A Diagnostic Chip for the Colorimetric Detection of Legionella pneumophila in Less than 3 h at the Point of Need
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bacteria Cultures and Counting
2.3. Chip Design and Fabrication
2.4. Lyophilization (Freeze-Drying) Process for L. pneumophila Antibody on Chip
2.5. Sample Preconcentration and Chip Operation
2.6. Amplification Protocol for on-Chip Detection of L. pneumophila
- F3_CGTTACCCACAGAAGAAGC;
- B3_ACCCTCTCCCATACTCGA;
- FIP_AGTAATTCCGATTAACGCTCGCAACCGGCTAACT CCGTGC;
- BIP_GGCGTAAAGGGTGCGTAGGTGACCAGTATTATCT GACCGTCC.
2.7. Lyophilization Process (Freeze Drying) for the Amplification Cocktail for L. pneumophila
2.8. Optical Image Analysis
3. Results
3.1. Sample Preconcentration
3.2. Bacteria Capturing
3.3. Optimization of Microchannel Depth for LAMP-Based DNA Detection
3.4. Validation of the LoC for Water Sample Analysis
3.5. Reproducibility
3.6. The Sensitivity of the Diagnostic Chip for L. pnemophilla Detection
3.7. Computational Image Analysis
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: http://www.who.int/mediacentre/factsheets/fs285/en/ (accessed on 1 September 2019).
- Ishizaki, N.; Sogawa, K.; Inoue, H.; Agata, K.; Edagawa, A.; Miyamoto, H.; Fukuyama, M.; Furuhata, K. Legionella thermalis sp. nov., isolated from hot spring water in Tokyo, Japan. Microbiol. Immunol. 2016, 60, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Yang, W.; Li, Y. Clinical and Laboratory Diagnosis of Legionella pneumonia. Diagnostics 2023, 13, 280. [Google Scholar] [CrossRef] [PubMed]
- Steinert, M.; Emödy, L.; Amann, R.; Hacker, J. Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl. Environ. Microbiol. 1997, 63, 2047–2053. [Google Scholar] [CrossRef]
- Available online: https://www.ecdc.europa.eu/en/legionnaires-disease/facts (accessed on 27 March 2024).
- ISO 11731-2017; Water Quality: Enumeration of Legionella. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/61782.html (accessed on 27 March 2024).
- Buse, H.Y.; Schoen, M.E.; Ashbolt, N.J. Legionellae in engineered systems and use of quantitative microbial risk assessment to predict exposure. Water Res. 2012, 46, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Vittal, R.; Raj, J.R.M.; Kumar, B.K.; Karunasagar, I. Advances in Environmental Detection and Clinical Diagnostic Tests for Legionella Species. J. Health Allied Sci. NU 2022, 12, 168–174. [Google Scholar] [CrossRef]
- Nisar, M.A.; Ros, K.E.; Brown, M.H.; Bentham, R.; Best, G.; Xi, J.; Hinds, J.; Whiley, H. Stagnation arising through intermittent usage is associated with increased viable but non culturable Legionella and amoeba hosts in a hospital water system. Front. Cell. Infect. Microbiol. 2023, 13, 1190631. [Google Scholar] [CrossRef]
- Ezenarro, J.J.; Párraga-Niño, N.; Sabrià, M.; Del Campo, F.J.; Muñoz-Pascual, F.X.; Mas, J.; Uria, N. Rapid Detection of Legionella pneumophila in Drinking Water, Based on Filter Immunoassay and Chronoamperometric Measurement. Biosensors 2020, 10, 102. [Google Scholar] [CrossRef] [PubMed]
- Capuano, R.; Mansi, A.; Paba, E.; Marcelloni, A.M.; Chiominto, A.; Proietto, A.R.; Gordiani, A.; Catini, A.; Paolesse, A.; Tranfo, G.; et al. A Pilot Study for Legionella pneumophila Volatilome Characterization Using a Gas Sensor Array and GC/MS Techniques. Sensors 2023, 23, 1401. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Tokunaga, Y.; Goto, S.; Fujii, Y.; Banno, F.; Edagawa, A. Rapid on-site monitoring of Legionella pneumophila in cooling tower water using a portable microfluidic system. Sci. Rep. 2017, 7, 3092. [Google Scholar] [CrossRef]
