Comparative Study of Field-Effect Transistors Based on Graphene Oxide and CVD Graphene in Highly Sensitive NT-proBNP Aptasensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of the GFET and rGO-FET Devices
2.3. Assembling of the GFET and rGO-FET Aptasensors
2.4. FET Devices Characterization
3. Results and Discussion
3.1. GFET vs. GOFET Channel Surface Analysis
3.2. Aptasensors Assembly using PBASE Linker
3.3. NT-proBNP Measurements by GFET and rGO-FET Aptasensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APTES | (3-aminopropyl) triethoxysilane |
AS | artificial saliva |
BSA | bovine serum albumin |
cTnI | cardiac troponin I |
CVC | current voltage characteristics |
CVD | chemical vapor deposition |
DMF | dimethylformamide |
EDL | electrical double layer |
ETA | Ethanolamine |
FET | field effect transistor |
GFET | graphene FET |
HF | heart failure |
GO | graphene oxide |
IDE | interdigitated electrodes |
IPA | isopropyl alcohol |
LOD | limit of detection |
NMP | N-methyl-2-pyrrolidone |
NT-proBNP | N-terminal proBNP |
PBASE | pyrenebutyric acid N-hydroxysuccinimide ester |
PBS | phosphate buffer silane |
PMMA | poly(methyl methacrylate) |
POC | point of care |
proBNP | B-type natriuretic peptide |
rGO | reduced graphene oxide |
References
- Hong, N.; Kireev, D.; Zhao, Q.; Chen, D.; Akinwande, D.; Li, W. Roll-to-Roll Dry Transfer of Large-Scale Graphene. Adv. Mater. 2022, 34, 2106615. [Google Scholar] [CrossRef]
- Barmpakos, D.; Belessi, V.; Schelwald, R.; Kaltsas, G. Evaluation of Inkjet-Printed Reduced and Functionalized Water-Dispersible Graphene Oxide and Graphene on Polymer Substrate—Application to Printed Temperature Sensors. Nanomaterials 2021, 11, 2025. [Google Scholar] [CrossRef]
- Pykal, M.; Jurečka, P.; Karlický, F.; Otyepka, M. Modelling of graphene functionalization. Phys. Chem. Chem. Phys. 2016, 18, 6351–6372. [Google Scholar] [CrossRef]
- Abid; Sehrawat, P.; Islam, S.S.; Mishra, P.; Ahmad, S. Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature, Defect States and Quantum Efficiency. Sci. Rep. 2018, 8, 3537. [Google Scholar] [CrossRef]
- Nekrasov, N.; Jaric, S.; Kireev, D.; Emelianov, A.V.; Orlov, A.V.; Gadjanski, I.; Nikitin, P.I.; Akinwande, D.; Bobrinetskiy, I. Real-time detection of ochratoxin A in wine through insight of aptamer conformation in conjunction with graphene field-effect transistor. Biosens. Bioelectron. 2022, 200, 113890. [Google Scholar] [CrossRef]
- Nekrasov, N.; Kireev, D.; Emelianov, A.; Bobrinetskiy, I. Graphene-Based Sensing Platform for On-Chip Ochratoxin A Detection. Toxins 2019, 11, 550. [Google Scholar] [CrossRef]
- Kong, Q.; Zhang, M.; Yue, F.; Huang, J.; Yang, F.; Gao, X.; Xiang, Y.; Li, J.; Sun, X.; Guo, Y.; et al. Electrochemical Aptasensor Based on Porous Reduced Graphene Oxide and Au@Fe3O4 Shell-Core Structure for Detection of Thiamethoxam in Green Leafy Vegetables. J. Electrochem. Soc. 2022, 169, 057522. [Google Scholar] [CrossRef]
