Optical Bioassays Based on the Signal Amplification of Redox Cycling
Abstract
:1. Introduction
2. Redox Cycling-Based Optical Bioassays
2.1. Colorimetric Methods
2.2. Fluorescence Assays
2.3. SERS Methods
2.4. Chemiluminescence Assays
3. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Labib, M.; Sargent, E.H.; Kelley, S.O. Electrochemical methods for the analysis of clinically relevant biomolecules. Chem. Rev. 2016, 116, 9001–9090. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Li, G.; Liu, S.; Zhang, X.; Liu, J.; Su, Z.; Wu, Y. Emerging nanolabels-based immunoassays: Principle and applications in food safety. TrAC-Trend. Anal. Chem. 2021, 145, 116462–116482. [Google Scholar] [CrossRef]
- Wu, L.; Qu, X. Cancer biomarker detection: Recent achievements and challenges. Chem. Soc. Rev. 2015, 44, 2963–2997. [Google Scholar] [CrossRef] [PubMed]
- Markwalter, C.F.; Kantor, A.G.; Moore, C.P.; Richardson, K.A.; Wright, D.W. Inorganic complexes and metal-based nanomaterials for infectious disease diagnostics. Chem. Rev. 2019, 119, 1456–1518. [Google Scholar] [CrossRef] [PubMed]
- Majdinasab, M.; Lamy de la Chapelle, M.; Marty, J.L. Recent progresses in optical biosensors for interleukin 6 detection. Biosensors 2023, 13, 898. [Google Scholar] [CrossRef]
- Polonschii, C.; Potara, M.; Iancu, M.; David, S.; Banciu, R.M.; Vasilescu, A.; Astilean, S. Progress in the optical sensing of cardiac biomarkers. Biosensors 2023, 13, 632. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.M.; Satija, J. Enzyme-assisted metal nanoparticles etching based plasmonic ELISA: Progress and insights. Anal. Biochem. 2022, 654, 114820–114828. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Qin, Y.; He, Y.; Huang, Q.; Fan, C.; Chen, H.Y. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem. Soc. Rev. 2010, 39, 4234–4243. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.; Tao, G.; Wu, X.; Ma, Y.; Li, R.; Li, N. Nanomaterial-based multiplex optical sensors. Analyst 2020, 145, 4111–4123. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, Z.; Zhang, W.; Liu, X.; Li, M.; Li, G.; Zhang, B.; Singh, R. Optically active nanomaterials and its biosensing applications-a review. Biosensors 2023, 13, 85. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Chen, J.; Wang, K.; Sun, H.; Su, X. Highly sensitive label-free multi-signal sensing platform for Kras gene detection by exonuclease assisted target recycling amplification based on AIZS QDs. Sens. Actuat. B Chem. 2022, 362, 131686–131693. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, J.; Xu, J.J.; Zhang, S.S.; Chen, H.Y. Optical nano-biosensing interface via nucleic acid amplification strategy: Construction and application. Chem. Soc. Rev. 2018, 47, 1996–2019. [Google Scholar] [CrossRef] [PubMed]
- Kishikawa, N.; Kuroda, N. Analytical techniques for the determination of biologically active quinones in biological and environmental samples. J. Pharm. Biomed. Anal. 2014, 87, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; He, Q.; Zhao, F.; Xia, N.; Liu, H.; Li, S.; Liu, R.; Zhang, H. Competitive electrochemical immunoassay for detection of β-amyloid (1-42) and total beta-amyloid peptides using p-aminophenol redox cycling. Biosens. Bioelectron. 2014, 51, 208–212. [Google Scholar] [CrossRef]
- Nandhakumar, P.; Kim, B.; Lee, N.S.; Yoon, Y.H.; Lee, K.; Yang, H. Nitrosoreductase-like nanocatalyst for ultrasensitive and stable biosensing. Anal. Chem. 2018, 90, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Aziz, M.A.; Yang, H. A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. J. Am. Chem. Soc. 2006, 128, 16022–16023. [Google Scholar] [CrossRef]
- Akanda, M.R.; Aziz, M.A.; Jo, K.; Tamilavan, V.; Hyun, M.H.; Kim, S.; Yang, H. Optimization of phosphatase- and redox cycling-based immunosensors and its application to ultrasensitive detection of troponin I. Anal. Chem. 2011, 83, 3926–3933. [Google Scholar] [CrossRef]