- Kant, K.; Shahbazi, M.A.; Dave, V.P.; Ngo, T.A.; Chidambara, V.A.; Than, L.Q.; Bang, D.D.; Wolff, A. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens. Biotechnol. Adv. 2018, 36, 1003–1024. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Ali, M.A.; Anand, P.; Agrawal, V.V.; John, R.; Maji, S.; Malhotra, B.D. Microfluidic-integrated biosensors: Prospects for point-of-care diagnostics. Biotechnol. J. 2013, 8, 1267–1279. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.F. Microfluidic systems for diagnostic applications: A review. SLAS Technol. 2012, 17, 330–347. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ni, Y.; Xu, Y.; Jiang, Y.; Dong, C.; Chuan, N. Immuno-capture and in situ detection of Salmonella typhimurium on a novel microfluidic chip. Anal. Chim. Acta 2015, 853, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jung, T.; Kim, Y.; Lee, C.; Woo, K.; Seol, J.H.; Yang, S. A microfluidic device for label-free detection of Escherichia coli in drinking water using positive dielectrophoretic focusing, capturing, and impedance measurement. Biosens. Bioelectron. 2015, 74, 1011–1015. [Google Scholar] [CrossRef]
- Foudeh, A.M.; Brassard, D.; Tabriziana, M.; Veres, T. Rapid and multiplex detection of Legionella’s RNA using digital microfluidics. Lab Chip 2015, 15, 1609–1618. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Huang, Q.; Xie, L.; Xiang, G.; Wang, L.; Xu, H.; Ma, L.; Luo, X.; Xin, J.; Zhou, X.; et al. A rapid, low-cost, and microfluidic chip-based system for parallel identification of multiple pathogens related to clinical pneumonia. Sci. Rep. 2017, 7, 6441. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, G.; Murasova, P.; Hamiot, A.; Tsougeni, K.; Kaprou, G.; Eck, M.; Rabus, D.; Bilkova, Z.; Dupuy, B.; Jobst, G.; et al. Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples. Biosens. Bioelectron. 2018, 111, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Tsougeni, K.; Kastania, A.S.; Kaprou, G.D.; Eck, M.; Jobst, G.; Petrou, P.S.; Kakabakos, S.E.; Mastellos, D.; Gogolides, E.; Tserepi, A. A modular integrated lab-on-a-chip platform for fast and highly efficient sample preparation for foodborne pathogen screening. Sens. Actuators B Chem. 2019, 288, 171–179. [Google Scholar] [CrossRef]
- Tsougeni, K.; Kaprou, G.; Loukas, C.M.; Papadakis, G.; Hamiot, A.; Eck, M.; Rabus, D.; Kokkoris, G.; Chatzandroulis, S.; Papadopoulos, V.; et al. Lab-on-Chip platform and protocol for rapid foodborne pathogen detection comprising on-chip cell capture, lysis, DNA amplification and surface-acoustic-wave detection. Sens. Actuators B Chem. 2020, 320, 128345. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef]
- Craw, P.; Balachandran, W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: A critical review. Lab Chip 2012, 12, 2469. [Google Scholar] [CrossRef]
- Tzeling, J.M.W.; Yean, C.Y. A shelf-stable fluorogenic isothermal amplification assay for the detection of Burkholderia pseudomallei. Analyst 2016, 141, 1246–1249. [Google Scholar] [CrossRef]
- Chen, H.W.; Ching, W.M. Evaluation of the stability of lyophilized loop-mediated isothermal amplification reagents for the detection of Coxiella burnetii. Heliyon 2017, 3, e00415. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Guo, J.; Lu, Z.; Bie, X.; Lv, F.; Zhao, H. Development of a test kit for visual loop-mediated isothermal amplification of Salmonella in spiked ready-to-eat fruits and vegetables. J. Microbiol. Methods 2020, 169, 105830. [Google Scholar] [CrossRef]
- Chen, H.W.; Weissenberger, G.; Ching, W.M. Development of Lyophilized Loop-Mediated Isothermal Amplification Reagents for the Detection of Leptospira. Mil. Med. 2016, 181, 227–231. [Google Scholar] [CrossRef]
- Carter, C.; Akrami, K.; Hall, D.; Smith, D.; Aronoff-Spencer, E. Lyophilized visually readable loop-mediated isothermal reverse transcriptase nucleic acid amplification test for detection Ebola Zaire RNA. J. Virol. Methods 2017, 244, 32–38. [Google Scholar] [CrossRef]
