CoMnOx Nanoflower-Based Smartphone Sensing Platform and Virtual Reality Display for Colorimetric Detection of Ziram and Cu2+
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of CoMnOx
2.2. Enzyme-Like Activities of CoMnOx
2.3. Steady-State Kinetic Study
2.4. Oxidase-Like Reaction Mechanism
2.5. Colorimetric Detection of Ziram and Cu2+
2.6. Visual Smartphone Detection Platform
2.7. Real Sample Analysis
3. Results
3.1. Synthesis and Characterization of CoMnOx Nanoflowers
3.2. Enzyme-Like Catalytic Activities and Mechanisms
3.2.1. Enzyme-Like Catalytic Activities
3.2.2. Kinetic Studies
3.2.3. Catalytic Mechanisms
3.3. Colorimetric Sensing
3.4. Detection Mechanisms
3.5. Smartphone Platform for Target Analysis
3.6. Real Sample Analysis
3.7. Selectivity and Stability Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Čuš, F.; Česnik, H.B.; Bolta, Š.V. Pesticide residues, copper and biogenic amines in conventional and organic wines. Food Control 2022, 132, 108534. [Google Scholar] [CrossRef]
- Zhang, C.; Qiu, M.; Wang, J.; Liu, Y. Recent advances in nanoparticle-based optical sensors for detection of pesticide residues in soil. Biosensors 2023, 13, 415. [Google Scholar] [CrossRef] [PubMed]
- Auer, F.; Guttman, A. Size separation of sodium dodecyl sulfate-proteins by capillary electrophoresis in dilute and ultra-dilute dextran solutions. Electrophoresis 2023, 44, 1607–1614. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.-P.; Luo, Y.-L.; Xu, F.; Chen, Y.-S.; Yang, L.-H. In-situ non-covalent dressing of multi-walled carbon nanotubes@titanium dioxides with carboxymethyl chitosan nanocomposite electrochemical sensors for detection of pesticide residues. Mater. Design 2016, 111, 445–452. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Kang, R.; Cai, S.; Ge, C. Insight into nanozymes for their environmental applications as antimicrobial and antifouling agents: Progress, challenges and prospects. Nano Today 2023, 48, 101755. [Google Scholar] [CrossRef]
- Su, L.; Qin, S.; Xie, Z.; Wang, L.; Khan, K.; Tareen, A.K.; Li, D.; Zhang, H. Multi-enzyme activity nanozymes for biosensing and disease treatment. Coordin. Chem. Rev. 2022, 473, 214784. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Lei, L.; Bai, J.; Zhang, L.; Song, D.; Zhao, J.; Li, J.; Li, Y. Efficient elimination and detection of phenolic compounds in juice using laccase mimicking nanozymes. Chin. J. Chem. Eng. 2021, 29, 167–175. [Google Scholar] [CrossRef]
- Huang, S.; Chen, X.; Lei, Y.; Zhao, W.; Yan, J.; Sun, J. Ionic liquid enhanced fabrication of small-size BSA-Cu laccase mimicking nanozymes for efficient degradation of phenolic compounds. J. Mol. Liq. 2022, 368, 120197. [Google Scholar] [CrossRef]
- Zhu, J.; Cui, Q.; Wen, W.; Zhang, X.; Wang, S. Cu/CuO-graphene foam with laccase-like activity for identification of phenolic compounds and detection of epinephrine. Chem. Res. Chin. Univ. 2022, 38, 919–927. [Google Scholar] [CrossRef]
- Facure, M.H.M.; Andre, R.S.; Cardoso, R.M.; Mercante, L.A.; Correa, D.S. Electrochemical and optical dual-mode detection of phenolic compounds using MnO2/GQD nanozyme. Electrochim. Acta 2023, 441, 141777. [Google Scholar] [CrossRef]
- Liang, S.; Wu, X.-L.; Xiong, J.; Yuan, X.; Liu, S.-L.; Zong, M.-H.; Lou, W.-Y. Multivalent Ce-MOFs as biomimetic laccase nanozyme for environmental remediation. Chem. Eng. J. 2022, 450, 138220. [Google Scholar] [CrossRef]