- Béraud, A.; Sauvage, M.; Bazán, C.M.; Tie, M.; Bencherif, A.; Bouilly, D. Graphene field-effect transistors as bioanalytical sensors: Design, operation and performance. Analyst 2021, 146, 403–428. [Google Scholar] [CrossRef]
- Brosel-Oliu, S.; Rius, G.; Aviñó, A.; Nakatsuka, N.; Illa, X.; del Corro, E.; Delgà-Fernández, M.; Masvidal-Codina, E.; Rodríguez, N.; Merino, J.P.; et al. Single-Step Functionalization Strategy of Graphene Microtransistor Array with Chemically Modified Aptamers for Biosensing Applications. Small 2023, 2308857. [Google Scholar] [CrossRef]
- Jarić, S.; Kudriavtseva, A.; Nekrasov, N.; Orlov, A.V.; Komarov, I.A.; Barsukov, L.A.; Gadjanski, I.; Nikitin, P.I.; Bobrinetskiy, I. Femtomolar detection of the heart failure biomarker NT-proBNP in artificial saliva using an immersible liquid-gated aptasensor with reduced graphene oxide. Microchem. J. 2024, 196, 109611. [Google Scholar] [CrossRef]
- Dasgupta, A.; Wahed, A. Cardiac Markers. In Clinical Chemistry, Immunology and Laboratory Quality Control; Elsevier: Amsterdam, The Netherlands, 2014; pp. 127–144. [Google Scholar]
- Harpaz, D.; Seet, R.C.S.; Marks, R.S.; Tok, A.I.Y. B-Type Natriuretic Peptide as a Significant Brain Biomarker for Stroke Triaging Using a Bedside Point-of-Care Monitoring Biosensor. Biosensors 2020, 10, 107. [Google Scholar] [CrossRef]
- Komarova, N.; Panova, O.; Titov, A.; Kuznetsov, A. Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines 2022, 10, 1085. [Google Scholar] [CrossRef]
- Bellagambi, F.G.; Petersen, C.; Salvo, P.; Ghimenti, S.; Franzini, M.; Biagini, D.; Hangouët, M.; Trivella, M.G.; Di Francesco, F.; Paolicchi, A.; et al. Determination and stability of N-terminal pro-brain natriuretic peptide in saliva samples for monitoring heart failure. Sci. Rep. 2021, 11, 13088. [Google Scholar] [CrossRef]
- António, M.; Vitorino, R.; Daniel-da-Silva, A.L. LSPR-Based Aptasensor for Rapid Urinary Detection of NT-proBNP. Biosensors 2023, 13, 736. [Google Scholar] [CrossRef]
- Sinha, A.; Gopinathan, P.; Chung, Y.-D.; Lin, H.-Y.; Li, K.-H.; Ma, H.-P.; Huang, P.-C.; Shiesh, S.-C.; Lee, G.-B. An integrated microfluidic platform to perform uninterrupted SELEX cycles to screen affinity reagents specific to cardiovascular biomarkers. Biosens. Bioelectron. 2018, 122, 104–112. [Google Scholar] [CrossRef]
- Tai, T.-Y.; Sinha, A.; Sarangadharan, I.; Pulikkathodi, A.K.; Wang, S.-L.; Lee, G.-Y.; Chyi, J.-I.; Shiesh, S.-C.; Lee, G.-B.; Wang, Y.-L. Design and Demonstration of Tunable Amplified Sensitivity of AlGaN/GaN High Electron Mobility Transistor (HEMT)-Based Biosensors in Human Serum. Anal. Chem. 2019, 91, 5953–5960. [Google Scholar] [CrossRef]
- Gal, J. About a synthetic saliva for in vitro studies. Talanta 2001, 53, 1103–1115. [Google Scholar] [CrossRef]
- Sinha, A.; Gopinathan, P.; Chung, Y.-D.; Shiesh, S.-C.; Lee, G.-B. Simultaneous detection of multiple NT-proBNP clinical samples utilizing an aptamer-based sandwich assay on an integrated microfluidic system. Lab Chip 2019, 19, 1676–1685. [Google Scholar] [CrossRef]