- Curtis, K.A.; Rudolph, D.L.; Morrison, D.; Guelig, D.; Diesburg, S.; McAdams, D.; Owen, M. Single-use, electricity-free amplification device for detection of HIV-1. J. Virol. Methods 2016, 237, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Cai, G.; Wang, S.; Liao, M.; Li, Y.; Lin, J. A Microfluidic Colorimetric Biosensor for Rapid Detection of Escherichia Coli O157:H7 Using Gold Nanoparticle Aggregation and Smart Phone Imaging. Biosens. Bioelectron. 2019, 124–125, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Kadimisetty, K.; Song, J.; Doto, A.M.; Hwang, Y.; Peng, J.; Mauk, M.G.; Bushman, F.D.; Gross, R.; Jarvis, J.N.; Liu, C. Fully 3D Printed Integrated Reactor Array for Point-of-Care Molecular Diagnostics. Biosens. Bioelectron. 2018, 109, 156–163. [Google Scholar] [CrossRef]
- Sayad, A.; Ibrahim, F.; Mukim Uddin, S.; Cho, J.; Madou, M.; Thong, K.L. A microdevice for rapid, monoplex and colorimetric detection of foodborne pathogens using a centrifugal microfluidic platform. Biosens. Bioelectron. 2018, 100, 96–104. [Google Scholar] [CrossRef]
- Samhan, F.A.; Stedtfeld, T.M.; Waseem, H.; Williams, M.R.; Stedtfeld, R.D.; Hashsham, S.A. On-filter direct amplification of Legionella pneumophila for rapid assessment of its abundance and viability. Water Res. 2017, 121, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Moosavian, M.; Seyed-Mohammadi, S.; Saki, M.; Shahi, F.; Sima, M.K.; Afshar, D.; Barati, S. Loop-mediated isothermal amplification for detection of Legionella pneumophila in respiratory specimens of hospitalized patients in Ahvaz, southwest Iran. Infect. Drug Resist. 2019, 12, 529–534. [Google Scholar] [CrossRef]
- Olabarria, G.; Eletxigerra, U.; Rodriguez, I.; Bilbao, A.; Berganza, J.; Merino, S. Highly Sensitive and Fast Legionella Spp. In Situ Detection Based on a Loop Mediated Isothermal Amplification Technique Combined to an Electrochemical Transduction System. Talanta 2020, 217, 121061. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yang, T.; Yang, H.; Li, T.; Nie, L.; Mou, X.; Deng, Y.; He, N.; Li, Z.; Wang, L.; et al. A Portable Multi-Channel Turbidity System for Rapid Detection of Pathogens by Loop-Mediated Isothermal Amplification. J. Biomed. Nanotechnol. 2018, 14, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Reuter, C.; Slesiona, N.; Hentschel, S.; Aehlig, O.; Breitenstein, A.; Csáki, A.; Henkel, T.; Fritzsche, W. Loop-mediated amplification as promising on-site detection approach for Legionella pneumophila and Legionella spp. Appl. Microbiol. Biotechnol. 2020, 104, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Li, L.; Liu, X.; Qi Chen, Q.; Fang, X.; Kong, J.; Draz, M.; Cao, H. Loop-mediated isothermal amplification technique: Principle, development and wide application in food safety. Anal. Methods 2020, 12, 5551. [Google Scholar] [CrossRef]
- Eiken Chemicals. SAS Loopamp Realtime, Turbidimeter LA-320C. Available online: http://www.uib.no/med/avd/ii/nyhetsbrev/2010/15/Turbidimeter.pdf (accessed on 1 December 2023).
- Eiken Chemicals. LA-500. Available online: http://loopamp.eiken.co.jp/e/products/la500/img/02.pdf (accessed on 1 December 2023).
- Meridianbioscience. Athethia®. Available online: https://www.meridianbioscience.com/diagnostics/ (accessed on 1 December 2023).
- SMART. Smart-DART™ 8-Well V.3.0. Available online: http://diagenetix.com/smart-dart-platform/ (accessed on 1 December 2023).
- Optigene. Genie II. Available online: http://www.optigene.co.uk/instruments/instrument-genie-ii/ (accessed on 1 December 2023).
- Optigene. Genie III. Available online: http://www.optigene.co.uk/instruments/instrument-genie-iii/ (accessed on 1 December 2023).
- QIAGEN. ESEQuant Tube Scanner. Available online: https://www.qiagen.com/us/resources/search-resources/ (accessed on 1 December 2023).