- Ge, H.; Zhang, H. Fungus-based MnO/porous carbon nanohybrid as efficient laccase mimic for oxygen reduction catalysis and hydroquinone detection. Nanomaterials 2022, 12, 1596. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Xia, Y.-D.; Sun, Y.-Q.; Wang, Y.; Yin, X.-B. “Three-in-one” nanozyme composite for augmented cascade catalytic tumor therapy. Adv. Mater. 2023, 36, 2308033. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.; Wu, Y.; Song, Z.; Zheng, M.; Zhu, H.; Guo, H.; Sun, H.; Liu, M. A novel competitive fluorescence colorimetric dual-mode immunosensor for detecting ochratoxin A based on the synergistically enhanced peroxidase-like activity of AuAg NCs-SPCN nanocomposite. Food Chem. 2024, 437, 137930. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, W.; Shan, J.; He, J.; Niu, Q.; Zhu, C.; Wang, W.; Chen, X.-L.; Wang, X. Copper nanodots-based hybrid hydrogels with multiple enzyme activities for acute and infected wound repair. Adv. Healthc. Mater. 2023, 13, 2302566. [Google Scholar] [CrossRef] [PubMed]
- Hamed, E.M.; Rai, V.; Li, S.F.Y. Single-atom nanozymes with peroxidase-like activity: A review. Chemosphere 2024, 346, 140557. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, W.; Wang, C.; Xing, D. Overview of nanozymes with phosphatase-like activity. Biosens. Bioelectron. 2023, 237, 115470. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dong, Y.; Wang, R. Biomimetic electrochemical sensor based on single-atom nickel laccase nanoenzyme for quercetin detection. Anal. Chem. 2024, 96, 2610–2619. [Google Scholar] [CrossRef] [PubMed]
- Zandieh, M.; Liu, J. Nanozymes: Definition, activity, and mechanisms. Adv. Mater. 2023, 36, 2211041. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Wu, Y.; Ding, H.; Feng, K.; Shen, Y.; Zhang, Y.; Gu, N. Multienzyme-like nanozymes: Regulation, rational design, and application. Adv. Mater. 2023, 36, 2211210. [Google Scholar] [CrossRef] [PubMed]
- Diao, Q.; Chen, X.; Tang, Z.; Li, S.; Tian, Q.; Bu, Z.; Liu, H.; Liu, J.; Niu, X. Nanozymes: Powerful catalytic materials for environmental pollutant detection and degradation. Environ. Sci. Nano 2024, 11, 766–796. [Google Scholar] [CrossRef]
- Liang, H.; Chen, X.; Bu, Z.; Bai, Q.; Liu, J.; Tian, Q.; Tang, Z.; Li, S.; Diao, Q.; Niu, X. When nanozymes meet deoxyribonucleic acid: Understanding their interactions and biomedical diagnosis applications. Interdiscip. Med. 2024, e20230057. [Google Scholar] [CrossRef]
- Li, X.; Ding, S.; Lyu, Z.; Tieu, P.; Wang, M.; Feng, Z.; Pan, X.; Zhou, Y.; Niu, X.; Du, D.; et al. Single-atomic iron doped carbon dots with both photoluminescence and oxidase-like activity. Small 2022, 18, 2203001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, X.; Hu, W.; Liao, Y.; He, Y.; Dong, B.; Zhao, M.; Ma, Y. SPR-enhanced Au@Fe3O4 nanozyme for the detection of hydroquinone. Chemosensors 2023, 11, 392. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Q.; Yu, J.; Sun, J.; Niu, N.; Chen, L. Lignin-based iron single-atom nanozyme for detection of organophosphorus in soil. Microchem. J. 2023, 195, 109381. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Q.; Wang, X.; Zhu, Y.; Zhou, X.; Wei, H. Gold alloy-based nanozyme sensor arrays for biothiol detection. Analyst 2020, 145, 3916–3921. [Google Scholar] [CrossRef]