- Park, S.; Kwak, D.E.; Haque, A.J.; Lee, N.S.; Yoon, Y.H.; Yang, H. Phenolic tyrosinase substrate with a formal potential lower than that of phenol to obtain a sensitive electrochemical immunosensor. ACS Sens. 2022, 7, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.J.; Xiao, H.J.; Cao, J.T.; Ren, S.W.; Liu, Y.M. A novel split-type photoelectrochemical immunosensor based on chemical redox cycling amplification for sensitive detection of cardiac troponin I. Talanta 2021, 233, 122564–122570. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, H.; Zhao, Y.; Wang, Y.; Ge, L.; Huang, Y.; Li, F. Immobilization-free dual-aptamer-based photoelectrochemical platform for ultrasensitive exosome assay. Talanta 2024, 266, 125001–125009. [Google Scholar] [CrossRef]
- Xia, N.; Ma, F.; Zhao, F.; He, Q.; Du, J.; Li, S.; Chen, J.; Liu, L. Comparing the performances of electrochemical sensors using p-aminophenol redox cycling by different reductants on gold electrodes modified with self-assembled monolayers. Electrochim. Acta 2013, 109, 348–354. [Google Scholar] [CrossRef]
- Yang, H. Enzyme-based ultrasensitive electrochemical biosensors. Curr. Opin. Chem. Biol. 2012, 16, 422–428. [Google Scholar] [CrossRef]
- Ma, X.; He, S.; Qiu, B.; Luo, F.; Guo, L.; Lin, Z. Noble metal nanoparticle-based multicolor immunoassays: An approach toward visual quantification of the analytes with the naked eye. ACS Sens. 2019, 4, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Shaban, S.M.; Jo, S.B.; Hafez, E.; Cho, J.H.; Kim, D.-H. A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coordin. Chem. Rev. 2022, 465, 214567–214604. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, W.; Wang, C.; Xing, D. Assays for alkaline phosphatase that use L-ascorbic acid 2-phosphate as a substrate. Coord. Chem. Rev. 2023, 495, 215370–215423. [Google Scholar] [CrossRef]
- Tsukatani, T.; Ide, S.; Ono, M.; Matsumoto, K. New tetrazolium method for phosphatase assay using ascorbic acid 2-phosphate as a substrate. Talanta 2007, 73, 471–475. [Google Scholar] [CrossRef]
- Xia, N.; Liu, L.; Wu, R.; Liu, H.; Li, S.-J.; Hao, Y. Ascorbic acid-triggered electrochemical–chemical–chemical redox cycling for design of enzyme-amplified electrochemical biosensors on self-assembled monolayer-covered gold electrodes. J. Electroanal. Chem. 2014, 731, 78–83. [Google Scholar] [CrossRef]
- Xia, N.; Zhang, Y.; Wei, X.; Huang, Y.; Liu, L. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling. Anal. Chim. Acta 2015, 878, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, H.; Zhang, Z.; Chen, L. Chemical redox-cycling for improving the sensitivity of colorimetric enzyme-linked immunosorbent assay. Anal. Chem. 2019, 91, 1254–1259. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Chen, Z.; Wang, X.; Choo, J.; Chen, L. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens. Bioelectron. 2018, 114, 52–65. [Google Scholar] [CrossRef]
- Yadav, S.; Satija, J. Shape dependent sensing potential of gold nanoparticles in etching based multicolorimetric plasmonic-ELISA. Nanoscale Adv. 2022, 4, 3928–3939. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Shang, F.; Xu, X.; Li, Q.; Lu, C.; Lin, J.M. Specific detection of cysteine and homocysteine in biological fluids by tuning the pH values of fluorosurfactant-stabilized gold colloidal solution. Biosens. Bioelectron. 2011, 30, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhang, X.B.; Liu, W.N.; Hu, R.; Tan, W.; Shen, G.L.; Yu, R.Q. Fluorosurfactant-capped gold nanoparticles-based label-free colorimetric assay for Au3+ with tunable dynamic range via a redox strategy. Biosens. Bioelectron. 2013, 48, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-H.; Wang, Y.-W.; Ye, S.-L.; Chen, G.-N.; Yang, H.-H. Ultrasensitive detection of Cu2+ with the naked eye and application in immunoassays. NPG Asia Mater. 2012, 4, e10–e16. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.; Lu, C.H.; Willner, I. Cysteine-mediated aggregation of Au nanoparticles: The development of a H2O2 sensor and oxidase-based biosensors. ACS Nano 2013, 7, 7278–7286. [Google Scholar] [CrossRef] [PubMed]
- Xianyu, Y.; Chen, Y.; Jiang, X. Horseradish peroxidase-mediated, iodide-catalyzed cascade reaction for plasmonic immunoassays. Anal. Chem. 2015, 87, 10688–10692. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zhang, Q.; Wang, F.; Li, Y.; Gao, F.; Zhang, Y. Cu2+-catalyzed and H2O2-facilitated oxidation strategy for sensing copper(II) based on cysteine-mediated aggregation of gold nanoparticles. RSC Adv. 2017, 7, 55620–55625. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y.; Zhang, C.; Ye, C.; Bian, Q.; Cheng, X.; Xia, H.; Zheng, J.; Liu, H. A novel colorimetric method for H2O2 sensing and its application: Fe2+-catalyzed H2O2 prevents aggregation of AuNPs by oxidizing cysteine (FeHOAuC). Anal. Chim. Acta 2022, 1207, 339840–339848. [Google Scholar] [CrossRef] [PubMed]
- Niazov-Elkan, A.; Golub, E.; Sharon, E.; Balogh, D.; Willner, I. DNA sensors and aptasensors based on the hemin/G-quadruplex-controlled aggregation of Au NPs in the presence of L-cysteine. Small 2014, 10, 2883–2891. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Ran, X.X.; Chen, A.Y.; Chai, Y.Q.; Yuan, R.; Zhuo, Y. Efficient electrochemical self-catalytic platform based on L-Cys-hemin/G-quadruplex and its application for bioassay. Anal. Chem. 2018, 90, 9109–9116. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Liu, Y.; Cao, L.; Hu, H.; Yao, X.; Zheng, J.; Liu, H. A label-free plasmonic nanosensor driven by horseradish peroxidase-assisted tetramethylbenzidine redox catalysis for colorimetric sensing H2O2 and cholesterol. Sens. Actuat. B Chem. 2023, 389, 133893–133900. [Google Scholar] [CrossRef]
- Travascio, P.; Li, Y.; Sen, D. DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem. Biol. 1998, 5, 505–517. [Google Scholar] [CrossRef]
- Golub, E.; Freeman, R.; Willner, I. Hemin/G-quadruplex-catalyzed aerobic oxidation of thiols to disulfides: Application of the process for the development of sensors and aptasensors and for probing acetylcholine esterase activity. Anal. Chem. 2013, 85, 12126–12133. [Google Scholar] [CrossRef]
- Alizadeh, N.; Salimi, A.; Hallaj, R. Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme: Principle and biosensing application. Adv. Biochem. Eng. Biotechnol. 2020, 170, 85–106. [Google Scholar] [PubMed]
- Li, T.; Wang, E.; Dong, S. Lead(II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection. Anal. Chem. 2010, 82, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Davydova, A.S.; Vorobyeva, M.A. Aptasensors based on non-enzymatic peroxidase mimics: Current progress and challenges. Biosensors 2023, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Liu, J.; Wang, F.; Yao, Y.; Hu, R. Colorimetric and photothermal dual-mode aptasensor with redox cycling amplification for the detection of ochratoxin A in corn samples. Food Chem. 2023, 439, 137968–137976. [Google Scholar] [CrossRef] [PubMed]
- Yoritaka, A.; Kawajiri, S.; Yamamoto, Y.; Nakahara, T.; Ando, M.; Hashimoto, K.; Nagase, M.; Saito, Y.; Hattori, N. Randomized, double-blind, placebo-controlled pilot trial of reduced coenzyme Q10 for parkinson’s disease. Park. Relat. Disord. 2015, 21, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Ravingerova, T.; Matejikova, J.; Bernatova, I. Modulation of cardiac response to ischemia/reperfusion in hypertensive rats exposed to chronic social stress. J. Mol. Cell Cardiol. 2007, 42, S125–S128. [Google Scholar] [CrossRef]
- Fan, L.; Feng, Y.; Chen, G.C.; Qin, L.Q.; Fu, C.L.; Chen, L.H. Effects of coenzyme Q10 supplementation on inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2017, 119, 128–136. [Google Scholar] [CrossRef]
- Fukuda, M.; Qianjun, L.; Kishikawa, N.; Ohyama, K.; Kuroda, N. Development of ultrafast colorimetric microplate assay method for ubiquinone utilizing the redox cycle of the quinone. Microchem. J. 2019, 150, 104104–104108. [Google Scholar] [CrossRef]
