Hierarchical Nanobiosensors at the End of the SARS-CoV-2 Pandemic
Abstract
:1. Introduction
2. Synthesis of Hierarchical Nanostructures and Multicomponent Assemblies for Biosensors
3. Hierarchical Nanostructures for SARS-CoV-2 Biosensing
4. Heterostructures with Different Morphologies for Biosensing
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACE2 | Angiotensin-converting enzyme 2 |
AFM | Atomic force microscopy |
BPV | Bioinspired plasmovirus |
CdS | Cadmium sulfide nanoparticles |
cDNA | Copy DNA |
COVID-19 | Coronavirus disease 19 |
CoVNP | Nucleocapsid |
CRISPR | Family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria |
CS | Chitosan |
DNA | Deoxyribonucleic acid |
DPV | Differential pulse voltammetry |
CV | Cyclic voltammetry |
ECL | Electrochemiluminescence |
EDL | Electrical double layer |
EDS | Energy dispersive spectroscopy |
EDX | X-ray spectroscopy |
EIS | Electrochemical impedance spectroscopy |
FESEM | Field-emission scanning electron microscopy |
FE-TEM | Field-emission transmission electron microscopy |
FluA | Influenza A virus |
FTIR, FT-IR or IR | Fourier transform infrared spectroscopy |
GO | Graphene oxide |
GO/AuNPs | Graphene/gold nanoparticle |
GOD | Glucose oxidase |
GSH | Glutathione |
HAADF-STEM | High-angle annular dark-field scanning transmission electron microscopy |
HCF | Hollow core fiber |
HECF | Hollow eccentric core fiber |
HRP | Detection based on biotinylated molecules |
HRTEM | High-resolution transmission electron microscopy |
ICA | Immunochromatographic assay |
IPCF | Imprinted photonic crystal film |
ITO | Indium tin oxide |
LFA or LFIAs | Lateral flow immunoassay |
LOD | Limit of detection |
LSPR | Localized surface plasmon resonance |
MB-CD | Methylene blue functionalized carbon |
MINERS | Magnetically-induced nanogap-enhanced Raman scattering |
MIP | Molecular imprinting polymer |
MNPs | Magnetic nanoparticles |
MOF or MOFs | Metal–organic frameworks |
MS | Mass spectrometry |
MUA | Mercaptoundecanoic acid |
MWCNT | Multi-walled carbon nanotubes |
N | Nucleocapsid |
NGs | Nanoghosts |
NIR | Near-infrared |
NP | Nucleocapsid protein |
NPs | Nanoparticles |
NW | Nanowires |
ORF | Open reading frame |
PANi | Hybrid polyaniline |
pCRISPR | Plasmid for reconstituting the CRISPR system |
PDA | Polydopamine |
PDMS | Polydimethylsiloxane |
PEC | Photoelectrochemical |
PEI | Polyethyleneimine |
PGE | Pencil graphite electrode |
PILs | Poly(ionic liquids) |
PL | Photoluminescence spectroscopy |
PMB/PILs | Provides π-π interactions with poly(methylene blue) |
PNA | Peptide nucleic acid |
POC | Point-of-care |
PPT | Plasmonic photothermal |
PPy | Platform made of polypyrrole |
PVDF | Polyvinylidene fluoride |
QD or QDs | Quantum dots |
rGO | Reduced graphene oxide |
RdRp | RNA-dependent RNA polymerase |
rPGO | Reduced porous graphene oxide |
RT-LAMP | Reverse transcription loop-mediated isothermal amplification |
RT-PCR | Reverse transcription polymerase chain reaction |
S | Spike |
SAM | Self-assembled monolayer |
SARS | Severe acute respiratory syndrome |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SM | Saturation magnetization |
ssDNA | Single-stranded DNA |
SEM | Scanning electron microscopy |
SERS | Surface-enhanced Raman spectroscopy |
SM | Saturation magnetization |
SPCE | Screen-printed carbon electrode |
SPR | Surface plasmon resonance |
TEM | Transmission electron microscopy |
TZ | Test zone |
UV-Vis | Ultraviolet (UV) spectroscopy |
X(XRD) | X-ray diffraction |
X(XPS) | X-ray photoelectron spectroscopy |
ZnO/rGO | Zinc oxide/reduced graphene oxide |
References
- Abdel-Karim, R.; Reda, Y.; Abdel-Fattah, A. Review—Nanostructured Materials-Based Nanosensors. J. Electrochem. Soc. 2020, 167, 037554. [Google Scholar] [CrossRef]
- Huang, T.; Cao, W.; Elsayed-Ali, H.E.; Xu, X.-H.N. High-throughput ultrasensitive characterization of chemical, structural and plasmonic properties of EBL-fabricated single silver nanoparticles. Nanoscale 2012, 4, 380–385. [Google Scholar] [CrossRef]
- Shanbhag, M.M.; Manasa, G.; Mascarenhas, R.J.; Mondal, K.; Shetti, N.P. Fundamentals of bio-electrochemical sensing. Chem. Eng. J. Adv. 2023, 16, 100516. [Google Scholar] [CrossRef]
- Yi, D.; Wei, Z.; Zheng, W.; Pan, Y.; Long, Y.; Zheng, H. Glucose detection based on the photothermal effect of OxTMB using a thermometer. Sens. Actuators B Chem. 2020, 323, 128691. [Google Scholar] [CrossRef]
- Pohanka, M. Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications. Materials 2018, 11, 448. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Kolhatkar, A.G.; Zenasni, O.; Xu, S.; Lee, T.R. Biosensing using magnetic particle detection Techniques. Sensors 2017, 17, 2300. [Google Scholar] [CrossRef] [PubMed]
- Divya, J.; Selvendran, S.; Raja, A.S.; Sivasubramanian, A. Surface plasmon based plasmonic sensors: A review on their past, present and future. Biosens. Bioelectron. X 2022, 11, 100175. [Google Scholar] [CrossRef]
- Tahseen, A.Q.; Noshin, F.; Khasan, S.K.; Adib, I.M. A novel and stable ultraviolet and infrared intensity sensor in impedance/capacitance modes fabricated from degraded CH3NH3PbI3-xClx perovskite materials. J. Mater. Res. Technol. 2020, 9, 12795–12803. [Google Scholar]
- Kong, K.; Kendall, C.; Stone, N.; Notingher, I. Raman spectroscopy for medical diagnostics—From in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 2015, 89, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-J.; Cheng, C.-C.; Yang, S.-C. Surface plasmon resonance biosensing by electro-optically modulated attenuated total reflection. Appl. Phys. B Laser Opt. 2010, 103, 701–706. [Google Scholar] [CrossRef]
- He, J.; Kunitake, T.; Nakao, A. Facile in Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers. Chem. Mater. 2003, 15, 4401–4406. [Google Scholar] [CrossRef]
- Zhang, M.; Meng, J.; Wang, D.; Tang, Q.; Chen, T.; Rong, S.; Liu, J.; Wu, Y. Biomimetic Synthesis of hierarchical 3D Ag Butterfly wing scales arrays/graphene composites as ultrasensitive SERS substrates for efficient trace chemical detection. J. Mater. Chem. C 2018, 6, 1933–1943. [Google Scholar] [CrossRef]
- Ran, Y.; Lu, H.; Zhao, S.; Jia, L.; Guo, Q.; Gao, C.; Jiang, Z.; Wang, Z. Structural and plasmonic properties of Ti Sr N ternary nitride thin films. Appl. Surf. Sci. 2019, 476, 560–568. [Google Scholar] [CrossRef]
- Wang, M.; Luo, Q.; Hussain, S.; Liu, G.; Qiao, G.; Kim, E.J. Sharply-precipitated spherical assembly of ZnO nanosheets for low temperature H2S sensing performances. Mater. Sci. Semicond. Process. 2019, 100, 283–289. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, W.; Ren, J.; Tang, Y. Cu-Co bimetal oxide hierarchical nanostructures as high-performance electrocatalyst for oxygen evolution reaction. Mater. Today Energy 2021, 21, 100703. [Google Scholar] [CrossRef]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Creaniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Marques-Hueso, J.; Morton, J.A.S.; Wang, X.; Bertran-Serra, E.; Desmulliez, M.P.Y. Photolithographic nano seeding method for selective synthesis of metal catalysed nanostructures. Nanotechnology 2018, 30, 015302. [Google Scholar] [CrossRef]
- Amendola, V.; Scaraamuzza, S.; Agnoli, S.; Granozzi, G.; Meneghetti, M.; Campo, G.; Bonanni, V.; Pineider, F.; Sangregorio, C.; Ghihna, P.; et al. Laser generation of iron-doped silver nano truffles with magnetic and plasmonic properties. Nano Res. 2015, 8, 4007–4023. [Google Scholar] [CrossRef]
- Hou, P.; Liu, H.; Li, J.; Yang, J. One-pot synthesis of noble metal nanoparticles with a core-shell construction. CrystEngComm 2015, 17, 1826–1832. [Google Scholar] [CrossRef]
- Tonelli, D.; Scavetta, E.; Gualandi, I. Electrochemical Deposition of nanomaterials for electrochemical sensing. Sens. J. 2019, 19, 1186. [Google Scholar] [CrossRef]
- Münch, F. Electroless plating of metal nanomaterials. Chemelectrochem 2021, 8, 2993–3012. [Google Scholar] [CrossRef]
- Lee, J.; Takemura, K.; Park, E.Y. Plasmonic nanomaterial-based Optical biosensing platforms for virus Detection. Sensors 2017, 17, 2332. [Google Scholar] [CrossRef]
- Lin, P.-C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 2014, 32, 711–726. [Google Scholar] [CrossRef]
- Zhao, Y.; Tong, R.-J.; Xia, F.; Peng, Y. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens. Bioelectron. 2019, 142, 111505. [Google Scholar] [CrossRef]
- Marzana, M.; Morsada, Z.; Faruk, O.; Ahmed, A.; Khan, M.A.; Jalil, M.A.; Hossain, M.; Rahman, M.M. Nanostructured Carbons: Towards Soft-Bioelectronics, Biosensing and Therapeutic Applications. Spec. Issue Recent Adv. Chem./Mater. 2022, 22, e202100319. [Google Scholar] [CrossRef]
- Yuwen, T.; Shu, D.; Zou, H.; Yang, X.; Wang, S.; Zhang, S.; Liu, Q.; Wang, X.; Wang, G.; Zhang, Y.; et al. Carbon nanotubes: A powerful bridge for conductivity and flexibility in electrochemical glucose sensors. J. Nanobiotechnol. 2023, 21, 320. [Google Scholar] [CrossRef]
- He, Y.; Hu, C.; Li, Z.; Wu, C.; Zeng, Y.; Peng, C. Multifunctional carbon nanomaterials for diagnostic applications in infectious diseases and tumors. Mater. Today Bio 2022, 14, 100231. [Google Scholar] [CrossRef]
- Bobrinetskiy, I.; Radovic, M.; Rizzotto, F.; Vizzini, P.; Jaric, S.; Pavlovic, Z.; Radonic, V.; Nikolic, M.V.; Vidic, J. Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection. Nanomaterials 2021, 11, 2700. [Google Scholar] [CrossRef] [PubMed]
- Karger-Kocsis, J.; Mahmood, H.; Pegoretti, A. All-carbon multi-scale and hierarchical fibers and related structural composites: A review. Compos. Sci. Technol. 2020, 186, 107932. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Xu, S.; Shao, M.; Zhang, Q.; Wei, F.; Ma, J.; Wei, M.; Evans, D.G.; Duan, X. Hierarchical NiMn Layered Double Hydroxide/Carbon Nanotubes Architecture with Superb Energy Density for Flexible Supercapacitors. Adv. Funct. Mater. 2014, 24, 2938–2946. [Google Scholar] [CrossRef]
- Cajigas, S.; Alzate, D.; Orozco, J. Gold nanoparticle/DNA-based nanobioconjugate for electrochemical detection of Zika virus. Microchim. Acta 2020, 187, 594. [Google Scholar] [CrossRef]
- Reghunath, S.; Pinheiro, D.; Kr, S.D. A review of hierarchical nanostructures of TiO2: Advances and applications. Appl. Surf. Sci. Adv. 2021, 3, 100063. [Google Scholar] [CrossRef]
- Ding, M.; Xie, N.; Wang, C.; Kou, X.; Zhang, H.; Guo, L.; Sun, Y.; Chuai, X.; Gao, Y.; Liu, F.; et al. Enhanced NO2 gas sensing properties by Ag-doped hollow urchin-like In2O3 hierarchical nanostructures. Sens. Actuators B Chem. 2017, 252, 418–427. [Google Scholar] [CrossRef]
- Mandal, D.; Biswas, S.; Chowdhury, A.; De, D.; Tiwary, C.S.; Gupta, A.N.; Singh, T.; Chandra, A. Hierarchical cage-frame type nanostructure of CeO2 for bio sensing applications: From glucose to protein detection. Nanotechnology 2020, 32, 2. [Google Scholar]
- Wen, A.M.; Podgornik, R.; Strangi, G.; Steinmetz, N.F. Photonics and plasmonics go viral: Self-assembly of hierarchical metamaterials. Rend. Lincei 2015, 26, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Capehart, S.L.; Pal, S.; Liu, M.; Zhang, L.; Schuck, P.J.; Liu, Y.; Yan, H.; Francis, M.B.; De Yoreo, J.J. Hierarchical Assembly of Plasmonic Nanostructures Using Virus Capsid Scaffolds on DNA Origami Templates. ACS Nano 2014, 8, 7896–7904. [Google Scholar] [CrossRef]
- Greer, J.R.; Kim, J.-Y.; Burek, M.J. The In-situ Mechanical testing of nanoscale single-crystalline nanopillars. Nanomech. Test. 2009, 61, 19–25. [Google Scholar] [CrossRef]
- Bae, J.; Hong, J.-I.; Han, W.H.; Choi, Y.J.; Snyder, R.L. Superior field emission properties of ZnO nanocones synthesized by pulsed laser deposition. Chem. Phys. Lett. 2009, 475, 260–263. [Google Scholar] [CrossRef]
- Kijima, T.; Nagatomo, Y.; Takemoto, H.; Uota, M.; Fujikawa, D.; Sekiya, Y.; Kishishita, T.; Shimoda, M.; Yoshimura, T.; Kawasaki, H.; et al. Synthesis of Nanohole-Structured Single-Crystalline platinum nanosheets using surfactant-liquid-crystals and their electrochemical characterization. Adv. Funct. Mater. 2009, 19, 545–553. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, L.; Wang, Q.; Hao, P.; Zheng, X. Wettability behavior of nanodroplets on copper surfaces with hierarchical nanostructures. Colloids Surf. A 2020, 604, 125291–125297. [Google Scholar] [CrossRef]
- Cheung, C.L.; Nikolić, R.J.; Reinhardt, C.E.; Wang, T.F. Fabrication of nanopillars by nanosphere lithography. IOP Sci. 2006, 17, 1339. [Google Scholar] [CrossRef]
- Xu, X.; Yang, Q.; Wattanatorn, N.; Zhao, C.; Chiang, N.; Jonas, S.J.; Weiss, P.S. Multiple-Patterning Nanosphere Lithograhy for Fabricating periodic Three-Dimensional Hierechical Nanostrutures. ACS Nano 2017, 11, 10384–10391. [Google Scholar] [CrossRef]
- Tseng, A.A.; Chen, K.; Chen, C.D.; Ma, K.J. Electron beam lithography in nanoscale fabrication: Recent development. IEEE Trans. Electron. Packag. Manuf. 2003, 26, 141–149. [Google Scholar] [CrossRef]
- Chen, Y.F. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015, 135, 57–72. [Google Scholar] [CrossRef]
- Asadi, R.; Abdollahi, H.; Gharabaghi, M.; Boroumand, Z. Effective removal of Zn (II) ions from aqueous solution by the magnetic MnFe2O4 spinel ferrite nanoparticles with focuses on synthesis, characterization, adsortion, and desorption. Adv. Powder Technol. 2020, 31, 1480–1489. [Google Scholar] [CrossRef]
- Niu, C.; Liu, X.; Meng, J.; Xu, L.; Yan, M.; Wang, X.; Zhang, G.; Liu, Z.; Xu, X.; Mai, L. Three dimensional V2O5/NaV6O15 Hierarchical heterostructures: Controlled synthesisand synergistic effect investigated by in situ X-ray difraction. Nanoenergia 2016, 27, 147–156. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, P.; Zhang, H.; Zhang, D.; Sun, X.; Ma, Y. Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type Mn = 2 nanosheets for supercapacitor applications. Electrochim. Acta 2013, 89, 523–529. [Google Scholar] [CrossRef]
- Zhu, F.; Liu, Y.; Yan, M.; Shi, W. Construction of hierarchical FeCo2O4 MnO2 core-shell nanostructures on carbon fibers for High-performance asymmetric supercapacitor. J. Colloid Interface Sci. 2018, 512, 419–427. [Google Scholar] [CrossRef]
- Mu, C.F.; Yao, Q.Z.; Qu, X.F.; Zhou, G.T.; Li, M.L.; Fu, S.Q. Controlled synthesis of various hierarchical nanostructures of copper sulfide by a facile microwave irradation method. Colloids Surf. A Physicochem. Eng. Asp. 2010, 371, 14–21. [Google Scholar] [CrossRef]
- Moshnikov, V.A.; Gracheva, I.E.; Kuznezov, V.V.; Maximov, A.I.; Karpova, S.S.; Ponomareva, A.A. Hierarchical nanostructured semiconductor porous materials for gas sensonrs. J. Non-Cryst. Solids 2010, 356, 2020–2025. [Google Scholar] [CrossRef]
- Naqvi, T.K.; Bajpai, A.; Bharati, M.S.S.; Kulkarni, M.M.; Siddiqui, A.M.; Soma, V.R.; Dwivedi, P.K. Ultra-sensitive reusable SERS sensor for multiple hazardous materials detection on single platform. J. Hazard. Mater. 2020, 407, 124353. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Qian, J.; Pan, H.; Cui, Y.; Xu, M.; Tu, L.; Chai, Q.; Zhou, X. Micro-lotus constructured by Fe-doped ZnO hierarchically porous nanosheets: Preparation, characterization and gas sensing property. Sens. Actuators B Chem. B 2011, 158, 9–16. [Google Scholar] [CrossRef]
- Sin, J.C.; Lam, S.M.; Lee, K.T.; Mohamed, A.R. Photocatalytic performance of novel samarium-doped spherical-like ZnO hierarchical nanostructures under visible light irradiation for 2,4-dichlorophenol degradation. J. Colloid Interface Sci. 2013, 401, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Tu, J.; Li, X.; Wang, Z.; Li, Y.; Li, Q.; Wang, F. Enhanced UV-Visible light Photocatalytic activity by constructing appropriate heterostructures between mesopore TiO2 nanospheres and Sn3O4 nanoparticles. Nanomaterials 2017, 7, 336. [Google Scholar] [CrossRef]
- Wu, S.; Xu, Y.; Li, X.; Tong, R.; Chen, L.; Han, Y.; Wu, J.; Zhang, X. Controlled synthesis of porous hierarchical ZnFe2O4 Micro-/Nanostructures with multifunctional photovatalytic performance. Inorg. Chem. 2018, 57, 15481–15488. [Google Scholar] [CrossRef]
- Panmand, R.P.; Sethi, Y.A.; Kadam, S.R.; Tamboli, M.S.; Nikam, L.K.; Ambekar, J.D.; Park, C.-J.; Kale, B.B. Self-assembled hierarchical nanostrcutures of Bi2WO6 for hydrogen production and dye degradation under solar light. CrystEngComm 2015, 17, 107–115. [Google Scholar] [CrossRef]
- Tian, X.D.; Liu, B.J.; Li, J.F.; Yang, Z.L.; Ren, B.; Tian, Z.Q. Shiners and plasmonic properties of Au Core SiO2 shell nanoparticles with optimal core size and shell thickness. J. Raman Spectrosc. 2013, 44, 994–998. [Google Scholar] [CrossRef]
- Cao, S.W.; Zhu, Y.J.; Ma, M.Y.; Li, L.; Zhang, L. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and Fe2O3: Preparation and potetialapplication in drug delivery. J. Phys. Chem. 2008, 112, 1851–1856. [Google Scholar]
- Tang, X.; Cai, W.; Yang, L.; Liu, J. Monitoring plasmon-driven surface catalyzed reactions in situ using time-dependent surface-enhanced Raman spectrsocopy on single particles of hierarchical peonylike silver microflowers. Nanoscale 2014, 6, 8612–8616. [Google Scholar] [CrossRef]
- Kang, L.; Xu, P.; Chen, D.; Zhang, B.; Du, Y.; Han, X.; Li, Q.; Wang, H.-L. Amino Acid-Assisted Synthesis of hierarchical silver microspheres for single particle surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2013, 117, 10007–10012. [Google Scholar] [CrossRef]
- Ou, Y.; Wang, L.-Y.; Zhu, L.-W.; Wan, L.-S.; Xu, Z.-K. In-Situ Immobilization of Silver Nanoparticles on Self-Assembled Honeycomb-Patterned Films Enables Surface-Enhanced Raman Scattering (SERS) Substrates. J. Phys. Chem. C 2014, 118, 11478–11484. [Google Scholar] [CrossRef]
- Butakova, M.A.; Chernov, A.V.; Kartashov, O.O.; Soldatov, A.V. Data-Centric Architecture for Self-Driving laboratories with autonomous discovery of new Nanomaterials. Nanomaterials 2021, 12, 12. [Google Scholar] [CrossRef]
- Escarpa, A.; Prodromidis, M.I. Microchimica Acta: A top analytical chemistry journal for disseminating research involving micro and nanomaterials. Microchim. Acta 2021, 188, 136. [Google Scholar] [CrossRef]
- Khomutov, G.; Gubin, S. Interfacial synthesis of noble metal nanoparticles. Mater. Sci. Eng. C 2002, 22, 141–146. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Cai, L.J.; Sui, L.; Qian, D.J.; Chen, M. Reducing properties of polymers in the Synthesis of noble metal nanoparticles. Polym. Rev. 2013, 53, 240–276. [Google Scholar] [CrossRef]
- Nunez, F.A.; Castro, A.C.; de Oliveira, V.L.; Lima, A.C.; Oliveira, J.R.; de Medeiros, G.X.; Sasahara, G.L.; Santos, K.S.; Lanfredi, A.J.C.; Alves, W.A. Electrochemical Immunosensors Based on Zinc Oxide Nanorods for Detection of Antibodies Against SARS-CoV-2 Spike Protein in Convalescent and Vaccinated Individuals. ACS Biomater. Sci. Eng. 2023, 9, 458–473. [Google Scholar] [CrossRef] [PubMed]
- Liustrovaite, V.; Drobysh, M.; Rucinskiene, A.; Baradoke, A.; Ramanaviciene, A.; Plikusiene, I.; Samukaite-Bubniene, U.; Viter, R.; Chen, C.-F.; Ramanavicius, A. Towards an Electrochemical Immunosensor for the Detection of Antibodies against SARS-CoV-2 Spike Protein. J. Electrochem. Soc. 2022, 169, 037523. [Google Scholar] [CrossRef]
- Jeon, M.J.; Kim, S.K.; Hwang, S.H.; Lee, J.U.; Sim, S.J. Lateral flow immunoassay based on surface-enhanced Raman scattering using pH-induced phage-templated hierarchical plasmonic assembly for point-of-care diagnosis of infectious disease. Biosens. Bioelectron. 2024, 250, 116061. [Google Scholar] [CrossRef]
- Yin, Z.Z.; Liu, Z.; Zhou, M.; Yang, X.; Zheng, G.; Zhang, H.; Kong, Y. A surface molecularly imprinted electrochemical biosensor for the detection of SARS-CoV-2 spike protein by using Cu7S4-Au as built-in probe. Bioelectrochemistry 2023, 152, 108462. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Guo, M.; Wu, Y.; Liu, W.; Luo, S.; Wang, X.; Kang, H.; Chen, Y.; Dai, C.; Kong, D.; et al. Electrochemical Detection of a Few Copies of Unamplified SARS-CoV-2 Nucleic Acids by a Self-Actuated Molecular System. J. Am. Chem. Soc. 2022, 144, 13526–13537. [Google Scholar] [CrossRef] [PubMed]
- El-Sherif, D.M.; Abouzid, M.; Gaballah, M.S.; Ahmed, A.A.; Adeel, M.; Sheta, S.M. New approach in SARS-CoV-2 surveillance using biosensor technology: A review. Environ. Sci. Pollut. Res. 2022, 29, 1677–1695. [Google Scholar] [CrossRef]
- Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263–1334. [Google Scholar] [CrossRef]
- Dan, N. Synthesis of hierarchical materials. Focus 2000, 18, 370–374. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.N.; Jones, M.R.; Mirkin, C.A. The nature and implications of uniformity in the hierarchical organization of nanomaterials. Proc. Natl. Acad. Sci. USA 2016, 113, 11717–11725. [Google Scholar] [CrossRef]
- