, 5, eaaw0463. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Pan, Y.; Wu, J.; Zhao, D.; Hui, M.; Zhu, S.; Zhu, X.; Li, D.; Song, F.; Zhang, C. based analytical devices for the rapid and direct electrochemical detection of hydrogen peroxide in tomato leaves inoculated with Botrytis cinerea. Sensors 2020, 20, 5512. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Chen, C.; Luo, X.; Zhan, S.; Kim, J.; Luo, J.; Wang, X.; Hu, Z.; Ying, Y.; Liu, X. Cohabiting plant-wearable sensor in situ monitors water transport in plant. Adv. Sci. 2021, 8, 2003642. [Google Scholar] [CrossRef]
- Li, D.; Li, G.; Li, J.; Xu, S. Wearable crop sensor based on nano-graphene oxide for noninvasive real-time monitoring of plant water. Membranes 2022, 12, 358. [Google Scholar] [CrossRef]
- Liu, D.; Li, M.; Li, H.; Li, C.; Wang, G.; Li, P.; Yang, B. Core-shell Au@ Cu2O-graphene-polydopamine interdigitated microelectrode array sensor for in situ determination of salicylic acid in cucumber leaves. Sens. Actuators B Chem. 2021, 341, 130027. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, L.; Li, M.; Li, C.; Li, P.; Li, H. Au@ SnO2-vertical graphene-based microneedle sensor for in-situ determination of abscisic acid in plants. Mater. Sci. Eng. C 2021, 127, 112237. [Google Scholar] [CrossRef]
- Li, Z.; Paul, R.; Ba Tis, T.; Saville, A.C.; Hansel, J.C.; Yu, T.; Ristaino, J.B.; Wei, Q. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat. Plants 2019, 5, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.; Moru, S.; Schnable, P.; Dong, L. Wearable plant sensor for in situ monitoring of volatile organic compound emissions from crops. ACS Sens. 2022, 7, 2293–2302. [Google Scholar] [CrossRef]
- Nassar, J.M.; Khan, S.M.; Villalva, D.R.; Nour, M.M.; Almuslem, A.S.; Hussain, M.M. Compliant plant wearables for localized microclimate and plant growth monitoring. Npj Flex. Electron. 2018, 2, 24. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, S.; Zhu, J.; Li, J.; Xu, H.; Xu, K.; Cheng, H.; Huang, X. Multifunctional stretchable sensors for continuous monitoring of long-term leaf physiology and microclimate. ACS Omega 2019, 4, 9522–9530. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, J.; Jiang, Y.; He, Z.; Liu, B.; Xie, H.; Li, H.; Li, Z.; Wang, Y.; Tai, H. Toward agricultural ammonia volatilization monitoring: A flexible polyaniline/Ti3C2Tx hybrid sensitive films based gas sensor. Sens. Actuators B Chem. 2020, 316, 128144. [Google Scholar] [CrossRef]
- Li, W.; Teng, C.; Sun, Y.; Cai, L.; Xu, J.-L.; Sun, M.; Li, X.; Yang, X.; Xiang, L.; Xie, D. Sprayed, scalable, wearable, and portable NO2 sensor array using fully flexible AgNPs-all-carbon nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 34485–34493. [Google Scholar] [CrossRef]
- Lee, G.; Wei, Q.; Zhu, Y. Emerging wearable sensors for plant health monitoring. Adv. Funct. Mater. 2021, 31, 2106475. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil sensors and plant wearables for smart and precision agriculture. Advancedmaterials 2021, 33, e2007764. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.C.; Sun, X.Y.; Sun, W.X.; Cao, L.X.; Wang, X.Q.; He, Z.Z. Flexible wearables for plants. Small 2021, 17, 2104482. [Google Scholar] [CrossRef]