- Lai, W.; Wei, Q.; Xu, M.; Zhuang, J.; Tang, D. Enzyme-controlled dissolution of MnO2 nanoflakes with enzyme cascade amplification for colorimetric immunoassay. Biosens. Bioelectron. 2017, 89, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ruan, H.; Xin, Q.; Mu, X.; Wang, H.; Zhang, X.-D. Modulation of the biocatalytic activity and selectivity of CeO2 nanozymes via atomic doping engineering. Nanoscale 2023, 15, 4408–4419. [Google Scholar] [CrossRef] [PubMed]
- Sorouri, F.; Gholibegloo, E.; Mortezazadeh, T.; Kiani, S.; Foroumadi, A.; Firoozpour, L.; Khoobi, M. Tannic acid-mediated synthesis of flower-like mesoporous MnO2 nanostructures as T1-T2 dual-modal MRI contrast agents and dual-enzyme mimetic agents. Sci. Rep. 2023, 13, 14606. [Google Scholar] [CrossRef]
- Liu, W.; Chu, L.; Zhang, C.; Ni, P.; Jiang, Y.; Wang, B.; Lu, Y.; Chen, C. Hemin-assisted synthesis of peroxidase-like Fe-N-C nanozymes for detection of ascorbic acid-generating bio-enzymes. Chem. Eng. J. 2021, 415, 128876. [Google Scholar] [CrossRef]
- Fan, S.; Zhao, M.; Ding, L.; Li, H.; Chen, S. Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens. Bioelectron. 2017, 89, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Xi, W.; Shen, M.; Yin, X. Molten-salt confined synthesis of nitrogen-doped carbon nanosheets supported Co3O4 nanoparticles as a superior oxygen electrocatalyst for rechargeable Zn-air battery. J. Power Sources 2023, 560, 232692. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Qin, F.; Hu, T.; Zhao, X.; Zhao, S.; Cao, Y.; Gao, Z.; Zhou, Z.; Liang, R.; et al. Catalyzing generation and stabilization of oxygen vacancies on CeO2-x nanorods by Pt nanoclusters as nanozymes for catalytic therapy. Adv. Healthc. Mater. 2023, 12, 2302056. [Google Scholar] [CrossRef] [PubMed]
- Castrovilli, M.C.; Tempesta, E.; Cartoni, A.; Plescia, P.; Bolognesi, P.; Chiarinelli, J.; Calandra, P.; Cicco, N.; Verrastro, M.F.; Centonze, D.; et al. Fabrication of a new, low-cost, and environment-friendly laccase-based biosensor by electrospray immobilization with unprecedented reuse and storage performances. ACS Sustainable Chem. Eng. 2022, 10, 1888–1898. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, D.; Hu, W.; Huang, N.; Rong, Y. Piezoelectric BaTiO3 nanoparticles as oxidase mimics breaking pH limitation for colorimetric detection of glutathione reductase. Chem. Eng. J. 2024, 481, 148609. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, Y.; Zhang, H.; Zhou, M.; Yu, Y.; Lin, S.; Jiang, B.; Zhao, X.; Miao, L.; Wei, C.-W.; et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 2020, 6, 2695. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yan, L.; Ren, H.; Cai, Y.; Liu, C.; Zeng, L.; Liu, A. Facile synthesis of magnetic hierarchical flower-like Co3O4 spheres: Mechanism, excellent tetra-enzyme mimics and their colorimetric biosensing applications. Biosens. Bioelectron. 2020, 165, 112342. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Li, S.; Yang, C.; Ma, Y.; Zhang, H.; Chen, X. Colorimetric detection of sulfite in foods by a TMB-O2-Co3O4 nanoparticles detection system. J. Agric. Food Chem. 2014, 62, 5827–5834. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xie, Y.; Yuan, W.; Li, D.; Liu, S.; Zheng, B.; Hou, W. A hierarchical Co-Fe LDH rope-like nanostructure: Facile preparation from hexagonal lyotropic liquid crystals and intrinsic oxidase-like catalytic activity. J Mater. Chem. B 2013, 1, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Cao, H.; Jiang, H.; Chen, Y.; Shi, W.; Zheng, H.; Huang, Y. Co3O4-reduced graphene oxide nanocomposite as an effective peroxidase mimetic and its application in visual biosensing of glucose. Anal. Chim. Acta 2013, 796, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Qi, P.; Zhang, D.; Wu, J.; Wang, Y. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens. Bioelectron. 2012, 33, 69–74. [Google Scholar] [CrossRef]
