Enhancing Glucose Biosensing with Graphene Oxide and Ferrocene-Modified Linear Poly(ethylenimine)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Apparatus
2.3. Preparation of the GDH/LPEI-Fc/GO-Modified Electrode
2.4. Measurement of Real Samples
3. Results and Discussion
3.1. Electrochemical Characterization of the Electrodes with Different Modifications
3.2. Surface Morphology of the Electrodes with Different Modifications
3.3. Electrochemical Impedance Spectroscopy (EIS) Study
3.4. Optimization of the Modified Electrodes
3.4.1. Effect of GO Loading
3.4.2. Effect of GDH
3.4.3. Effect of Redox Polymer
3.4.4. Effect of EGDE Crosslinker
3.5. Effect of Flow Rate on Peak Current and Sample Throughput
3.6. Calibration Graph and Analytical Features
3.7. Reproducibility, Repeatability, and Interference Studies
3.8. Application of the Proposed System to Real Samples Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EGDE | ethylene glycol diglycidyl ether |
FI | flow injection |
GDH | glucose dehydrogenase |
GOx | glucose oxidase |
GO | graphene oxide |
NAD+ | nicotinamide adenine dinucleotide (oxidized form) |
NADH | nicotinamide adenine dinucleotide (reduced form) |
FAD | flavin adenine dinucleotide |
PQQ | pyrroloquinoline quinone |
LPEI-Fc | ferrocene-modified linear poly(ethylenimine) |
SPE | screen-printed electrode |
PBS | phosphate-buffered saline |
References
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical Glucose Sensors in Diabetes Management: An Updated Review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Nayak, K.K.; Krishnaswamy, P.R.; Kumar, V.; Bhat, N. Review—Electrochemistry and Other Emerging Technologies for Continuous Glucose Monitoring Devices. ECS Sens. Plus 2022, 1, 031601. [Google Scholar] [CrossRef]
- Ray, T.R.; Choi, J.; Bandodkar, A.J.; Krishnan, S.; Gutruf, P.; Tian, L.; Ghaffari, R.; Rogers, J.A. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem. Rev. 2019, 119, 5461–5533. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-M.; Kim, M.; Reddy, S.S.; Cho, J.; Cho, C.; Jung, S.; Shim, Y.-B. Electron-Transfer Mediator for a NAD-Glucose Dehydrogenase-Based Glucose Sensor. Anal. Chem. 2013, 85, 11643–11649. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, A.; Arya, S. Human Sweat-Based Wearable Glucose Sensor on Cotton Fabric for Real-Time Monitoring. J. Anal. Sci. Technol. 2022, 13, 11. [Google Scholar] [CrossRef]
- Heller, A.; Feldman, B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem. Rev. 2008, 108, 2482–2505. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, P.N.; Al-Lolage, F.A. There Is No Evidence to Support Literature Claims of Direct Electron Transfer (DET) for Native Glucose Oxidase (GOx) at Carbon Nanotubes or Graphene. J. Electroanal. Chem. 2018, 819, 26–37. [Google Scholar] [CrossRef]
- Bauer, J.A.; Zámocká, M.; Majtán, J.; Bauerová-Hlinková, V. Glucose Oxidase, an Enzyme “Ferrari”: Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules 2022, 12, 472. [Google Scholar] [CrossRef] [PubMed]
- Aini, B.N.; Siddiquee, S.; Ampon, K.; Rodrigues, K.F.; Suryani, S. Development of Glucose Biosensor Based on ZnO Nanoparticles Film and Glucose Oxidase-Immobilized Eggshell Membrane. Sens. Bio-Sens. Res. 2015, 4, 46–56. [Google Scholar] [CrossRef]