- Chen, R.; Ren, S.; Li, S.; Han, D.; Qin, K.; Jia, X.; Zhou, H.; Gao, Z. Recent advances and prospects in wearable plant sensors. Rev. Environ. Sci. Bio/Technol. 2023, 22, 933–968. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, F.; Wang, M.; Zhang, Y.; Fu, S. Flexible wearable sensors for crop monitoring: A review. Front. Plant Sci. 2024, 15, 1406074. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Sun, W.; Li, Z.; Wang, X.; He, Z. Research progress and prospects of the plant flexible sensors. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2023, 39, 32–43. [Google Scholar]
- Liu, B.-Y.; Wang, R.-R.; Sun, J. Advances in visualization of flexible wearable sensors. Chin. J. Anal. Chem. 2023, 51, 305–315. [Google Scholar]
- Noam, A. The Grotthuss mechanism. Chem. Phys. Lett. 1995, 244, 456–462. [Google Scholar]
- Jin, W.; Zixuan, W.; Huihua, X.; Qian, W.; Chuan, L.; Bo-Ru, Y.; Xuchun, G.; Xi, X.; Kai, T.; Yi, S.; et al. Correction: An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 2020, 6, 595–603. [Google Scholar]
- Kang, Y.; Shuhan, W.; Jianying, M.; Yuanhao, G.; Xiaoqiang, L.; Dekang, G. Flexible wearable and self-powered humidity sensor based on moisture-dependent voltage generation. Microchem. J. 2021, 168, 106373. [Google Scholar]
- Yuanhao, G.; Huimin, X.; Zhengrong, G.; Mengjuan, L.; Xiaoqiang, L.; Dekang, G. A self-powered PVA-based flexible humidity sensor with humidity-related voltage output for multifunctional applications. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130700. [Google Scholar]
- Filipovic, L.; Selberherr, S. Application of two-dimensional materials towards CMOS-integrated gas sensors. Nanomaterials 2022, 12, 3651. [Google Scholar] [CrossRef]
- Choi, S.-J.; Kim, I.-D. Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 2018, 14, 221–260. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Xie, G.; Li, J.; Wang, Y.; Liu, X.; Zang, Z. Dual resistance and impedance investigation: Ultrasensitive and stable humidity detection of molybdenum disulfide nanosheet-polyethylene oxide hybrids. ACS Appl. Mater. Interfaces 2021, 13, 25250–25259. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Duley, W.W.; Peng, P.; Xiao, M.; Feng, J.; Liu, L.; Zou, G.; Zhou, Y.N. Moisture-enabled electricity generation: From physics and materials to self-powered applications. Adv. Mater. 2020, 32, 2003722. [Google Scholar] [CrossRef] [PubMed]
- Ruina, J.; Kunlun, W.; Yu-Hua, X.; Hui, S.; Junbo, G.; Yu, L.; Yong, W. Enhancing the temperature coefficient of resistance of Pt thin film resistance-temperature-detector by short-time annealing. Ceram. Int. 2023, 49, 12596–12603. [Google Scholar]
- Shin, J.; Jeong, B.; Kim, J.; Nam, V.B.; Yoon, Y.; Jung, J.; Hong, S.; Lee, H.; Eom, H.; Yeo, J. Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 2020, 32, 1905527. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; Inoue, Y.; Terakawa, Y.; Reeder, J.; Kaltenbrunner, M.; Ware, T.; Yang, K.; Mabuchi, K.; Murakawa, T.; Sekino, M. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl. Acad. Sci. USA 2015, 112, 14533–14538. [Google Scholar] [CrossRef]
- Kaczmarek, A.M.; Maegawa, Y.; Abalymov, A.; Skirtach, A.G.; Inagaki, S.; Van Der Voort, P. Lanthanide-Grafted Bipyridine Periodic Mesoporous Organosilicas (BPy-PMOs) for Physiological Range and Wide Temperature Range Luminescence Thermometry. ACS Appl. Mater. Interfaces 2020, 12, 13540–13550. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wei, Z.; Rao, W.; You, X.; Liu, J.; Liu, Y.; Cai, H. A nickel(II) hydrazinium complex showing reversible phase transition, dielectric anomaly and thermochromism. Inorg. Chem. Commun. 2021, 130, 108702. [Google Scholar] [CrossRef]