- Fukuda, M.; Kishikawa, N.; Samemoto, T.; Ohta, K.; Ohyama, K.; El-Maghrabey, M.H.; Ikemoto, K.; Kuroda, N. Determination method for pyrroloquinoline quinone in food products by HPLC-UV detection using a redox-based colorimetric reaction. Chem. Pharm. Bull. 2022, 70, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Deng, D.; Xia, N.; Hao, Y.; Liu, L. Electrochemical immunosensors with PQQ-decorated carbon nanotubes as signal labels for electrocatalytic oxidation of tris(2-carboxyethyl)phosphine. Nanomaterials 2021, 11, 1757. [Google Scholar] [CrossRef] [PubMed]
- Patrice, F.T.; Qiu, K.; Zhao, L.J.; Kouadio Fodjo, E.; Li, D.W.; Long, Y.T. Electrocatalytic oxidation of tris(2-carboxyethyl)phosphine at pyrroloquinoline quinone modified carbon nanotube through single nanoparticle collision. Anal. Chem. 2018, 90, 6059–6063. [Google Scholar] [CrossRef] [PubMed]
- Patrice, F.T.; Qiu, K.; Zhao, L.-J.; Kouadio Fodjo, E.; Li, D.-W.; Long, Y.-T. Individual modified carbon nanotube collision for electrocatalytic oxidation of hydrazine in aqueous solution. ACS Appl. Nano Mater. 2018, 1, 2069–2075. [Google Scholar] [CrossRef]
- Inoue, T.; Kirchhoff, J.R. Electrochemical detection of thiols with a coenzyme pyrroloquinoline quinone modified electrode. Anal. Chem. 2000, 72, 5755–5760. [Google Scholar] [CrossRef]
- Xia, N.; Deng, D.; Mu, X.; Liu, A.; Xie, J.; Zhou, D.; Yang, P.; Xing, Y.; Liu, L. Colorimetric immunoassays based on pyrroloquinoline quinone-catalyzed generation of Fe(II)-ferrozine with tris(2-carboxyethyl)phosphine as the reducing reagent. Sens. Actuat. B Chem. 2020, 306, 127571–127577. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, Y.; Zhu, Z.; Wang, J.; Gao, X.; Xie, J.; Wang, Y.; Wu, Q.; Shen, Y.; Ding, Y. Novel gold nanozyme regulation strategies facilitate analytes detection. Coord. Chem. Rev. 2023, 495, 215369–215394. [Google Scholar] [CrossRef]
- Jimenez-Falcao, S.; Méndez-Arriaga, J.M.; García-Almodóvar, V.; García-Valdivia, A.A.; Gómez-Ruiz, S. Gold nanozymes: Smart hybrids with outstanding applications. Catalysts 2022, 13, 13. [Google Scholar] [CrossRef]
- Navyatha, B.; Singh, S.; Nara, S. Auperoxidase nanozymes: Promises and applications in biosensing. Biosens. Bioelectron. 2021, 175, 112882–112903. [Google Scholar] [CrossRef]
- Long, Y.J.; Li, Y.F.; Liu, Y.; Zheng, J.J.; Tang, J.; Huang, C.Z. Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem. Commun. 2011, 47, 11939–11941. [Google Scholar] [CrossRef]
- Li, C.L.; Huang, C.C.; Chen, W.H.; Chiang, C.K.; Chang, H.T. Peroxidase mimicking DNA-gold nanoparticles for fluorescence detection of the lead ions in blood. Analyst 2012, 137, 5222–5228. [Google Scholar] [CrossRef] [PubMed]
- Lien, C.W.; Huang, C.C.; Chang, H.T. Peroxidase-mimic bismuth-gold nanoparticles for determining the activity of thrombin and drug screening. Chem. Commun. 2012, 48, 7952–7954. [Google Scholar] [CrossRef]
- Deng, H.H.; Luo, B.Y.; He, S.B.; Chen, R.T.; Lin, Z.; Peng, H.P.; Xia, X.H.; Chen, W. Redox recycling-triggered peroxidase-like activity enhancement of bare gold nanoparticles for ultrasensitive colorimetric detection of rare-earth Ce3+ ion. Anal. Chem. 2019, 91, 4039–4046. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Lu, Y.; Sun, J.; Zhao, J.; Huang, W.; Zhang, X.; Liu, Y. Redox recycling-activated signal amplification of peroxidase-like catalytic activity based on bare gold nanoparticle–metal ion ensembles as colorimetric sensor array for ultrasensitive discrimination of phosphates. ACS Sustain. Chem. Eng. 2021, 9, 9802–9812. [Google Scholar] [CrossRef]
- Huang, J.; Wei, F.; Cui, Y.; Hou, L.; Lin, T. Fluorescence immunosensor based on functional nanomaterials and its application in tumor biomarker detection. RSC Adv. 2022, 12, 31369–31379. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Meng, H.; Tian, Y.; Yang, R.; Du, D.; Li, Z.; Qu, L.; Lin, Y. Recent advances in functionalized MnO2 nanosheets for biosensing and biomedicine applications. Nanoscale Horiz. 2019, 4, 321–338. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.P.; Jiang, X.Y.; Yu, X.D.; Zhao, W.W.; Xu, J.J.; Chen, H.Y. Cu nanoclusters-encapsulated liposomes: Toward sensitive liposomal photoelectrochemical immunoassay. Anal. Chem. 2018, 90, 2749–2755. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhou, Q.; Tang, D. Dopamine-loaded liposomes for in-situ amplified photoelectrochemical immunoassay of AFB1 to enhance photocurrent of Mn2+-doped Zn3OH2V2O7 nanobelts. Anal. Chem. 2017, 89, 11803–11810. [Google Scholar] [CrossRef]
