Highly Sensitive and Linear Resonator-Based Biosensor for White Blood Cell Counting: Feasible Measurement Method and Intrinsic Mechanism Exploration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Optimization of the Microwave Sensor
2.2. Analysis of the Proposed Microwave Sensor Structure
2.3. Sample Preparation and Characterization
3. Results
3.1. Characterization and Experimental Process
3.2. Sensing Response Analysis
3.3. Linearization of Derived Parameters
3.4. Microscopic Sensing Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dralus, G.; Mazur, D.; Czmil, A. Automatic detection and counting of blood cells in smear images using retinanet. Entropy 2021, 23, 1522. [Google Scholar] [CrossRef] [PubMed]
- Stock, W.; Hoffman, R. White blood cells 1: Non-malignant disorders. Lancet 2000, 355, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bai, J.; Wu, H.; Ying, J.Y. Trapping cells in paper for white blood cell count. Biosens. Bioelectron. 2015, 69, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Vallance, S. Leucocyte ascorbic acid and the leucocyte count. Br. J. Nutr. 1979, 41, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; Anderson, K.; Wilson, P.W.F. White blood cell count and cardiovascular disease: Insights from the framingham study. JAMA 1992, 267, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Horne, B.D.; Anderson, J.L.; John, J.M.; Weaver, A.; Bair, T.L.; Jensen, K.R.; Renlund, D.G.; Muhlestein, J.B.; Intermountain Heart Collaborative (IHC) Study Group. Correction: Which white blood cell subtypes predict increased cardiovascular risk? (vol 45, pg 1638, 2005). J. Am. Coll. Cardiol. 2005, 46, 565. [Google Scholar] [CrossRef]
- Seo, H.S.; Yun, Y.W.; Sohn, S.J. Relationship between white blood cell counts and the metabolic syndrome. J. Agric. Med. Community Health 2010, 35, 67–76. [Google Scholar] [CrossRef]
- Vozarova, B.; Weyer, C.; Lindsay, R.S.; Pratley, R.E.; Bogardus, C.; Tataranni, P.A. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002, 51, 455–461. [Google Scholar] [CrossRef]
- Hyun, B.H.; Gulati, G.L.; Ashton, J.K. Differential leukocyte count: Manual or automated, what should it be? Yonsei Med. J. 1991, 32, 283–291. [Google Scholar] [CrossRef]
- Buttarello, M.; Bulian, P.; Farina, G.; Temporin, V.; Toffolo, L.; Trabuio, E.; Rizzotti, P. Flow cytometric reticulocyte counting—Parallel evaluation of five fully automated analyzers: An nccls-icsh approach. Am. J. Clin. Pathol. 2001, 115, 100–111. [Google Scholar] [CrossRef]
- Don, M. The coulter principle: Foundation of an industry. JALA J. Assoc. Lab. Autom. 2003, 8, 72–81. [Google Scholar] [CrossRef]
- Terstappen, L.W.; de Grooth, B.G.; Visscher, K.; van Kouterik, F.A.; Greve, J. Four-parameter white blood cell differential counting based on light scattering measurements. Cytometry 1988, 9, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Buttarello, M.; Plebani, M. Automated blood cell counts: State of the art. Am. J. Clin. Pathol. 2008, 130, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Escobar, F.I.F.; Alipo-on, J.R.T.; Novia, J.L.U.; Tan, M.J.T.; Karim, H.A.; AlDahoul, N. Automated counting of white blood cells in thin blood smear images. Comput. Electr. Eng. 2023, 108, 108710. [Google Scholar] [CrossRef]
