Reagentless Glucose Biosensor Based on Combination of Platinum Nanostructures and Polypyrrole Layer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Methodology of GR Electrodes Modification
2.3. The Characterization of Glucose Biosensors Covered by Nanostructures
2.4. The Electrochemical Investigations and the Statistical Evaluation of Glucose Biosensors Performance
2.5. The Application of Developed Glucose Biosensors for Determination of Glucose in Serum
3. Results
3.1. The Characterization of Modified Electrodes
3.2. The Investigation of Glucose Biosensors Based on Differently Modified Electrodes
3.3. The Evaluation of Analytical Characteristics of Glucose Biosensors
3.4. The Storage Stability and the Application of Developed Biosensors for Glucose Determination in Blood Serum
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galant, A.L.; Kaufman, R.C.; Wilson, J.D. Glucose: Detection and Analysis. Food Chem. 2015, 188, 149–160. [Google Scholar] [CrossRef]
- Heller, A.; Feldman, B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem. Rev. 2008, 108, 2482–2505. [Google Scholar] [CrossRef]
- Rama, E.C.; Costa-García, A.; Fernández-Abedul, M.T. Pin-Based Electrochemical Glucose Sensor with Multiplexing Possibilities. Biosens. Bioelectron. 2017, 88, 34–40. [Google Scholar] [CrossRef]
- Turner, A.P.F. Biosensors: Sense and Sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [Google Scholar] [CrossRef]
- Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent Advances in Biosensor Technology for Potential Applications—An Overview. Front. Bioeng. Biotechnol. 2016, 4, 11. [Google Scholar] [CrossRef]
- Clark, L.C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Harper, A.; Anderson, M.R. Electrochemical Glucose Sensors-Developments Using Electrostatic Assembly and Carbon Nanotubes for Biosensor Construction. Sensors 2010, 10, 8248–8274. [Google Scholar] [CrossRef]
- Halpin, G.; Herdman, K.; Dempsey, E. Electrochemical Investigations into Enzymatic Polymerisation of 1,10-Phenanthroline-5,6-Dione as a Redox Mediator for Lactate Sensing. Sens. Actuators Rep. 2021, 3, 100032. [Google Scholar] [CrossRef]
- Wu, M.; Mao, X.; Li, X.; Yang, X.; Zhu, L. 1,10-Phenanthroline-5,6-Dione Adsorbed on Carbon Nanotubes: The Electrochemistry and Catalytic Oxidation of Ascorbic Acid. J. Electroanal. Chem. 2012, 682, 1–6. [Google Scholar] [CrossRef]
- Jugović, B.; Grgur, B.; Antov, M.; Knežević-Jugović, Z.; Stevanović, J.; Gvozdenović, M. Polypyrrole-Based Enzyme Electrode with Immobilized Glucose Oxidase for Electrochemical Determination of Glucose. Int. J. Electrochem. Sci. 2016, 11, 1152–1161. [Google Scholar] [CrossRef]
- Zavada, S.R.; Battsengel, T.; Scott, T.F. Radical-Mediated Enzymatic Polymerizations. Int. J. Mol. Sci. 2016, 17, 195. [Google Scholar] [CrossRef]
- Özyılmaz, G.; Özyılmaz, A.T.; Ağçam, S. Using Response Surface Methodology for Amperometric Glucose Biosensor Construction. Nat. Eng. Sci. 2018, 3, 1–15. [Google Scholar] [CrossRef]
- Haghighi, B.; Tabrizi, M.A. Direct Electron Transfer from Glucose Oxidase Immobilized on an Overoxidized Polypyrrole Film Decorated with Au Nanoparticles. Colloids Surf. B Biointerfaces 2013, 103, 566–571. [Google Scholar] [CrossRef]
- Turkmen, E.; Bas, S.Z.; Gulce, H.; Yildiz, S. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Electropolymerized Poly(o-Phenylenediamine) Film on Platinum Nanoparticles-Polyvinylferrocenium Modified Electrode. Electrochim. Acta 2014, 123, 93–102. [Google Scholar] [CrossRef]