- Han, X.S.; Luan, X.; Su, H.F.; Li, J.J.; Yuan, S.F.; Lei, Z.; Pei, Y.; Wang, Q.M. Structure determination of alkynyl-protected gold nanocluster Au22 (tBuC≡ C) 18 and its thermochromic luminescence. Angew. Chem. 2020, 132, 2329–2332. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Jin, J.; Yang, F.; Aleisa, R.; Yin, Y. Creation and Reconstruction of Thermochromic Au Nanorods with Surface Concavity. J. Am. Chem. Soc. 2021, 143, 15791–15799. [Google Scholar] [CrossRef]
- Guan, Y.; Zhang, L.; Wang, D.; West, J.L.; Fu, S. Preparation of thermochromic liquid crystal microcapsules for intelligent functional fiber. Mater. Des. 2018, 147, 28–34. [Google Scholar] [CrossRef]
- Strižić Jakovljević, M.; Lozo, B.; Gunde, M.K. Identifying a unique communication mechanism of thermochromic liquid crystal printing ink. Crystals 2021, 11, 876. [Google Scholar] [CrossRef]
- Tran, L.V.; Slabaugh, C.D. On correlated measurements in the transient thermochromic liquid crystals technique with multiple indicators. Int. J. Heat Mass Transf. 2019, 137, 229–241. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Wu, X.; Ping, J.; Ying, Y. An integrated and robust plant pulse monitoring system based on biomimetic wearable sensor. Npj Flex. Electron. 2022, 6, 43. [Google Scholar] [CrossRef]
- Liang, J.; Wu, Y.; Liu, H.; Huang, M.; Cai, R.; Zhou, J.; Xie, Q. Preparation and properties of humidity-sensitive polyurethane fibers with surface electrostatic implantation and adhesion of graphene. J. Text. Res. 2021, 42, 63–70. [Google Scholar]
- Yang, W.; Liu, H.; Du, H.; Zhang, M.; Wang, C.; Yin, R.; Pan, C.; Liu, C.; Shen, C. Robust and superelastic spider web-like polyimide fiber-based conductive composite aerogel for extreme temperature-tolerant linear pressure sensor. Sci. China Mater. 2023, 66, 2829–2842. [Google Scholar] [CrossRef]
- Hsu, H.H.; Zhang, X.; Xu, K.; Wang, Y.; Wang, Q.; Luo, G.; Xing, M.; Zhong, W. Self-powered and plant-wearable hydrogel as LED power supply and sensor for promoting and monitoring plant growth in smart farming. Chem. Eng. J. 2021, 422, 129499. [Google Scholar] [CrossRef]
- Zhu, F.; Zheng, S.Y.; Lin, J.; Wu, Z.L.; Yin, J.; Qian, J.; Qu, S.; Zheng, Q. Integrated multifunctional flexible electronics based on tough supramolecular hydrogels with patterned silver nanowires. J. Mater. Chem. C 2020, 8, 7688–7697. [Google Scholar] [CrossRef]
- Qu, C.; Cao, L.; Li, M.; Wang, X.; He, Z. Liquid metal-based plant electronic tattoos for in-situ monitoring of plant physiology. Sci. China Technol. Sci. 2023, 66, 1617–1628. [Google Scholar] [CrossRef]
- Meder, F.; Saar, S.; Taccola, S.; Filippeschi, C.; Mattoli, V.; Mazzolai, B. Ultraconformable, self-adhering surface electrodes for measuring electrical signals in plants. Adv. Mater. Technol. 2021, 6, 2001182. [Google Scholar] [CrossRef]
- Duan, Q.; Lu, Y. Silk sericin as a green adhesive to fabricate a textile strain sensor with excellent electromagnetic shielding performance. ACS Appl. Mater. Interfaces 2021, 13, 28832–28842. [Google Scholar] [CrossRef]
- Park, S.; Choi, H.; Cho, Y.; Jeong, J.; Sun, J.; Cha, S.; Choi, M.; Bae, J.; Park, J.-J. Wearable strain sensors with aligned macro carbon cracks using a two-dimensional triaxial-braided fabric structure for monitoring human health. ACS Appl. Mater. Interfaces 2021, 13, 22926–22934. [Google Scholar] [CrossRef]