- Lavitt, F.; Rijlaarsdam, D.J.; van der Linden, D.; Weglarz-Tomczak, E.; Tomczak, J.M. Deep learning and transfer learning for automatic cell counting in microscope images of human cancer cell lines. Appl. Sci. 2021, 11, 4912. [Google Scholar] [CrossRef]
- Holmes, D.; Pettigrew, D.; Reccius, C.H.; Gwyer, J.D.; van Berkel, C.; Holloway, J.; Davies, D.E.; Morgan, H. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 2009, 9, 2881–2889. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhu, J.; Chai, H.; He, W.; Huang, L.; Wang, W. Impedance-based multimodal electrical-mechanical intrinsic flow cytometry. Small 2023, 19, 2303416. [Google Scholar] [CrossRef] [PubMed]
- Salahi, A.; Honrado, C.; Rane, A.; Caselli, F.; Swami, N.S. Modified red blood cells as multimodal standards for benchmarking single-cell cytometry and separation based on electrical physiology. Anal. Chem. 2022, 94, 2865–2872. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Feng, Y.; Zhu, J.; Huang, L.; Wang, W. Floating-electrode-enabled impedance cytometry for single-cell 3d localization. Anal. Chem. 2023, 95, 6374–6382. [Google Scholar] [CrossRef]
- Yang, X.; Liang, Z.; Luo, Y.; Yuan, X.; Cai, Y.; Yu, D.; Xing, X. Single-cell impedance cytometry of anticancer drug-treated tumor cells exhibiting mitotic arrest state to apoptosis using low-cost silver-pdms microelectrodes. Lab Chip 2023, 23, 4848–4859. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, X.; Li, K.; Yue, Y.; Zhang, Z.; Meng, Y.; Wang, S. Bipolar electrode-based sheath-less focusing and continuous acoustic sorting of particles and cells in an integrated microfluidic device. Anal. Chem. 2024, 96, 3627–3635. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, K.-Y.; Wang, T.-T.; Jia, M.; Bai, L.-H.; Wang, X.; Bu, Y.-Y.; Ao, J.-P. MiRNA-155 biosensors based on AlGaN/GaN heterojunction field effect transistors with an Au-SH-RNA probe gate. IEEE Trans. Electron Devices 2023, 70, 1860–1864. [Google Scholar] [CrossRef]
- Satake, D.; Ebi, H.; Oku, N.; Matsuda, K.; Takao, H.; Ashiki, M.; Ishida, M. A sensor for blood cell counter using MEMS technology. Sens. Actuators B-Chem. 2002, 83, 77–81. [Google Scholar] [CrossRef]
- Wang, X.; Lin, G.; Cui, G.; Zhou, X.; Liu, G.L. White blood cell counting on smartphone paper electrochemical sensor. Biosens. Bioelectron. 2017, 90, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.C.; Nadaraja, A.V.; Narang, R.; Zarifi, M.H. Rapid and real-time monitoring of bacterial growth against antibiotics in solid growth medium using a contactless planar microwave resonator sensor. Sci. Rep. 2021, 11, 14775. [Google Scholar] [CrossRef] [PubMed]
- Wiltshire, B.D.; Zarifi, T.; Zarifi, M.H. Passive split ring resonator tag configuration for rfid-based wireless permittivity sensing. IEEE Sens. J. 2020, 20, 1904–1911. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Sadabadi, H.; Hejazi, S.H.; Daneshmand, M.; Sanati-Nezhad, A. Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering. Sci. Rep. 2018, 8, 139. [Google Scholar] [CrossRef]
- Yue, W.; Kim, E.-S.; Zhu, B.-H.; Chen, J.; Liang, J.-G.; Kim, N.-Y. Permittivity-inspired microwave resonator-based biosensor based on integrated passive device technology for glucose identification. Biosensors 2021, 11, 508. [Google Scholar] [CrossRef]
- Odabashyan, L.; Babajanyan, A.; Baghdasaryan, Z.; Kim, S.; Kim, J.; Friedman, B.; Lee, J.-H.; Lee, K. Real-time noninvasive measurement of glucose concentration using a modified hilbert shaped microwave sensor. Sensors 2019, 19, 5525. [Google Scholar] [CrossRef]