- Qu, B.; Guo, L.; Chu, X.; Wu, D.H.; Shen, G.L.; Yu, R.Q. An electrochemical immunosensor based on enzyme-encapsulated liposomes and biocatalytic metal deposition. Anal. Chim. Acta 2010, 663, 147–152. [Google Scholar] [CrossRef]
- Fu, Y.Z.; Liu, X.M.; Ma, S.H.; Cao, J.T.; Liu, Y.M. Liposome-assisted enzyme catalysis: Toward signal amplification for sensitive split-type electrochemiluminescence immunoassay. Analyst 2021, 146, 3918–3923. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Gong, H.; Xu, J.; Li, Y.; Xue, F.; Zeng, Y.; Liu, X.; Tang, D. Liposome-embedded Cu2−xAgxS nanoparticle-mediated photothermal immunoassay for daily monitoring of cTnI protein using a portable thermal imager. Anal. Chem. 2022, 94, 7408–7416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, S.; Xing, Z.; Wang, H.B. ALP-assisted chemical redox cycling signal amplification for ultrasensitive fluorescence detection of DNA methylation. Analyst 2023, 148, 5753–5761. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, S.; Xiao, H.J.; Wang, H.B.; Fang, L.; Cao, J.T. Chemical-chemical redox cycling for improving the sensitivity of the fluorescent assay: A proof-of-concept towards DNA methylation detection. Talanta 2023, 268, 125363–125371. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Chu, C.; Ma, Z. Fenton and Fenton-like catalysts for electrochemical immunoassay: A mini review. Electrochem. Commun. 2021, 125, 106970–106975. [Google Scholar] [CrossRef]
- Qi, J.; Jiang, G.; Wan, Y.; Liu, J.; Pi, F. Nanomaterials-modulated Fenton reactions: Strategies, chemodynamic therapy and future trends. Chem. Eng. J. 2023, 466, 142960–142973. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, X.; Zhou, A.; Li, M. When fluorescent sensing meets electrochemical amplifying: A powerful platform for gene detection with high sensitivity and specificity. Anal. Chem. 2021, 93, 7781–7786. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ma, J.; Li, X.; Zhang, J.; Fang, J.; Guan, Y.; Xie, P. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. Environ. Sci. Technol. 2011, 45, 3925–3930. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wang, L.; Liu, Y.L.; He, P.N.; Zhang, X.; Chen, J.; Gu, H.T.; Zhang, H.C.; Ma, J. Overlooked enhancement of chloride ion on the transformation of reactive species in peroxymonosulfate/Fe(II)/NH2OH system. Water Res. 2021, 195, 116973–116983. [Google Scholar] [CrossRef]
- Wang, C.; Yu, G.; Chen, H.; Wang, J. Degradation of norfloxacin by hydroxylamine enhanced fenton system: Kinetics, mechanism and degradation pathway. Chemosphere 2021, 270, 129408–129417. [Google Scholar] [CrossRef]
- Duesterberg, C.K.; Waite, T.D. Kinetic modeling of the oxidation of p-hydroxybenzoic acid by Fenton’s reagent: Implications of the role of quinones in the redox cycling of iron. Environ. Sci. Technol. 2007, 41, 4103–4110. [Google Scholar] [CrossRef] [PubMed]
- Paciolla, M.D.; Kolla, S.; Jansen, S.A. The reduction of dissolved iron species by humic acid and subsequent production of reactive oxygen species. Adv. Environ. Res. 2002, 7, 169–178. [Google Scholar] [CrossRef]
- Burkitt, M.J.; Gilbert, B.C. Model studies of the iron-catalysed haber-weiss cycle and the ascorbate-driven Fenton reaction. Free Radic. Res. Commun. 2009, 10, 265–280. [Google Scholar] [CrossRef]