- Greenfield, P.F.; Kittrell, J.R.; Laurence, R.L. Inactivation of Immobilized Glucose Oxidase by Hydrogen Peroxide. Anal. Biochem. 1975, 65, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Ferri, S.; Kojima, K.; Sode, K. Review of Glucose Oxidases and Glucose Dehydrogenases: A Bird’s Eye View of Glucose Sensing Enzymes. J. Diabetes Sci. Technol. 2011, 5, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Karyakin, A.A. Glucose Biosensors for Clinical and Personal Use. Electrochem. Commun. 2021, 125, 106973. [Google Scholar] [CrossRef]
- Otero, F.; Mandal, T.; Leech, D.; Magner, E. An Electrochemical NADH Biosensor Based on a Nanoporous Gold Electrode Modified with Diaphorase and an Osmium Polymer. Sens. Actuators Rep. 2022, 4, 100117. [Google Scholar] [CrossRef]
- Stolarczyk, K.; Rogalski, J.; Bilewicz, R. NAD(P)-Dependent Glucose Dehydrogenase: Applications for Biosensors, Bioelectrodes, and Biofuel Cells. Bioelectrochemistry 2020, 135, 107574. [Google Scholar] [CrossRef] [PubMed]
- Moiroux, J.; Elving, P.J. Mechanistic Aspects of the Electrochemical Oxidation of Dihydronicotinamide Adenine Dinucleotide (NADH). J. Am. Chem. Soc. 1980, 102, 6533–6538. [Google Scholar] [CrossRef]
- Elving, P.J.; Bresnahan, W.T.; Moiroux, J.; Samec, Z. NAD/NADH as a Model Redox System: Mechanism, Mediation, Modification by the Environment. Bioelectrochem. Bioenerg. 1982, 9, 365–378. [Google Scholar] [CrossRef]
- Gorton, L.; Domínguez, E. Electrocatalytic Oxidation of NAD(P)H at Mediator-Modified Electrodes. Rev. Mol. Biotechnol. 2002, 82, 371–392. [Google Scholar] [CrossRef] [PubMed]
- Bollella, P.; Katz, E. Enzyme-Based Biosensors: Tackling Electron Transfer Issues. Sensors 2020, 20, 3517. [Google Scholar] [CrossRef] [PubMed]
- Silber, A.; Hampp, N.; Schuhmann, W. Poly(Methylene Blue)-Modified Thick-Film Gold Electrodes for the Electrocatalytic Oxidation of NADH and Their Application in Glucose Biosensors. Biosens. Bioelectron. 1996, 11, 215–223. [Google Scholar] [CrossRef]
- Pinyou, P.; Blay, V.; Monkrathok, J.; Janphuang, P.; Chansaenpak, K.; Pansalee, J.; Lisnund, S. A Facile Method for Generating Polypyrrole Microcapsules and Their Application in Electrochemical Sensing. Microchim. Acta 2022, 189, 410. [Google Scholar] [CrossRef] [PubMed]
- Guven, N.; Apetrei, R.-M.; Camurlu, P. Next Step in 2nd Generation Glucose Biosensors: Ferrocene-Loaded Electrospun Nanofibers. Mater. Sci. Eng. C 2021, 128, 112270. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.V.; Sergeeva, V.S.; Oni, J.; Kurzawa, C.; Ryabov, A.D.; Schuhmann, W. Evaluation of Redox Mediators for Amperometric Biosensors: Ru-Complex Modified Carbon-Paste/Enzyme Electrodes. Bioelectrochemistry 2003, 60, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Al-Jawadi, E.; Pöller, S.; Haddad, R.; Schuhmann, W. NADH Oxidation Using Modified Electrodes Based on Lactate and Glucose Dehydrogenase Entrapped between an Electrocatalyst Film and Redox Catalyst-Modified Polymers. Microchim. Acta 2012, 177, 405–410. [Google Scholar] [CrossRef]
- Ruff, A.; Pinyou, P.; Nolten, M.; Conzuelo, F.; Schuhmann, W. A Self-Powered Ethanol Biosensor. ChemElectroChem 2017, 4, 890–897. [Google Scholar] [CrossRef]