- Mohammadi, S.; Narang, R.; Ashani, M.M.; Sadabadi, H.; Sanati-Nezhad, A.; Zarifi, M.H. Real-time monitoring of Escherichia coli concentration with planar microwave resonator sensor. Microw. Opt. Technol. Lett. 2019, 61, 2534–2539. [Google Scholar] [CrossRef]
- Narang, R.; Mohammadi, S.; Ashani, M.M.; Sadabadi, H.; Hejazi, H.; Zarifi, M.H.; Sanati-Nezhad, A. Sensitive, real-time and non-intrusive detection of concentration and growth of pathogenic bacteria using microfluidic-microwave ring resonator biosensor. Sci. Rep. 2018, 8, 15807. [Google Scholar] [CrossRef] [PubMed]
- Meredith, R. Engineers’ Handbook of Industrial Microwave Heating; IET: Stevenage, UK, 1998. [Google Scholar] [CrossRef]
- Adhikari, K.K.; Qiang, T.; Wang, C.; Sung, H.K.; Wang, L.; Wu, Q. High-sensitivity radio frequency noncontact sensing and accurate quantification of uric acid in temperature-variant aqueous solutions. Appl. Phys. Express 2018, 11, 117001. [Google Scholar] [CrossRef]
- Kumar, A.; Wang, C.; Meng, F.-Y.; Zhou, Z.-L.; Zhao, M.; Yan, G.-F.; Kim, E.-S.; Kim, N.-Y. High-sensitivity, quantified, linear and mediator-free resonator-based microwave biosensor for glucose detection. Sensors 2020, 20, 4024. [Google Scholar] [CrossRef] [PubMed]
- Zarifi, M.H.; Thundat, T.; Daneshmand, M. High resolution microwave microstrip resonator for sensing applications. Sens. Actuators A-Phys. 2015, 233, 224–230. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Wu, H.-W.; Hong, Y.-H.; Lee, H.-Y. 40 GHZ RF biosensor based on microwave coplanar waveguide transmission line for cancer cells (hepg2) dielectric characterization. Biosens. Bioelectron. 2014, 61, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.S.; Hershenson, M.D.; Boyd, S.P.; Lee, T.H. Simple accurate expressions for planar spiral inductances. IEEE J. Solid-State Circuits 1999, 34, 1419–1424. [Google Scholar] [CrossRef]
- Adhikari, K.K.; Wang, C.; Qiang, T.; Kumar, A.; Wu, Q.; Maharjan, S.; Kim, N.-Y. Real-time accurate quantification of nanoliter ethanol using performance-optimized micro-fabricated microwave resonant sensor. J. Phys. D-Appl. Phys. 2020, 53, 085402. [Google Scholar] [CrossRef]
- Ma, Y.; Qiang, T.; Gao, M.; Liang, J.; Jiang, Y. Quantitative, temperature-calibrated and real-time glucose biosensor based on symmetrical-meandering-type resistor and intertwined capacitor structure. Biosensors 2021, 11, 484. [Google Scholar] [CrossRef] [PubMed]
- Pucihar, G.; Kotnik, T.; Kanduser, M.; Miklavcic, D. The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 2001, 54, 107–115. [Google Scholar] [CrossRef]
- Johnson, C.C.; Guy, A.W. Nonionizing electromagnetic wave effects in biological materials and systems. Proc. IEEE 1972, 60, 692–718. [Google Scholar] [CrossRef]
- Mehrotra, P.; Chatterjee, B.; Sen, S. EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing. Sensors 2019, 19, 1013. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Green, N.G.; Morgan, H. Analytical and numerical modeling methods for impedance analysis of single cells on-chip. Nano 2008, 3, 55–63. [Google Scholar] [CrossRef]
- Dai, L.; Zhao, X.; Guo, J.; Feng, S.; Fu, Y.; Kang, Y.; Guo, J. Microfluidics-based microwave sensor. Sens. Actuators A-Phys. 2020, 309, 111910. [Google Scholar] [CrossRef]