- Sun, M.; He, M.; Jiang, S.; Wang, Y.; Wang, X.; Liu, T.; Song, C.; Wang, S.; Rao, H.; Lu, Z. Multi-enzyme activity of three layers FeOx@ZnMnFeOy@Fe-Mn organogel for colorimetric detection of antioxidants and norfloxacin with smartphone. Chem. Eng. J. 2021, 425, 131823. [Google Scholar] [CrossRef]
- Yang, H.; Yang, R.; Zhang, P.; Qin, Y.; Chen, T.; Ye, F. A bimetallic (Co/2Fe) metal–organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim. Acta 2017, 184, 4629–4635. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Ding, F.; Liu, Y.; Yang, L.; Zou, P.; Zhao, Q.; Wang, X. Colorimetric detection of gallic acid based on the enhanced oxidase-like activity of floral-like magnetic Fe3O4@MnO2. Luminescence 2018, 34, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Ma, Z.; Li, P.; Liu, M.; Liu, X.; Li, H.; Zhang, Y.; Yao, S. Colorimetric detection of ascorbic acid and alkaline phosphatase activity based on the novel oxidase mimetic of Fe-Co bimetallic alloy encapsulated porous carbon nanocages. Talanta 2019, 202, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Lu, X.; Nie, G.; Chi, M.; Wang, C. Hierarchical CNFs/MnCo2O4.5 nanofibers as a highly active oxidase mimetic and its application in biosensing. Nanotechnology 2017, 28, 485708. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.; Souza, D. Ziram herbicide determination using a polished silver solid amalgam electrode. Electrochim. Acta 2017, 224, 541–550. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, X.; Wang, X.; Pan, W.; Yu, G.; Wang, J. Carbon dots with red emission for bioimaging of fungal cells and detecting Hg2+ and Ziram in aqueous solution. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 233, 118230. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Huang, M.; Huang, M.; Feng, L. Fluorometric determination of Ziram using CsPbBr3 quantum dots. Microchim. Acta 2021, 188, 1–9. [Google Scholar] [CrossRef]
- Hussain, N.; Pu, H.; Abid, H.; Sun, D. Rapid detection of Ziram residues in apple and pear fruits by SERS based on octanethiol functionalized bimetallic core-shell nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 236, 118357. [Google Scholar] [CrossRef] [PubMed]
- Ghoto, S.; Khuhawar, M.; Jahangir, T. Silver nanoparticles with sodium dodecyl sulfate as colorimetric probe for detection of dithiocarbamate pesticides in environmental samples. Anal. Sci. 2019, 35, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Huang, S.; Su, G.; Wang, X.; Lu, Z.; Wang, Y.; Liu, T.; Jiang, Y.; Song, C.; Rao, H. Synthesis of pH-switchable Pt/Co3O4 nanoflowers: Catalytic mechanism, four-enzyme activity and smartphone biosensing applications. Chem. Eng. J. 2022, 437, 134414. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, W.; Luo, B.; Liu, X.; Huang, Y.; Wang, D.; Fan, M.; Gong, Z. Copper foam in situ loaded with precious metal nanoparticles as transmission SEIRAS substrate for rapid detection of dithiocarbamate pesticides. Anal. Methods 2020, 12, 3600–3607. [Google Scholar] [CrossRef] [PubMed]