- Hou, X.; Shen, W.; Huang, X.; Ai, Z.; Zhang, L. Ascorbic acid enhanced activation of oxygen by ferrous iron: A case of aerobic degradation of rhodamine B. J. Hazard. Mater. 2016, 308, 67–74. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.; Zhou, A.; Li, M. Chemical cyclic amplification: Hydroxylamine boosts the Fenton reaction for versatile and scalable biosensing. Anal. Chem. 2023, 95, 1764–1770. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lu, Q.; He, K.; Liu, M.; Zhang, Y.; Yao, S. A cyclic signal amplification strategy to fluorescence and colorimetric dual-readout assay for the detection of H2O2-related analytes and application to colorimetric logic gate. Sens. Actuat. B Chem. 2018, 260, 908–917. [Google Scholar] [CrossRef]
- Sun, L.; Chen, L.G.; Wang, H.B. Fenton-like reaction triggered chemical redox-cycling signal amplification for ultrasensitive fluorometric detection of H2O2 and glucose. Analyst 2024, 149, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Lu, M.; Wang, L.; MacDonald, B.; MacInnis, J.; Mkandawire, M.; Zhang, X.; Oakes, K.D. Chloride accelerated Fenton chemistry for the ultrasensitive and selective colorimetric detection of copper. Chem. Commun. 2016, 52, 2087–2090. [Google Scholar] [CrossRef]
- Chen, L.G.; Sun, L.; Wu, N.N.; Tao, B.B.; Wang, H.B. Cascade signal amplification strategy by coupling chemical redox-cycling and Fenton-like reaction: Toward an ultrasensitive split-type fluorescent immunoassay. Anal. Chim. Acta 2023, 1279, 341843–341849. [Google Scholar] [CrossRef]
- Yang, X.; Wang, E. A nanoparticle autocatalytic sensor for Ag+ and Cu2+ ions in aqueous solution with high sensitivity and selectivity and its application in test paper. Anal. Chem. 2011, 83, 5005–5011. [Google Scholar] [CrossRef]
- Gao, F.; Li, F.; Wang, J.; Yu, H.; Li, X.; Chen, H.; Wang, J.; Qin, D.; Li, Y.; Liu, S.; et al. SERS-based optical nanobiosensors for the detection of Alzheimer’s disease. Biosensors 2023, 13, 880. [Google Scholar] [CrossRef] [PubMed]
- Issatayeva, A.; Farnesi, E.; Cialla-May, D.; Schmitt, M.; Rizzi, F.M.A.; Milanese, D.; Selleri, S.; Cucinotta, A. SERS-based methods for the detection of genomic biomarkers of cancer. Talanta 2024, 267, 125198–125214. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, L.; Li, L.; Tian, Y. A single nanoprobe for ratiometric imaging and biosensing of hypochlorite and glutathione in live cells using surface-enhanced Raman scattering. Anal. Chem. 2016, 88, 9518–9523. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Di, H.; Zeng, E.; Li, Q.; Li, W.; Yang, J.; Liu, D. Reliable quantification of pH variation in live cells using prussian blue-caged surface-enhanced Raman scattering probes. Anal. Chem. 2020, 92, 9574–9582. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Hu, Y.; Li, G.; Zou, S.; Ling, L. Chemical-chemical redox cycle signal amplification strategy combined with dual ratiometric immunoassay for surface-enhanced Raman spectroscopic detection of cardiac troponin I. Anal. Chem. 2023, 95, 16677–16682. [Google Scholar] [CrossRef]
- Tiwari, A.; Dhoble, S.J. Recent advances and developments on integrating nanotechnology with chemiluminescence assays. Talanta 2018, 180, 1–11. [Google Scholar] [CrossRef]
- Niwa, K.; Kubota, H.; Enomoto, T.; Ichino, Y.; Ohmiya, Y. Quantitative analysis of bioluminescence optical signal. Biosensors 2023, 13, 223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xu, J.; Xiong, L.; Wang, S.; Yu, C.; Lv, J.; Lin, J.-M. Recent development of chemiluminescence for bioanalysis. TrAC-Trend. Anal. Chem. 2023, 166, 117213–117234. [Google Scholar] [CrossRef]
- Kishikawa, N.; Ohkubo, N.; Ohyama, K.; Nakashima, K.; Kuroda, N. Selective determination of ubiquinone in human plasma by HPLC with chemiluminescence reaction based on the redox cycle of quinone. Anal. Bioanal. Chem. 2011, 400, 381–385. [Google Scholar] [CrossRef]
- El-Maghrabey, M.; Kishikawa, N.; Kamimura, S.; Ohyama, K.; Kuroda, N. Design of a dual functionalized chemiluminescence ultrasensitive probe for quinones based on their redox cycle. Application to the determination of doxorubicin in lyophilized powder and human serum. Sens. Actuat. B Chem. 2021, 329, 129226–129237. [Google Scholar] [CrossRef]