- Yuan, B.; Sun, P.; Zhao, L.J.; Zhang, D.; Zhang, Y.; Qi, C.; Niu, Y.; Xu, H.; Xu, C. Pd Nanoparticles Supported on 1,10-Phenanthroline-5,6-Dione Modified Graphene Oxide as Superior Bifunctional Electrocatalyst for Highly Sensitive Sensing. J. Electroanal. Chem. 2020, 861, 113945. [Google Scholar] [CrossRef]
- German, N.; Kausaite-Minkstimiene, A.; Ramanavicius, A.; Semashko, T.; Mikhailova, R.; Ramanaviciene, A. The Use of Different Glucose Oxidases for the Development of an Amperometric Reagentless Glucose Biosensor Based on Gold Nanoparticles Covered by Polypyrrole. Electrochim. Acta 2015, 169, 326–333. [Google Scholar] [CrossRef]
- Pingarrón, J.M.; Yáñez-Sedeño, P.; González-Cortés, A. Gold Nanoparticle-Based Electrochemical Biosensors. Electrochim. Acta 2008, 53, 5848–5866. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, X.; Liu, X.; Hou, S.; Ma, H. Direct Electrochemistry of Glucose Oxidase Immobilized on Nanostructured Gold Thin Films and Its Application to Bioelectrochemical Glucose Sensor. Electrochim. Acta 2012, 67, 140–146. [Google Scholar] [CrossRef]
- Tian, T.; Dong, J.; Xu, J. Direct Electrodeposition of Highly Ordered Gold Nanotube Arrays for Use in Non-Enzymatic Amperometric Sensing of Glucose. Microchim. Acta 2016, 183, 1925–1932. [Google Scholar] [CrossRef]
- Kashish; Gupta, S.; Dubey, S.K.; Prakash, R. Genosensor Based on a Nanostructured, Platinum-Modified Glassy Carbon Electrode for Listeria Detection. Anal. Methods 2015, 7, 2616–2622. [Google Scholar] [CrossRef]
- Araque, E.; Arenas, C.B.; Gamella, M.; Reviejo, J.; Villalonga, R.; Pingarrón, J.M. Graphene-Polyamidoamine Dendrimer-Pt Nanoparticles Hybrid Nanomaterial for the Preparation of Mediatorless Enzyme Biosensor. J. Electroanal. Chem. 2014, 717, 96–102. [Google Scholar] [CrossRef]
- Park, S.H.; Son, J.G.; Lee, T.G.; Kim, J.; Han, S.Y.; Park, H.M.; Song, J.Y. Galvanic Synthesis of Three-Dimensional and Hollow Metallic Nanostructures. Nanoscale Res. Lett. 2014, 9, 679. [Google Scholar] [CrossRef]
- Jasuja, K.; Berry, V. Implantation and Growth of Dendritic Gold Nanostructures on Graphene and Raman Enhancement. ACS Nano 2009, 3, 2358–2366. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.; Yuan, M.; Yu, J.; Wang, Z.; Chen, X. One-Step Laser Synthesis Platinum Nanostructured 3D Porous Graphene: A Flexible Dual-Functional Electrochemical Biosensor for Glucose and PH Detection in Human Perspiration. Talanta 2023, 257, 124362. [Google Scholar] [CrossRef]
- Thondavada, N.; Chokkareddy, R.; Redhi, G.G. Green Synthesis of Platinum Nanoparticles and Their Biomedical Applications. In The Macabresque: Human Violation and Hate in Genocide, Mass Atrocity and Enemy-Making; Oxford University Press: Oxford, UK, 2018; pp. 603–627. [Google Scholar] [CrossRef]
- Stepanov, A.L.; Golubev, A.N.; Nikitin, S.I.; Osin, Y.N. A Review on the Fabrication and Properties of Platinum Nanoparticles. Rev. Adv. Mater. Sci. 2014, 38, 160–175. [Google Scholar]
- Hrapovic, S.; Liu, Y.; Male, K.B.; Luong, J.H.T. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes. Anal. Chem. 2004, 76, 1083–1088. [Google Scholar] [CrossRef]
- Hussein, H.E.M.; Amari, H.; Macpherson, J.V. Electrochemical Synthesis of Nanoporous Platinum Nanoparticles Using Laser Pulse Heating: Application to Methanol Oxidation. ACS Catal. 2017, 7, 7388–7398. [Google Scholar] [CrossRef]
- Song, H.; Kim, F.; Connor, S.; Somorjai, G.A.; Yang, P. Pt Nanocrystals: Shape Control and Langmuir-Blodgett Monolayer Formation. J. Phys. Chem. B 2005, 109, 188–193. [Google Scholar] [CrossRef]
- Rong, L.Q.; Yang, C.; Qian, Q.Y.; Xia, X.H. Study of the Nonenzymatic Glucose Sensor Based on Highly Dispersed Pt Nanoparticles Supported on Carbon Nanotubes. Talanta 2007, 72, 819–824. [Google Scholar] [CrossRef]