- Hao, Z.; Pan, Y.; Huang, C.; Wang, Z.; Lin, Q.; Zhao, X.; Liu, S. Modulating the Linker Immobilization Density on Aptameric Graphene Field Effect Transistors Using an Electric Field. ACS Sens. 2020, 5, 2503–2513. [Google Scholar] [CrossRef]
- Munief, W.-M.; Lu, X.; Teucke, T.; Wilhelm, J.; Britz, A.; Hempel, F.; Lanche, R.; Schwartz, M.; Law, J.K.Y.; Grandthyll, S.; et al. Reduced graphene oxide biosensor platform for the detection of NT-proBNP biomarker in its clinical range. Biosens. Bioelectron. 2019, 126, 136–142. [Google Scholar] [CrossRef]
- Wu, G.; Tang, X.; Meyyappan, M.; Lai, K.W.C. Doping effects of surface functionalization on graphene with aromatic molecule and organic solvents. Appl. Surf. Sci. 2017, 425, 713–721. [Google Scholar] [CrossRef]
- Kireev, D.; Brambach, M.; Seyock, S.; Maybeck, V.; Fu, W.; Wolfrum, B.; Offenhäusser, A. Graphene transistors for interfacing with cells: Towards a deeper understanding of liquid gating and sensitivity. Sci. Rep. 2017, 7, 6658. [Google Scholar] [CrossRef]
- Mishyn, V.; Rodrigues, T.; Leroux, Y.R.; Aspermair, P.; Happy, H.; Bintinger, J.; Kleber, C.; Boukherroub, R.; Knoll, W.; Szunerits, S. Controlled covalent functionalization of a graphene-channel of a field effect transistor as an ideal platform for (bio)sensing applications. Nanoscale Horiz. 2021, 6, 819–829. [Google Scholar] [CrossRef]
- Cui, G.; Yi, Z.; Su, F.; Chen, C.; Han, P. A DFT study of the effect of stacking on the quantum capacitance of bilayer graphene materials. New Carbon Mater. 2021, 36, 1062–1070. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Zhu, Y.; Zhou, X.; Xiang, Y.; He, M.; Zeng, S. Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching. Biosens. Bioelectron. 2017, 89, 758–763. [Google Scholar] [CrossRef]
- Danielson, E.; Sontakke, V.A.; Porkovich, A.J.; Wang, Z.; Kumar, P.; Ziadi, Z.; Yokobayashi, Y.; Sowwan, M. Graphene based field-effect transistor biosensors functionalized using gas-phase synthesized gold nanoparticles. Sens. Actuators B Chem. 2020, 320, 128432. [Google Scholar] [CrossRef]
- Nekrasov, N.; Kudriavtseva, A.; Orlov, A.V.; Gadjanski, I.; Nikitin, P.I.; Bobrinetskiy, I.; Knežević, N.Ž. One-Step Photochemical Immobilization of Aptamer on Graphene for Label-Free Detection of NT-proBNP. Biosensors 2022, 12, 1071. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, J.; Song, Y.; Zhang, J.; Han, Q. Determination of Fumonisin B1 by Aptamer-Based Fluorescence Resonance Energy Transfer. Sensors 2022, 22, 8598. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.; Mishyn, V.; Leroux, Y.R.; Butruille, L.; Woitrain, E.; Barras, A.; Aspermair, P.; Happy, H.; Kleber, C.; Boukherroub, R.; et al. Highly performing graphene-based field effect transistor for the differentiation between mild-moderate-severe myocardial injury. Nano Today 2022, 43, 101391. [Google Scholar] [CrossRef]
- Chu, C.-H.; Sarangadharan, I.; Regmi, A.; Chen, Y.-W.; Hsu, C.-P.; Chang, W.-H.; Lee, G.-Y.; Chyi, J.-I.; Chen, C.-C.; Shiesh, S.-C.; et al. Beyond the Debye length in high ionic strength solution: Direct protein detection with field-effect transistors (FETs) in human serum. Sci. Rep. 2017, 7, 5256. [Google Scholar] [CrossRef]