- Takahashi, S.; Anzai, J. Recent Progress in Ferrocene-Modified Thin Films and Nanoparticles for Biosensors. Materials 2013, 6, 5742–5762. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.-M.J.; Nandhakumar, P.; Yang, H. Specific and Rapid Glucose Detection Using NAD-Dependent Glucose Dehydrogenase, Diaphorase, and Osmium Complex. Electroanalysis 2019, 31, 876–882. [Google Scholar] [CrossRef]
- Martin, A.F.; Nieman, T.A. Chemiluminescence Biosensors Using Tris(2,2′-Bipyridyl)Ruthenium(II) and Dehydrogenases Immobilized in Cation Exchange Polymers. Biosens. Bioelectron. 1997, 12, 479–489. [Google Scholar] [CrossRef]
- Meredith, M.T.; Hickey, D.P.; Redemann, J.P.; Schmidtke, D.W.; Glatzhofer, D.T. Effects of Ferrocene Methylation on Ferrocene-Modified Linear Poly(Ethylenimine) Bioanodes. Electrochim. Acta 2013, 92, 226–235. [Google Scholar] [CrossRef]
- Hu, M.-L.; Abbasi-Azad, M.; Habibi, B.; Rouhani, F.; Moghanni-Bavil-Olyaei, H.; Liu, K.-G.; Morsali, A. Electrochemical Applications of Ferrocene-Based Coordination Polymers. ChemPlusChem 2020, 85, 2397–2418. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.L.; Ashby, R.E.; Turner, A.P.F.; Calder, M.R.; Clarke, D.J. Development of an On-Line Glucose Sensor for Fermentation Monitoring. Biosensors 1987, 3, 45–56. [Google Scholar] [CrossRef]
- Dong, S.; Wang, B.; Liu, B. Amperometric Glucose Sensor with Ferrocene as an Electron Transfer Mediator. Biosens. Bioelectron. 1992, 7, 215–222. [Google Scholar] [CrossRef]
- Ghica, M.E.; Brett, C.M.A. Development of a Carbon Film Electrode Ferrocene-Mediated Glucose Biosensor. Anal. Lett. 2005, 38, 907–920. [Google Scholar] [CrossRef]
- Şenel, M. Construction of Reagentless Glucose Biosensor Based on Ferrocene Conjugated Polypyrrole. Synth. Met. 2011, 161, 1861–1868. [Google Scholar] [CrossRef]
- Wu, Y.; Chu, L.; Liu, W.; Jiang, L.; Chen, X.; Wang, Y.; Zhao, Y. The Screening of Metal Ion Inhibitors for Glucose Oxidase Based on the Peroxidase-like Activity of Nano-Fe3O4. RSC Adv. 2017, 7, 47309–47315. [Google Scholar] [CrossRef]
- DeLuca, J.L.; Hickey, D.P.; Bamper, D.A.; Glatzhofer, D.T.; Johnson, M.B.; Schmidtke, D.W. Layer-by-Layer Assembly of Ferrocene-Modified Linear Polyethylenimine Redox Polymer Films. ChemPhysChem 2013, 14, 2149–2158. [Google Scholar] [CrossRef]
- Kurth, D.G.; Broeker, G.K.; Kubiak, C.P.; Bein, T. Surface Attachment and Stability of Cross-Linked Poly(Ethylenimine)-Epoxy Networks on Gold. Chem. Mater. 1994, 6, 2143–2150. [Google Scholar] [CrossRef]
- Merchant, S.A.; Tran, T.O.; Meredith, M.T.; Cline, T.C.; Glatzhofer, D.T.; Schmidtke, D.W. High-Sensitivity Amperometric Biosensors Based on Ferrocene-Modified Linear Poly(Ethylenimine). Langmuir 2009, 25, 7736–7742. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.L.; Wang, Y.J.; Lan, H.L. Amperometric Glucose Sensors Based on Ferrocene-Containing B-Polyethylenimine and Immobilized Glucose Oxidase. Anal. Chim. Acta 1997, 353, 37–44. [Google Scholar] [CrossRef]
- Jafari, F.; Salimi, A.; Navaee, A. Electrochemical and Photoelectrochemical Sensing of Dihydronicotinamide Adenine Dinucleotide and Glucose Based on Noncovalently Functionalized Reduced Graphene Oxide-Cadmium Sulfide Quantum Dots/Poly-Nile Blue Nanocomposite. Electroanalysis 2014, 26, 1782–1793. [Google Scholar] [CrossRef]