- Ellinas, K.; Tserepi, A.; Gogolides, E. Superhydrophobic, passive microvalves with controllable opening threshold: Exploiting plasma nanotextured microfluidics for a programmable flow switchboard. Microfluid. Nanofluid. 2014, 17, 489–498. [Google Scholar] [CrossRef]
- Tsougeni, K.; Papageorgiou, D.; Tserepi, A.; Gogolides, E. “Smart” polymeric microfluidics fabricated by plasma processing: Controlled wetting, capillary filling and hydrophobic valving. Lab Chip 2010, 10, 462–469. [Google Scholar] [CrossRef]
- Tsougeni, K.; Tserepi, A.; Constantoudis, V.; Gogolides, E.; Petrou, P.S.; Kakabakos, S.E. Plasma Nanotextured PMMA Surfaces for Protein Arrays: Increased Protein Binding and Enhanced Detection Sensitivity. Langmuir 2010, 26, 13883–13891. [Google Scholar] [CrossRef]
- Tsougeni, K.; Papadakis, G.; Gianneli, M.; Grammoustianou, A.; Constantoudis, V.; Dupuy, B.; Petrou, P.S.; Kakabakos, S.E.; Tserepi, A.; Gizeli, E.; et al. Plasma nanotextured polymeric lab-on-a-chip for highly efficient bacteria capture and lysis. Lab Chip 2016, 16, 120–131. [Google Scholar] [CrossRef]
- Tsougeni, K.; Petrou, P.S.; Awsiuk, K.; Marzec, M.M.; Ioannidis, N.; Petrouleas, V.; Tserepi, A.; Kakabakos, S.E.; Gogolides, E. Direct Covalent Biomolecule Immobilization on Plasma-Nanotextured Chemically Stable Substrates. ACS Appl. Mater. Interfaces 2015, 7, 14670–14681. [Google Scholar] [CrossRef] [PubMed]
- Tsougeni, K.; Koukouvinos, G.; Petrou, P.S.; Tserepi, A.; Kakabakos, S.E.; Gogolides, E. High-capacity and high-intensity DNA microarray spots using oxygen-plasma nanotextured polystyrene slides. Anal. Bioanal. Chem. 2012, 403, 2757–2764. [Google Scholar] [CrossRef] [PubMed]
- Klatser, P.R.; Kuijper, S.; van Ingen, C.W.; Kolk, A.H. Stabilized, freeze-dried PCR mix for detection of mycobacteria. J. Clin. Microbiol. 1998, 36, 1798–1800. [Google Scholar] [CrossRef] [PubMed]
- Agel, E.; Sagcan, H. Optimization of Lyophilized LAMP and RT-PCR Reaction Mixes for Detection of Tuberculosis. EuroBiotech J. 2020, 4, 230–236. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Proposal for a Directive of the European Parliament and of the Council on the Quality of Water Intended for Human Consumption (Recast); EU Directive: Brussels, Belgium, 2018.
- ISO 16140-4:2020; Microbiology of the Food Chain: Method Validation Part 4: Protocol for Method Validation in a Single Laboratory. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/66325.html (accessed on 27 March 2024).
Type of Water | Zero-Level (L0) Sensitivity | Medium-Level (L1) Sensitivity | High-Level (L2) Sensitivity |
---|---|---|---|
Drinking | 100% [99.5 to 100] | 100% [99.5 to 100] | 100% [99.5 to 100] |
Drilling | 100% [99.5 to 100] | 86.6% [85.6 to 87.6] | 86.6% [85.6 to 87.6] |
Non-drinking | 100% [99.5 to 100] | 66.7% [64.14 to 69.2] | 80% [77.47 to 82.53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsougeni, K.; Kanioura, A.; Kastania, A.S.; Ellinas, K.; Stellas, A.; Constantoudis, V.; Moschonas, G.; Andritsos, N.D.; Velonakis, M.; Petrou, P.S.; et al. A Diagnostic Chip for the Colorimetric Detection of Legionella pneumophila in Less than 3 h at the Point of Need. Biosensors 2024, 14, 228. https://doi.org/10.3390/bios14050228
Tsougeni K, Kanioura A, Kastania AS, Ellinas K, Stellas A, Constantoudis V, Moschonas G, Andritsos ND, Velonakis M, Petrou PS, et al. A Diagnostic Chip for the Colorimetric Detection of Legionella pneumophila in Less than 3 h at the Point of Need. Biosensors. 2024; 14(5):228. https://doi.org/10.3390/bios14050228
Chicago/Turabian StyleTsougeni, Katerina, Anastasia Kanioura, Athina S. Kastania, Kosmas Ellinas, Antonios Stellas, Vassilios Constantoudis, Galatios Moschonas, Nikolaos D. Andritsos, Manolis Velonakis, Panagiota S. Petrou, and et al. 2024. "A Diagnostic Chip for the Colorimetric Detection of Legionella pneumophila in Less than 3 h at the Point of Need" Biosensors 14, no. 5: 228. https://doi.org/10.3390/bios14050228
APA StyleTsougeni, K., Kanioura, A., Kastania, A. S., Ellinas, K., Stellas, A., Constantoudis, V., Moschonas, G., Andritsos, N. D., Velonakis, M., Petrou, P. S., Kakabakos, S. E., Gogolides, E., & Tserepi, A. (2024). A Diagnostic Chip for the Colorimetric Detection of Legionella pneumophila in Less than 3 h at the Point of Need. Biosensors, 14(5), 228. https://doi.org/10.3390/bios14050228