- Lafleur, J.; Senkbeil, S.; Jensen, T.; Kutter, J. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants. Lab Chip 2012, 12, 4583–4930. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Qiu, J.; Liu, M.; Yuan, Y.; Zhu, H.; Gao, Y. Rational design and bioimaging application of cholesterol conjugated fluorescence probe for Cu2+ detection. J. Photochem. 2021, 414, 113267. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, L.; Guo, R.; Xiang, T.; Wu, C.; Zheng, Z.; Yang, F. A highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ based on rhodamine B derivative. Sensor Actuat B Chem. 2011, 156, 546–552. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Wei, Y.; Chao, J.; Shuang, S.; Cai, Z.; Dong, C. A selectively rhodamine-based colorimetric probe for detecting copper(II) ion. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 122, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, X.; Liu, X.; Dong, C. Enhanced chemical sensing for Cu2+ based on composites of ZIF-8 with small molecules. RSC Adv. 2020, 10, 13998–14006. [Google Scholar] [CrossRef] [PubMed]
- Moradi, E.; Rahimi, R.; Safarifard, V. Ultrasound-assisted preparation nanostructures of Cu2(BDC)2(BPY)-MOF: Highly selective and sensitive luminescent sensing of THF small molecule and Cu2+ and Pb2+ ions. J. Solid State Chem. 2020, 288, 121397. [Google Scholar] [CrossRef]
- Zapata, F.; Caballero, A.; Espinosa, A.; Tarraga, A.; Molina, P. A multifaceted ferrocene-benzobisimidazole derivative: Fluorogenic probe for Pb2+ and Zn2+ cations and unconventional fluorescence behaviour towards Cu2+ metal cations. Dalton Trans. 2010, 39, 5429–5431. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Gao, J.; Xie, P.; Yu, M.; Wang, T.; Zhou, H.; Ma, A.; Wang, Q.; Leng, X.; Zhang, X. Dual-functional probe based on rhodamine for sequential Cu2+ and ATP detection in vivo. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 204, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Dong, E.; Fang, M.; Zhu, W.; Li, C. Construction of hybrid fluorescent sensor for Cu2+ detection using fluorescein-functionalized CdS quantum dots via FRET. J. Fluoresc. 2022, 32, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chai, T.; Peng, L. Bisubstrate multi-colorimetric assay based on the peroxidase-like activity of Cu2+-triethylamine complex for copper ion detection. Dyes Pigm. 2023, 210, 111028. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Wang, F.; Zhang, X.; Ma, Y.; Wu, Y.; He, M.; Niu, X.; Sun, M. CoMnOx Nanoflower-Based Smartphone Sensing Platform and Virtual Reality Display for Colorimetric Detection of Ziram and Cu2+. Biosensors 2024, 14, 178. https://doi.org/10.3390/bios14040178
Song C, Wang F, Zhang X, Ma Y, Wu Y, He M, Niu X, Sun M. CoMnOx Nanoflower-Based Smartphone Sensing Platform and Virtual Reality Display for Colorimetric Detection of Ziram and Cu2+. Biosensors. 2024; 14(4):178. https://doi.org/10.3390/bios14040178
Chicago/Turabian StyleSong, Chang, Fangfang Wang, Xin Zhang, Yuanxia Ma, Yangyu Wu, Mingxia He, Xiangheng Niu, and Mengmeng Sun. 2024. "CoMnOx Nanoflower-Based Smartphone Sensing Platform and Virtual Reality Display for Colorimetric Detection of Ziram and Cu2+" Biosensors 14, no. 4: 178. https://doi.org/10.3390/bios14040178
APA StyleSong, C., Wang, F., Zhang, X., Ma, Y., Wu, Y., He, M., Niu, X., & Sun, M. (2024). CoMnOx Nanoflower-Based Smartphone Sensing Platform and Virtual Reality Display for Colorimetric Detection of Ziram and Cu2+. Biosensors, 14(4), 178. https://doi.org/10.3390/bios14040178