- Ruankham, W.; Morales Frías, I.A.; Phopin, K.; Tantimongcolwat, T.; Bausells, J.; Zine, N.; Errachid, A. One-step impedimetric NT-proBNP aptasensor targeting cardiac insufficiency in artificial saliva. Talanta 2023, 256, 124280. [Google Scholar] [CrossRef]
- Rammos, A.; Bechlioulis, A.; Kalogeras, P.; Watson, C.J.; Salvo, P.; Lomonaco, T.; Kardakari, O.; Tripoliti, E.E.; Goletsis, Y.; Fotiadis, D.I.; et al. The Potential Role of Salivary NT-proBNP in Heart Failure. Life 2023, 13, 1818. [Google Scholar] [CrossRef]
- Salvo, P.; Melai, B.; Calisi, N.; Paoletti, C.; Bellagambi, F.; Kirchhain, A.; Trivella, M.G.; Fuoco, R.; Di Francesco, F. Graphene-based devices for measuring pH. Sens. Actuators B Chem. 2018, 256, 976–991. [Google Scholar] [CrossRef]
Parameter | GFETs * | rGO-FETs ** |
---|---|---|
R, kOhm | 0.026 ± 0.001 | 2.27 ± 0.05 |
gm, µS | 84.7 ± 0.7 | 85.4 ± 5.3 |
∆gm, µS | 7.5 ± 1.6 | 47.1 ± 4.0 |
Raman band intensity ratio | ≥5.11 | 0.76 |
Parameters | GFETs | rGO-FETs |
---|---|---|
Dynamic range, pg/mL | 10−2–102 | 10−2–102 |
LOD, pg/mL | 1 | 0.1 |
Sensitivity, mV/dec | ~0.7 | ~2.5 |
Assembling Step | GFETs | rGO-FETs |
---|---|---|
| Easy fabrication (+) Reproducibility (+) Top contact (−) | |
| Bad reproducibility of graphene positioning (−) Excellent conductivity and intact structure (+) Good surface area (+) | Excellent reproducibility of GO layer (+) Weak conductivity and layer of polycrystalline structure (−) Excellent surface area (+) |
| Not necessary (+) | Mandatory (−) |
| Good density (+) High coverage (+) | High density (+) Low coverage (−) |
| Small EDL (−) | Increased EDL (+) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudriavtseva, A.; Jarić, S.; Nekrasov, N.; Orlov, A.V.; Gadjanski, I.; Bobrinetskiy, I.; Nikitin, P.I.; Knežević, N. Comparative Study of Field-Effect Transistors Based on Graphene Oxide and CVD Graphene in Highly Sensitive NT-proBNP Aptasensors. Biosensors 2024, 14, 215. https://doi.org/10.3390/bios14050215
Kudriavtseva A, Jarić S, Nekrasov N, Orlov AV, Gadjanski I, Bobrinetskiy I, Nikitin PI, Knežević N. Comparative Study of Field-Effect Transistors Based on Graphene Oxide and CVD Graphene in Highly Sensitive NT-proBNP Aptasensors. Biosensors. 2024; 14(5):215. https://doi.org/10.3390/bios14050215
Chicago/Turabian StyleKudriavtseva, Anastasiia, Stefan Jarić, Nikita Nekrasov, Alexey V. Orlov, Ivana Gadjanski, Ivan Bobrinetskiy, Petr I. Nikitin, and Nikola Knežević. 2024. "Comparative Study of Field-Effect Transistors Based on Graphene Oxide and CVD Graphene in Highly Sensitive NT-proBNP Aptasensors" Biosensors 14, no. 5: 215. https://doi.org/10.3390/bios14050215
APA StyleKudriavtseva, A., Jarić, S., Nekrasov, N., Orlov, A. V., Gadjanski, I., Bobrinetskiy, I., Nikitin, P. I., & Knežević, N. (2024). Comparative Study of Field-Effect Transistors Based on Graphene Oxide and CVD Graphene in Highly Sensitive NT-proBNP Aptasensors. Biosensors, 14(5), 215. https://doi.org/10.3390/bios14050215