- Płócienniczak, P.; Rębiś, T.; Leda, A.; Milczarek, G. Lignosulfonate-Assisted Synthesis of Platinum Nanoparticles Deposited on Multi-Walled Carbon Nanotubes for Biosensing of Glucose. Colloids Surf. B Biointerfaces 2022, 210, 112222. [Google Scholar] [CrossRef]
- Soomro, R.A.; Akyuz, O.P.; Ozturk, R.; Ibupoto, Z.H. Highly Sensitive Non-Enzymatic Glucose Sensing Using Gold Nanocages as Efficient Electrode Material. Sens. Actuators B Chem. 2016, 233, 230–236. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Q.; Luo, Z.; Mao, X.; Wei, X.; Li, M.; Qiu, X.; Chen, X.; Yang, W.; Xu, H. Ultrasmall Platinum Nanoclusters Densely Immobilized on Hairy Metal Organic Framework for Nonenzymatic Glucose Detection. Microchem. J. 2023, 194, 109265. [Google Scholar] [CrossRef]
- Guo, X.J.; Yang, C.M.; Liu, P.H.; Cheng, M.H.; Chao, K.J. Formation and Growth of Platinum Nanostructures in Cubic Mesoporous Silica. Cryst. Growth Des. 2005, 5, 33–36. [Google Scholar] [CrossRef]
- Song, Y.; Yang, Y.; Medforth, C.J.; Pereira, E.; Singh, A.K.; Xu, H.; Jiang, Y.; Brinker, C.J.; Van Swol, F.; Shelnutt, J.A. Controlled Synthesis of 2-D and 3-D Dendritic Platinum Nanostructures. J. Am. Chem. Soc. 2004, 126, 635–645. [Google Scholar] [CrossRef]
- Subhramannia, M.; Pillai, V.K. Shape-Dependent Electrocatalytic Activity of Platinum Nanostructures. J. Mater. Chem. 2008, 18, 5858–5870. [Google Scholar] [CrossRef]
- Fang, J.; Ma, X.; Cai, H.; Song, X.; Ding, B. Nanoparticle-Aggregated 3D Monocrystalline Gold Dendritic Nanostructures. Nanotechnology 2006, 17, 5841–5845. [Google Scholar] [CrossRef]
- Mahshid, S.; Mepham, A.H.; Mahshid, S.S.; Burgess, I.B.; Saberi Safaei, T.; Sargent, E.H.; Kelley, S.O. Mechanistic Control of the Growth of Three-Dimensional Gold Sensors. J. Phys. Chem. C 2016, 120, 21123–21132. [Google Scholar] [CrossRef]
- Ramanaviciene, A.; German, N.; Kausaite-Minkstimiene, A.; Ramanavicius, A. Glucose Biosensor Based on Dendritic Gold Nanostructures Electrodeposited on Graphite Electrode by Different Electrochemical Methods. Chemosensors 2021, 9, 188. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.Y.; Yang, C.; Xia, X.H. Hydrogen Bubble Dynamic Template Synthesis of Porous Gold for Nonenzymatic Electrochemical Detection of Glucose. Electrochem. Commun. 2007, 9, 981–988. [Google Scholar] [CrossRef]
- Du Toit, H.; Di Lorenzo, M. Glucose Oxidase Directly Immobilized onto Highly Porous Gold Electrodes for Sensing and Fuel Cell Applications. Electrochim. Acta 2014, 138, 86–92. [Google Scholar] [CrossRef]
- Shu, H.; Cao, L.; Chang, G.; He, H.; Zhang, Y.; He, Y. Direct Electrodeposition of Gold Nanostructures onto Glassy Carbon Electrodes for Non-Enzymatic Detection of Glucose. Electrochim. Acta 2014, 132, 524–532. [Google Scholar] [CrossRef]
- German, N.; Popov, A.; Ramanaviciene, A. The Development and Evaluation of Reagentless Glucose Biosensors Using Dendritic Gold Nanostructures as a Promising Sensing Platform. Biosensors 2023, 13, 727. [Google Scholar] [CrossRef]
- Gayathri, P.; Senthil Kumar, A. Electrochemical Behavior of the 1,10-Phenanthroline Ligand on a Multiwalled Carbon Nanotube Surface and Its Relevant Electrochemistry for Selective Recognition of Copper Ion and Hydrogen Peroxide Sensing. Langmuir 2014, 30, 10513–10521. [Google Scholar] [CrossRef]
- Islam, M.S.; Branigan, A.J.; Ullah, B.; Freeman, C.J.; Collinson, M.M. The Measurement of Mixed Potentials Using Platinum Decorated Nanoporous Gold Electrodes. J. Electrochem. Soc. 2022, 169, 016503. [Google Scholar] [CrossRef]