- Amjadi, M.; Yoon, Y.J.; Park, I. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnology 2015, 26, 375501. [Google Scholar] [CrossRef]
- Zeng, S.; Pan, Q.; Huang, Z.; Gu, C.; Wang, T.; Xu, J.; Yan, Z.; Zhao, F.; Li, P.; Tu, Y. Ultrafast response of self-powered humidity sensor of flexible graphene oxide film. Mater. Des. 2023, 226, 111683. [Google Scholar] [CrossRef]
- Khang, D.-Y.; Jiang, H.; Huang, Y.; Rogers, J.A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212. [Google Scholar] [CrossRef]
- Ko, H.C.; Stoykovich, M.P.; Song, J.; Malyarchuk, V.; Choi, W.M.; Yu, C.J.; Geddes, J.B., III; Xiao, J.; Wang, S.; Huang, Y.; et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Shyu, T.C.; Damasceno, P.F.; Dodd, P.M.; Lamoureux, A.; Xu, L.; Shlian, M.; Shtein, M.; Glotzer, S.C.; Kotov, N.A. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 2015, 14, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Song, J.; Kim, D.-H.; Huang, Y.; Rogers, J.A. Local versus global buckling of thin films on elastomeric substrates. Appl. Phys. Lett. 2008, 93, 023126. [Google Scholar] [CrossRef]
- Yang, S.; Khare, K.; Lin, P.C. Harnessing surface wrinkle patterns in soft matter. Adv. Funct. Mater. 2010, 20, 2550–2564. [Google Scholar] [CrossRef]
- Kim, D.H.; Liu, Z.; Kim, Y.S.; Wu, J.; Song, J.; Kim, H.S.; Huang, Y.; Hwang, K.C.; Zhang, Y.; Rogers, J.A. Optimized structural designs for stretchable silicon integrated circuits. Small 2009, 5, 2841–2847. [Google Scholar] [CrossRef] [PubMed]
- Widlund, T.; Yang, S.; Hsu, Y.-Y.; Lu, N. Stretchability and compliance of freestanding serpentine-shaped ribbons. Int. J. Solids Struct. 2014, 51, 4026–4037. [Google Scholar] [CrossRef]
- Callens, S.J.; Zadpoor, A.A. From flat sheets to curved geometries: Origami and kirigami approaches. Mater. Today 2018, 21, 241–264. [Google Scholar] [CrossRef]
- Huang, S.-M.; Xu, S.-Y.; Belopolski, I.; Lee, C.-C.; Chang, G.; Wang, B.; Alidoust, N.; Bian, G.; Neupane, M.; Zhang, C. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 2015, 6, 7373. [Google Scholar] [CrossRef] [PubMed]
- Skirycz, A.; Inzé, D. More from less: Plant growth under limited water. Curr. Opin. Biotechnol. 2010, 21, 197–203. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhu, S.; Fei, L.; Wang, Y.; Li, H.; Zhang, L. Effects of regulating deficit at young fruit stage on yield, quality, and water use efficiency of citrus with different plastic film materials. Trans. Chin. Soc. Agric. Eng. 2023, 39, 81–91. [Google Scholar]
- Eltawil, M.A.; Zhengming, Z.; Yuan, L. A review of renewable energy technologies integrated with desalination systems. Renew. Sustain. Energy Rev. 2009, 13, 2245–2262. [Google Scholar] [CrossRef]
- Gallardo, M.; Thompson, R.; Valdez, L.; Fernández, M. Use of stem diameter variations to detect plant water stress in tomato. Irrig. Sci. 2006, 24, 241–255. [Google Scholar] [CrossRef]
- Buckley, T.N. How do stomata respond to water status? New Phytol. 2019, 224, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Tripler, E.; Shani, U.; Mualem, Y.; Ben-Gal, A. Long-term growth, water consumption and yield of date palm as a function of salinity. Agric. Water Manag. 2011, 99, 128–134. [Google Scholar] [CrossRef]
- Vurro, F.; Janni, M.; Coppedè, N.; Gentile, F.; Manfredi, R.; Bettelli, M.; Zappettini, A. Development of an in vivo sensor to monitor the effects of vapour pressure deficit (VPD) changes to improve water productivity in agriculture. Sensors 2019, 19, 4667. [Google Scholar] [CrossRef]