- Piekarz, I.; Sorocki, J.; Gorska, S.; Bartsch, H.; Rydosz, A.; Smolarz, R.; Wincza, K.; Gruszczynski, S. High sensitivity and selectivity microwave biosensor using biofunctionalized differential resonant array implemented in ltcc for escherichia coli detection. Measurement 2023, 208, 112473. [Google Scholar] [CrossRef]
- Piekarz, I.; Górska, S.; Razim, A.; Sorocki, J.; Wincza, K.; Drab, M.; Gruszczynski, S. Planar single and dual-resonant microwave biosensors for label-free bacteria detection. Sens. Actuators B-Chem. 2022, 351, 130899. [Google Scholar] [CrossRef]
- Di Ruberto, C.; Loddo, A.; Putzu, L. A leucocytes count system from blood smear images segmentation and counting of white blood cells based on learning by sampling. Mach. Vis. Appl. 2016, 27, 1151–1160. [Google Scholar] [CrossRef]
- Avci, M.B.; Yasar, S.D.; Cetin, A.E. An optofluidic platform for cell-counting applications. Anal. Methods 2023, 15, 2244–2252. [Google Scholar] [CrossRef]
- Fu, L.-M.; Yang, R.-J.; Lin, C.-H.; Pan, Y.-J.; Lee, G.-B. Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Anal. Chim. Acta 2004, 507, 163–169. [Google Scholar] [CrossRef]
References | Sample | Structure | Sensing Method | Size (mm × mm) | Concentration | Sensitivity |
---|---|---|---|---|---|---|
[3] | WBC | Vertical flow configuration | Gold nanoparticl-es | NA | 6 × 104–16 × 104cells/mL | NA |
[45] | Escherichia coli | Multi-resonator | fr | 12.00 × 15.00 | 103–109 CFU/mL | 4.2 Hz/CFU/mL |
[46] | Escherichia coli | LC-resonator | fr | 2.01 × 6.60 | 103–109 CFU/mL | 120 M Hz/CFU/mL |
[47] | WBC | Blood smear images | svm | NA | NA | 99.73% (average accuracy) |
[48] | Blood cell | Optofluidic cell-counting platform | Image processing | NA | NA | NA |
[49] | On-line cell/particle | Micro flow cytometers with integrated fiber optics | Electrokine- tically driven | NA | NA | NA |
Proposed biosensor | WBC | LC resonator | fr, S11 | 1.00 × 1.00 | 0.25 × 106–8 × 106 cells/mL | 25.06 Hz/cells·mL−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-K.; Shi, B.-W.; Zhao, J.-M.; Wang, Y.-X.; Jiang, Y.-F.; Yang, G.-L.; Gao, X.-D.; Qiang, T. Highly Sensitive and Linear Resonator-Based Biosensor for White Blood Cell Counting: Feasible Measurement Method and Intrinsic Mechanism Exploration. Biosensors 2024, 14, 180. https://doi.org/10.3390/bios14040180
Wang Y-K, Shi B-W, Zhao J-M, Wang Y-X, Jiang Y-F, Yang G-L, Gao X-D, Qiang T. Highly Sensitive and Linear Resonator-Based Biosensor for White Blood Cell Counting: Feasible Measurement Method and Intrinsic Mechanism Exploration. Biosensors. 2024; 14(4):180. https://doi.org/10.3390/bios14040180
Chicago/Turabian StyleWang, Yi-Ke, Bo-Wen Shi, Jun-Ming Zhao, Yan-Xiong Wang, Yan-Feng Jiang, Gang-Long Yang, Xiao-Dong Gao, and Tian Qiang. 2024. "Highly Sensitive and Linear Resonator-Based Biosensor for White Blood Cell Counting: Feasible Measurement Method and Intrinsic Mechanism Exploration" Biosensors 14, no. 4: 180. https://doi.org/10.3390/bios14040180
APA StyleWang, Y. -K., Shi, B. -W., Zhao, J. -M., Wang, Y. -X., Jiang, Y. -F., Yang, G. -L., Gao, X. -D., & Qiang, T. (2024). Highly Sensitive and Linear Resonator-Based Biosensor for White Blood Cell Counting: Feasible Measurement Method and Intrinsic Mechanism Exploration. Biosensors, 14(4), 180. https://doi.org/10.3390/bios14040180