- Barsan, M.M.; Ghica, M.E.; Brett, C.M.A. Electrochemical Sensors and Biosensors Based on Redox Polymer/Carbon Nanotube Modified Electrodes: A Review. Anal. Chim. Acta 2015, 881, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Manusha, P.; Yadav, S.; Satija, J.; Senthilkumar, S. Designing Electrochemical NADH Sensor Using Silver Nanoparticles/Phenothiazine Nanohybrid and Investigation on the Shape Dependent Sensing Behavior. Sens. Actuators B Chem. 2021, 347, 130649. [Google Scholar] [CrossRef]
- Tığ, G.A. Highly Sensitive Amperometric Biosensor for Determination of NADH and Ethanol Based on Au-Ag Nanoparticles/Poly(L-Cysteine)/Reduced Graphene Oxide Nanocomposite. Talanta 2017, 175, 382–389. [Google Scholar] [CrossRef]
- Blay, V.; Galian, R.E.; Muresan, L.M.; Pankratov, D.; Pinyou, P.; Zampardi, G. Research Frontiers in Energy-Related Materials and Applications for 2020–2030. Adv. Sustain. Syst. 2020, 4, 1900145. [Google Scholar] [CrossRef]
- Krishnan, S.K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H.S. A Review on Graphene-Based Nanocomposites for Electrochemical and Fluorescent Biosensors. RSC Adv. 2019, 9, 8778–8881. [Google Scholar] [CrossRef] [PubMed]
- Shahriari, S.; Sastry, M.; Panjikar, S.; Raman, R.S. Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors. Nanotechnol. Sci. Appl. 2021, 14, 197–220. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Xu, C.; Liu, L.; Shi, Y.; Li, S.; Zhang, R.; Zhang, D. Polyethylenimine-Bridged Graphene Oxide–Gold Film on Glassy Carbon Electrode and Its Electrocatalytic Activity toward Nitrite and Hydrogen Peroxide. Sens. Actuators B Chem. 2014, 198, 55–61. [Google Scholar] [CrossRef]
- Gosai, A.; Khondakar, K.R.; Ma, X.; Ali, M.A. Application of Functionalized Graphene Oxide Based Biosensors for Health Monitoring: Simple Graphene Derivatives to 3D Printed Platforms. Biosensors 2021, 11, 384. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.-C.; Chen, H.-H.; Chen, S.-Y.; Wang, W.-L.; Yang, K.-L.; Huang, C.-H.; Kao, H.-F.; Chang, J.-C.; Hsu, C.-L.L.; Wang, J.-Y.; et al. Graphene Oxide Conjugated with Polymers: A Study of Culture Condition to Determine Whether a Bacterial Growth Stimulant or an Antimicrobial Agent? J. Nanobiotechnol. 2018, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.S.S.; Prakash, J.; Tsujimura, S. Graphene Oxide-Based Nanomaterials for Electrochemical Bio/Immune Sensing and Its Advancements in Health Care Applications: A Review. Hybrid Adv. 2024, 5, 100123. [Google Scholar] [CrossRef]
- Kaewjua, K.; Nakthong, P.; Chailapakul, O.; Siangproh, W. Flow-Based System: A Highly Efficient Tool Speeds Up Data Production and Improves Analytical Performance. Anal. Sci. 2021, 37, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Hickey, D.P. Ferrocene-Modified Linear Poly(Ethylenimine) for Enzymatic Immobilization and Electron Mediation. In Enzyme Stabilization and Immobilization: Methods and Protocols; Minteer, S.D., Ed.; Springer: New York, NY, USA, 2017; pp. 181–191. ISBN 978-1-4939-6499-4. [Google Scholar]