- Kishikawa, N.; El-Maghrabey, M.; Tobo, M.; Kuroda, N. A comparative study on the reduction modes for quinone to determine ubiquinone by HPLC with luminol chemiluminescence detection based on the redox reaction. Molecules 2022, 28, 96. [Google Scholar] [CrossRef] [PubMed]
- Kishikawa, N.; Ohkubo, N.; Ohyama, K.; Nakashima, K.; Kuroda, N. Chemiluminescence assay for quinones based on generation of reactive oxygen species through the redox cycle of quinone. Anal. Bioanal. Chem. 2009, 393, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; El-Maghrabey, M.H.; Kishikawa, N.; Ikemoto, K.; Kuroda, N. Ultrasensitive determination of pyrroloquinoline quinone in human plasma by HPLC with chemiluminescence detection using the redox cycle of quinone. J. Pharm. Biomed. Anal. 2017, 145, 814–820. [Google Scholar] [CrossRef]
- Kishikawa, N.; El-Maghrabey, M.; Nagamune, Y.; Nagai, K.; Ohyama, K.; Kuroda, N. A smart advanced chemiluminescence-sensing platform for determination and imaging of the tissue distribution of natural antioxidants. Anal. Chem. 2020, 92, 6984–6992. [Google Scholar] [CrossRef] [PubMed]
- Kaladari, F.; El-Maghrabey, M.; Kawazato, M.; Kishikawa, N.; Kuroda, N. Biotinylated quinone as a chemiluminescence sensor for biotin-avidin interaction and biotin detection application. Sensors 2023, 23, 9611. [Google Scholar] [CrossRef] [PubMed]
- El-Maghrabey, M.; Kishikawa, N.; Harada, S.; Ohyama, K.; Kuroda, N. Quinone-based antibody labeling reagent for enzyme-free chemiluminescent immunoassays. Application to avidin and biotinylated anti-rabbit IgG labeling. Biosens. Bioelectron. 2020, 160, 112215–112223. [Google Scholar] [CrossRef] [PubMed]
- El-Maghrabey, M.; Sato, Y.; Kaladari, F.; Kishikawa, N.; Kuroda, N. Development of quinone linked immunosorbent assay (QuLISA) based on using folin’s reagent as a non-enzymatic tag: Application to analysis of food allergens. Sens. Actuat. B Chem. 2022, 368, 132167–132176. [Google Scholar] [CrossRef]
- Kaladari, F.; El-Maghrabey, M.; Kishikawa, N.; Kuroda, N. Development of signal multiplication system for quinone linked immunosorbent assay (multi-QuLISA) by using poly-L-lysine dendrigraft and 1,2-naphthoquinone-4-sulfonate as enzyme-free tag. Talanta 2023, 253, 123911–123919. [Google Scholar] [CrossRef] [PubMed]
- Kaladari, F.; Kishikawa, N.; Shimada, A.; El-Maghrabey, M.; Kuroda, N. Anthracycline-functionalized dextran as a new signal multiplication tagging approach for immunoassay. Biosensors 2023, 13, 340. [Google Scholar] [CrossRef]
- Wei, Y.; Qi, H.; Zhang, C. Recent advances and challenges in developing electrochemiluminescence biosensors for health analysis. Chem. Commun. 2023, 59, 3507–3522. [Google Scholar] [CrossRef]
- Du, F.; Chen, Y.; Meng, C.; Lou, B.; Zhang, W.; Xu, G. Recent advances in electrochemiluminescence immunoassay based on multiple-signal strategy. Curr. Opin. Electrochem. 2021, 28, 100725–100733. [Google Scholar] [CrossRef]
- Peng, L.; Li, P.; Chen, J.; Deng, A.; Li, J. Recent progress in assembly strategies of nanomaterials-based ultrasensitive electrochemiluminescence biosensors for food safety and disease diagnosis. Talanta 2023, 253, 123906–123918. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Yuan, R.; Chai, Y.; Zhuo, Y.; Yuan, Y.; Bai, L.; Mao, L.; Yuan, S. In-situ produced ascorbic acid as coreactant for an ultrasensitive solid-state tris(2,2’-bipyridyl) ruthenium(II) electrochemiluminescence aptasensor. Biosens. Bioelectron. 2011, 26, 4815–4818. [Google Scholar] [CrossRef]
- Han, S.; Zhao, Y.; Zhang, Z.; Xu, G. Recent advances in electrochemiluminescence and chemiluminescence of metal nanoclusters. Molecules 2020, 25, 5208. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Jian, M.; Deng, H.; Wang, W.; Huang, Z.; Huang, K.; Liu, A.; Chen, W. Valence states effect on electrogenerated chemiluminescence of gold nanocluster. ACS Appl. Mater. Interfaces 2017, 9, 14929–14934. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Jeong, S.; Song, J.K.; Kim, J. Near-infrared electrochemiluminescence from orange fluorescent Au nanoclusters in water. Chem. Commun. 2018, 54, 2838–2841. [Google Scholar] [CrossRef]