- Atherton, J.J.; Rosamond, M.C.; Zeze, D.A. A leaf-mounted thermal sensor for the measurement of water content. Sens. Actuators A Phys. 2012, 187, 67–72. [Google Scholar] [CrossRef]
- Perdomo, S.A.; De La Paz, E.; Del Caño, R.; Seker, S.; Saha, T.; Wang, J.; Jaramillo-Botero, A. Non-invasive in-vivo glucose-based stress monitoring in plants. Biosens. Bioelectron. 2023, 231, 115300. [Google Scholar] [CrossRef] [PubMed]
- Diacci, C.; Abedi, T.; Lee, J.W.; Gabrielsson, E.O.; Berggren, M.; Simon, D.T.; Niittylä, T.; Stavrinidou, E. Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors. Iscience 2021, 24, 101966. [Google Scholar] [CrossRef]
- Ghavaminejad, P.; Ghavaminejad, A.; Zheng, H.; Dhingra, K.; Samarikhalaj, M.; Poudineh, M. A conductive hydrogel microneedle-based assay integrating PEDOT: PSS and Ag-Pt nanoparticles for real-time, enzyme-less, and electrochemical sensing of glucose. Adv. Healthc. Mater. 2023, 12, 2202362. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhu, D.; Wang, W.; Liu, J.; Thng, S.T.G.; Chen, P. A silk-microneedle patch to detect glucose in the interstitial fluid of skin or plant tissue. Sens. Actuators B Chem. 2022, 372, 132626. [Google Scholar] [CrossRef]
- Nagamine, K.; Kudo, N.; Sasaki, H.; Asano, A.; Iwasa, S. Continuous Extraction and Electrochemical Monitoring of Potassium Ions in a Plant Leaf Using a Wearable Ion Sensor. Sens. Mater. 2023, 35, 4751–4760. [Google Scholar] [CrossRef]
- Strand, E.J.; Bihar, E.; Gleason, S.M.; Han, S.; Schreiber, S.W.; Renny, M.N.; Malliaras, G.G.; McLeod, R.R.; Whiting, G.L. Printed organic electrochemical transistors for detecting nutrients in whole plant sap. Adv. Electron. Mater. 2022, 8, 2100853. [Google Scholar] [CrossRef]
- Ibrahim, H.; Yin, S.; Moru, S.; Zhu, Y.; Castellano, M.J.; Dong, L. In planta nitrate sensor using a photosensitive epoxy bioresin. ACS Appl. Mater. Interfaces 2022, 14, 25949–25961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, M.; Li, H.; Wang, G.; Long, Y.; Li, P.; Li, C.; Yang, B. Fabrication of self-supporting nitrogen-doped graphene microelectrodes for in situ analysis of salicylic acid in plants. Carbon 2021, 175, 364–376. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Wang, X.; Hou, P.; Luo, B.; Song, P.; Pan, D.; Li, A.; Chen, L. Disposable stainless steel-based electrochemical microsensor for in vivo determination of indole-3-acetic acid in soybean seedlings. Biosens. Bioelectron. 2019, 126, 193–199. [Google Scholar] [CrossRef]
- Lee, G.; Hossain, O.; Jamalzadegan, S.; Liu, Y.; Wang, H.; Saville, A.C.; Shymanovich, T.; Paul, R.; Rotenberg, D.; Whitfield, A.E.; et al. Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring. Sci. Adv. 2023, 9, eade2232. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, X.; Shao, Y.; Ying, Y.; Ping, J. Noble metal alloy nanoparticles coated flexible MoS2 paper for the determination of reactive oxygen species. Biosens. Bioelectron. 2020, 166, 112463. [Google Scholar] [CrossRef] [PubMed]
- Senavirathna, M.D.H.J.; Muhetaer, G. Electrode insertion generates slow propagating electric potentials in Myriophyllum aquaticum plants. Plant Signal. Behav. 2020, 15, 1734332. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Li, W.; Lin, Q.; Zhang, F.; He, K.; Yang, D.; Loh, X.J.; Chen, X. A Morphable Ionic Electrode Based on Thermogel for Non-Invasive Hairy Plant Electrophysiology. Adv. Mater. 2021, 33, 2007848. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, T.; Tago, S.; Hayashi, M.; Fujishima, A. Highly sensitive measurement of bio-electric potentials by boron-doped diamond (BDD) electrodes for plant monitoring. Sensors 2015, 15, 26921–26928. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D.J. Diffuse growth of plant cell walls. Plant Physiol. 2018, 176, 16–27. [Google Scholar] [CrossRef]