- Jiang, Z.; Shangguan, Y.; Zheng, Q. Ferrocene-Modified Polyelectrolyte Film-Coated Electrode and Its Application in Glucose Detection. Polymers 2019, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Godman, N.P.; DeLuca, J.L.; McCollum, S.R.; Schmidtke, D.W.; Glatzhofer, D.T. Electrochemical Characterization of Layer-By-Layer Assembled Ferrocene-Modified Linear Poly(Ethylenimine)/Enzyme Bioanodes for Glucose Sensor and Biofuel Cell Applications. Langmuir 2016, 32, 3541–3551. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Osorio, D.V.; Escalona-Villalpando, R.A.; Gutiérrez, A.; Arriaga, L.G.; Ledesma-García, J. Poly-L-Lysine-Modified with Ferrocene to Obtain a Redox Polymer for Mediated Glucose Biosensor Application. Bioelectrochemistry 2022, 146, 108147. [Google Scholar] [CrossRef] [PubMed]
- Calvo, E.J.; Etchenique, R.; Danilowicz, C.; Diaz, L. Electrical Communication between Electrodes and Enzymes Mediated by Redox Hydrogels. Anal. Chem. 1996, 68, 4186–4193. [Google Scholar] [CrossRef] [PubMed]
- Díaz-González, J.M.; Escalona-Villalpando, R.A.; Arriaga, L.G.; Minteer, S.D.; Casanova-Moreno, J.R. Effects of the Cross-Linker on the Performance and Stability of Enzymatic Electrocatalytic Films of Glucose Oxidase and Dimethylferrocene-Modified Linear Poly(Ethyleneimine). Electrochim. Acta 2020, 337, 135782. [Google Scholar] [CrossRef]
- Lopes, J.P.; Cardoso, S.S.S.; Rodrigues, A.E. Bridging the Gap between Graetz’s and Lévêque’s Analyses for Mass/Heat Transfer in a Channel with Uniform Concentration or Flux at the Wall. AIChE J. 2012, 58, 1880–1892. [Google Scholar] [CrossRef]
- Liakat, S.; Bors, K.A.; Huang, T.-Y.; Michel, A.P.M.; Zanghi, E.; Gmachl, C.F. In Vitro Measurements of Physiological Glucose Concentrations in Biological Fluids Using Mid-Infrared Light. Biomed. Opt. Express 2013, 4, 1083. [Google Scholar] [CrossRef] [PubMed]
- Lei, R.; Wang, X.; Zhu, S.; Li, N. A Novel Electrochemiluminescence Glucose Biosensor Based on Alcohol-Free Mesoporous Molecular Sieve Silica Modified Electrode. Sens. Actuators B Chem. 2011, 158, 124–129. [Google Scholar] [CrossRef]
- Bremle, G.; Persson, B.; Gorton, L. An Amperometric Glucose Electrode Based on Carbon Paste, Chemically Modified with Glucose Dehydrogenase, Nicotinamide Adenine Dinucleotide, and a Phenoxazine Mediator, Coated with a Poly(Ester Sulfonic Acid) Cation Exchanger. Electroanalysis 1991, 3, 77–86. [Google Scholar] [CrossRef]
- Hedenmo, M.; Narváez, A.; Domínguez, E.; Katakis, I. Reagentless Amperometric Glucose Dehydrogenase Biosensor Based on Electrocatalytic Oxidation of NADH by Osmium Phenanthrolinedione Mediator. Analyst 1996, 121, 1891–1895. [Google Scholar] [CrossRef]
- Dilgin, D.G.; Gökçel, H.İ. Photoelectrochemical Glucose Biosensor in Flow Injection Analysis System Based on Glucose Dehydrogenase Immobilized on Poly-Hematoxylin Modified Glassy Carbon Electrode. Anal. Methods 2015, 7, 990–999. [Google Scholar] [CrossRef]
- Hiratsuka, A.; Fujisawa, K.; Muguruma, H. Amperometric Biosensor Based on Glucose Dehydrogenase and Plasma-Polymerized Thin Films. Anal. Sci. 2008, 24, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Chansaenpak, K.; Kamkaew, A.; Lisnund, S.; Prachai, P.; Ratwirunkit, P.; Jingpho, T.; Blay, V.; Pinyou, P. Development of a Sensitive Self-Powered Glucose Biosensor Based on an Enzymatic Biofuel Cell. Biosensors 2021, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Kucukkolbasi, S.; Erdogan, Z.O.; Baslak, C.; Sogut, D.; Kus, M. A Highly Sensitive Ascorbic Acid Sensor Based on Graphene Oxide/CdTe Quantum Dots-Modified Glassy Carbon Electrode. Russ. J. Electrochem. 2019, 55, 107–114. [Google Scholar] [CrossRef]