- Cao, J.T.; Fu, Y.Z.; Wang, Y.L.; Zhang, H.D.; Liu, X.M.; Ren, S.W.; Liu, Y.M. Liposome-assisted chemical redox cycling strategy for advanced signal amplification: A proof-of-concept toward sensitive electrochemiluminescence immunoassay. Biosens. Bioelectron. 2022, 214, 114514–114520. [Google Scholar] [CrossRef]
Method | Redox Cycling System | Target | Linear Range | LOD | Ref. |
---|---|---|---|---|---|
Colorimetry | ALP enzymatic product AA in the presence of TCEP and Fe(BPT)33+ | AFP | 0.01–5 ng/mL | 5 pg/mL | [29] |
HRP-catalyzed oxidation of TMB in the presence of H2O2 and cysteine-mediated reduction of oxTMB | Cholesterol | 2–30 μM | 0.5 μM | [41] | |
DNA/hemin complex in the presence of H2O2 and TMB | OTA | 5 × 10−3–180 ng/mL | 1 pg/mL | [47] | |
Ubiquinone in the presence of dissolved O2 and NaBH4 | Ubiquinone | 0.02–4 μM | 14.8 nM | [51] | |
PQQ in the presence of dissolved O2 and DTT | PQQ | 20–2.5 × 103 nM | 7.6 nM | [52] | |
PQQ in the presence of extra reducing agent TCPE and Fe (III)-ferrozine | PSA | 5 × 10−3–0.5 ng/mL | 1 pg/mL | [57] | |
Ce3+ in the presence of H2O2 and TMB on the surface of bare AuNPs | Ce3+ | 10–100 nM | 2.2 nM | [64] | |
Fluorescence | ALP enzymatic product AA in the presence of TCEP and MnO2 | DNA methylation | 0.01–1 pM and 1–50 pM | 2.9 fM | [73] |
ALP enzymatic product AA in the presence of TCEP and MnO2 | DNA methylation | 0.1–100 pM | 16.2 fM | [74] | |
Fe2+ in the presence of H2O2 on the electrode surface | p53 | 5 × 10−6–100 nM | 1.7 fM | [77] | |
Fe2+ in the presence of HA and H2O2 | HIV-DNA and miRNA-21 | 0.01–10 pM and 0.01–30 nM | 2.5 pM and 3 pM | [85] | |
Fe2+ in the presence of enzymatic product H2O2 and OPD | ACh | 0.2–1.5 μM and 1.5–160 μM | 156.3 nM | [86] | |
Cu2+ in the presence of enzymatic product H2O2 and OPD | Glucose | 1 × 10−3–1 μM | 0.3 nM | [87] | |
Cu2+ in the presence of enzymatic product H2O2 and OPD | IL-6 | 0.02–10 pg/mL | 5 fg/mL | [89] | |
SERS | ALP enzymatic product AA in the presence of TCEP and oxidized 4-mercaptophenol | cTnI | 1 × 10−3–50 ng/mL | 0.33 pg/mL and 0.31 pg/mL | [95] |
Chemiluminescence | Ubiquinone in the presence of dissolved O2 and DTT | Ubiquinone | 0.09–43.2 μg/mL | 26 ng/mL | [99] |
Doxorubicin in the presence of dissolved O2 and N-(4-aminobutyl)-N-ethylisoluminol-lipoic acid | Doxorubicin | 1–200 nM | 0.17 nM | [100] | |
PQQ in the presence of dissolved O2 and DTT | PQQ | 0.3–6 μM | 50 nM | [102] | |
PQQ in the presence of dissolved O2 and DTT | PQQ | 4–400 nM | 1 nM | [103] | |
Menadione in the presence of dissolved O2 and AA | AA | 0.3–50 μM | 0.18 μM | [104] | |
Quinone in the presence of dissolved O2 and DTT | Biotin | 1–100 μM | 0.58 μM | [105] | |
Naphthoquinonethe in the presence of dissolved O2 and DTT | Avidin | 0.2–0.8 μM | 23.4 nM | [106] | |
Naphthoquinonethe presence of dissolved O2 and NaBH4 | β-casein | 78–2.5 × 103 ng/mL | 20.2 ng/mL | [107] | |
Naphthoquinonethe presence of dissolved O2 and NaBH4 | β-casein | 78.1–2.5 × 103 ng/mL | 3.2 ng/mL | [108] | |
Doxorubicinin the presence of dissolved O2 and NaBH4 | biotinylated antibody | 5–80 nM | 0.55 nM | [109] | |
Liposome-released AA in the presence of TCEP and AuNCs | PSA | 1 × 10−5–10 ng/mL | 6.7 fg/mL | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Gao, F.; Yi, X.; La, M. Optical Bioassays Based on the Signal Amplification of Redox Cycling. Biosensors 2024, 14, 269. https://doi.org/10.3390/bios14060269
Feng Y, Gao F, Yi X, La M. Optical Bioassays Based on the Signal Amplification of Redox Cycling. Biosensors. 2024; 14(6):269. https://doi.org/10.3390/bios14060269
Chicago/Turabian StyleFeng, Yunxiao, Fengli Gao, Xinyao Yi, and Ming La. 2024. "Optical Bioassays Based on the Signal Amplification of Redox Cycling" Biosensors 14, no. 6: 269. https://doi.org/10.3390/bios14060269
APA StyleFeng, Y., Gao, F., Yi, X., & La, M. (2024). Optical Bioassays Based on the Signal Amplification of Redox Cycling. Biosensors, 14(6), 269. https://doi.org/10.3390/bios14060269