- Daubinger, P.; Kieninger, J.; Unmüssig, T.; Urban, G.A. Electrochemical Characteristics of Nanostructured Platinum Electrodes-A Cyclic Voltammetry Study. Phys. Chem. Chem. Phys. 2014, 16, 8392–8399. [Google Scholar] [CrossRef]
- Harris, A.R.; Newbold, C.; Carter, P.; Cowan, R.; Wallace, G.G. Measuring the Effective Area and Charge Density of Platinum Electrodes for Bionic Devices. J. Neural Eng. 2018, 15, 046015. [Google Scholar] [CrossRef]
- Banks, C.E.; Compton, R.G.; Fisher, A.C.; Henley, I.E. The Transport Limited Currents at Insonated Electrodes. Phys. Chem. Chem. Phys. 2004, 6, 3147–3152. [Google Scholar] [CrossRef]
- German, N.; Popov, A.; Ramanavicius, A.; Ramanaviciene, A. Development and Practical Application of Glucose Biosensor Based on Dendritic Gold Nanostructures Modified by Conducting Polymers. Biosensors 2022, 12, 641. [Google Scholar] [CrossRef]
- Cho, J.; Ahn, S.; Yim, J.; Cheon, Y.; Jeong, H.; Lee, S.-G.; Kim, J.-H. Letter to the Editor Clinical Chemistry Influence of Vitamin C and Maltose on the Accuracy of Three Models of Glucose Meters. Ann. Lab. Med. 2016, 36, 271–274. [Google Scholar] [CrossRef]
- Sautin, Y.Y.; Johnson, R.J. Uric Acid: The Oxidant-Antioxidant Paradox. Nucleosides Nucleotides Nucleic Acids 2008, 27, 608–619. [Google Scholar] [CrossRef]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The Human Serum Metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef]
- Koch, P.; Sidloi, M.; Tonks, D.B. Estimation of Serum Ascorbic Acid in Patients and the Effect of Ascorbic Acid and Its Oxidation Products on SMA 12/60 Parameters. Clin. Biochem. 1980, 13, 73–77. [Google Scholar] [CrossRef]
- Gonzales, W.V.; Mobashsher, A.T.; Abbosh, A. The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors 2019, 19, 800. [Google Scholar] [CrossRef]
Working Electrode | LOD (mM)/Sensitivity (μA/(mM cm2)) | LR (mM) | Reference |
---|---|---|---|
LSG/HEC-PtNPs/GOx | 0.00023/69.64 | 0.005–3 | [24] |
CG/CNT/PtNPs(2–3nm)/GOx | 0.0005/– | 0.0005–5 | [27] |
ITO/PtNCs(1.76nm)/UiO-66-g-P2VP | 0.00218/199.58 0.00218/74.45 | 0.01–5 5–18 | [33] |
GC/MWCNT/LS/PtNPs(11.07nm)/PEI/GOx | 0.01567/4.77 | 0.050–1.4 | [31] |
Pt/PVF+ClO4−/PtNPs(25nm)/poPD-GOx | 0.018/17.40 | 0.06–9.64 | [14] |
GR/GNPs(3.5nm)/PD/GOx | 0.024/52.1 | 0.1–10.0 | [16] |
GC/OOPpy(300s)-GNPs/GOx | 0.5/– | 1.0–8.0 | [13] |
GR/DGNs/(PD/GOx)3/Ppy | 0.683/3.03 | 2.0–39.0 | [43] |
GC/PAMAM-Sil-rGO/PtNPs(3.3nm)/GOx | 0.8/24.6 | 0.01–8.1 | [21] |
GR/PtNS/PD/GOx | 0.198/10.1 | 1.00–16.5 | This work |
GR/PtNS/PD/GOx/Ppy | 0.561/5.31 | 2.00–39.0 | This work |
Concentration of Glucose (mM) | Recovery Ratio (%) | |
---|---|---|
Total | Detected * (n = 3) | |
2.81 | 2.69 ± 0.20 | 95.7 |
7.11 | 6.85 ± 0.51 | 96.3 |
14.8 | 14.3 ± 0.9 | 96.6 |
19.2 | 18.6 ± 1.1 | 96.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
German, N.; Popov, A.; Ramanaviciene, A. Reagentless Glucose Biosensor Based on Combination of Platinum Nanostructures and Polypyrrole Layer. Biosensors 2024, 14, 134. https://doi.org/10.3390/bios14030134
German N, Popov A, Ramanaviciene A. Reagentless Glucose Biosensor Based on Combination of Platinum Nanostructures and Polypyrrole Layer. Biosensors. 2024; 14(3):134. https://doi.org/10.3390/bios14030134
Chicago/Turabian StyleGerman, Natalija, Anton Popov, and Almira Ramanaviciene. 2024. "Reagentless Glucose Biosensor Based on Combination of Platinum Nanostructures and Polypyrrole Layer" Biosensors 14, no. 3: 134. https://doi.org/10.3390/bios14030134
APA StyleGerman, N., Popov, A., & Ramanaviciene, A. (2024). Reagentless Glucose Biosensor Based on Combination of Platinum Nanostructures and Polypyrrole Layer. Biosensors, 14(3), 134. https://doi.org/10.3390/bios14030134