- McCall, S.J.; Clark, A.B.; Luben, R.N.; Wareham, N.J.; Khaw, K.T.; Myint, P.K. Plasma Vitamin C Levels: Risk Factors for Deficiency and Association with Self-Reported Functional Health in the European Prospective Investigation into Cancer-Norfolk. Nutrients 2019, 11, 1552. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, G.; Kulkarni, T. Detection of Human Plasma Glucose Using a Self-Powered Glucose Biosensor. Energies 2019, 12, 825. [Google Scholar] [CrossRef]
- Gergov, M.; Nenonen, T.; Ojanperä, I.; Ketola, R.A. Compensation of Matrix Effects in a Standard Addition Method for Metformin in Postmortem Blood Using Liquid Chromatography–Electrospray–Tandem Mass Spectrometry. J. Anal. Toxicol. 2015, 39, 359–364. [Google Scholar] [CrossRef] [PubMed]
Electrode | Rct (Ω) |
---|---|
Bare SPE | 1745 |
GO/SPE | 191 |
LPEI-Fc/GO/SPE | 0.1 |
GDH/LPEI-Fc/GO/SPE | 7.9 |
Component | Weight Loaded (µg) |
---|---|
GO | 5 |
GDH | 5 |
LPEI-Fc | 30 |
EGDE | 0.5 |
Electrode Modification | Detection Mode | Eapp (V) | Linear Range | Detection Limit | Ref. |
---|---|---|---|---|---|
GDH/[Ru(bpy)3]2+-doped in silica sol–gel film/ITO | ECL/batch | 1.3 | 25–2000 µM | 0.5 µM | [59] |
GDH/FePhenTPy/rGO/SPCE | Amp/batch | 0.55 | 1.67–24 mM | 0.67 mM | [4] |
GDH/Medola blue/poly (ester sulfonic acid) | Amp/FI | 0.10 | 0.15–20 mM | 0.080 mM | [60] |
GDH/Osphendione/CPE | Amp/batch | 0.15 | 0.2–20 mM | - | [61] |
GDH/Poly-HT/PAMAM/GCE | Amp/FI | 0.30 | 0.005–1.0 mM | 1.5 µM | [62] |
PPF/GDH/PPF/Au | Amp/batch | 0.60 | 2.5–26 mM | - | [63] |
GDH/Os(bpy)2Cl2/DI/ITO | Amp/batch | 0.00 | 0.1–30 mM | 0.2 mM | [26] |
GDH/poly(TB)/ERGO/GCE | BFC/batch | - | 0.1–0.7 mM | - | [64] |
GDH/LPEI-Fc/GO/SPE | Amp/FI | 0.35 | 1.0–40 mM | 0.28 mM | This work |
Sample | FI System (g dL−1) | Glucometer (g dL−1) | Label (g dL−1) |
---|---|---|---|
Sports drink | 1.69 ± 0.03 | 1.68 ± 0.47 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monkrathok, J.; Janphuang, P.; Suphachiaraphan, S.; Kampaengsri, S.; Kamkaew, A.; Chansaenpak, K.; Lisnund, S.; Blay, V.; Pinyou, P. Enhancing Glucose Biosensing with Graphene Oxide and Ferrocene-Modified Linear Poly(ethylenimine). Biosensors 2024, 14, 161. https://doi.org/10.3390/bios14040161
Monkrathok J, Janphuang P, Suphachiaraphan S, Kampaengsri S, Kamkaew A, Chansaenpak K, Lisnund S, Blay V, Pinyou P. Enhancing Glucose Biosensing with Graphene Oxide and Ferrocene-Modified Linear Poly(ethylenimine). Biosensors. 2024; 14(4):161. https://doi.org/10.3390/bios14040161
Chicago/Turabian StyleMonkrathok, Jirawan, Pattanaphong Janphuang, Somphong Suphachiaraphan, Sastiya Kampaengsri, Anyanee Kamkaew, Kantapat Chansaenpak, Sireerat Lisnund, Vincent Blay, and Piyanut Pinyou. 2024. "Enhancing Glucose Biosensing with Graphene Oxide and Ferrocene-Modified Linear Poly(ethylenimine)" Biosensors 14, no. 4: 161. https://doi.org/10.3390/bios14040161