- Borode, T.; Wang, D.; Prasad, A. Polyaniline-based sensor for real-time plant growth monitoring. Sens. Actuators A Phys. 2023, 355, 114319. [Google Scholar] [CrossRef]
- Tang, W.; Yan, T.; Wang, F.; Yang, J.; Wu, J.; Wang, J.; Yue, T.; Li, Z. Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth. Carbon 2019, 147, 295–302. [Google Scholar] [CrossRef]
- Wang, S.; Edupulapati, B.; Hagel, J.M.; Kwok, J.J.; Quebedeaux, J.C.; Khasbaatar, A.; Baek, J.M.; Davies, D.W.; Elangovan, K.E.; Wheeler, R.M.; et al. Highly stretchable, robust, and resilient wearable electronics for remote, autonomous plant growth monitoring. Device 2024, 2, 100322. [Google Scholar] [CrossRef]
- Di Tocco, J.; Lo Presti, D.; Massaroni, C.; Cinti, S.; Cimini, S.; De Gara, L.; Schena, E. Plant-wear: A multi-sensor plant wearable platform for growth and microclimate monitoring. Sensors 2023, 23, 549. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Hubble, L.J.; Martín, A.; Kumar, R.; Barfidokht, A.; Kim, J.; Musameh, M.M.; Kyratzis, I.L.; Wang, J. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sens. 2017, 2, 553–561. [Google Scholar] [CrossRef] [PubMed]
Sensing Mechanism | Advantages | Limitations |
---|---|---|
Piezoresistive | Simple sensing mechanism Low power consumption Strong anti-interference Easy to collect and verify data | Large signal drift |
Capacitive | Simple structure High sensitivity Low energy consumption Small signal drift | Poor environmental stability Limited compressibility of the dielectric layer |
Piezoelectric | Suitable for dynamic force measurement Low power consumption Self-powered Short response time | Not capable of static force measurement Susceptible to temperature |
Type | Advantages | Limitations |
---|---|---|
Flexible resistance temperature detectors | Good linearity Wide working range Good stability | Long response time High cost High power supply |
Flexible thermocouples | Low cost Short response time Simple structure | Low accuracy Poor stability Poor sensitivity |
Flexible thermistors | Strong response Low cost Small scale Short response time | Nonlinear Narrow operating range High power supply |
Flexible thermochromic | Visualization Short response time | Poor stability Narrow working range poor accuracy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Pang, Y.; Niu, K.; Hu, B.; Zhu, Z.; Tan, Z.; Lei, H. Wearable Sensors for Plants: Status and Prospects. Biosensors 2025, 15, 53. https://doi.org/10.3390/bios15010053
Yan X, Pang Y, Niu K, Hu B, Zhu Z, Tan Z, Lei H. Wearable Sensors for Plants: Status and Prospects. Biosensors. 2025; 15(1):53. https://doi.org/10.3390/bios15010053
Chicago/Turabian StyleYan, Xuexin, Yawen Pang, Kaiwen Niu, Bowen Hu, Zhengbo Zhu, Zuojun Tan, and Hongwei Lei. 2025. "Wearable Sensors for Plants: Status and Prospects" Biosensors 15, no. 1: 53. https://doi.org/10.3390/bios15010053
APA StyleYan, X., Pang, Y., Niu, K., Hu, B., Zhu, Z., Tan, Z., & Lei, H. (2025). Wearable Sensors for Plants: Status and Prospects. Biosensors, 15(1), 53. https://doi.org/10.3390/bios15010053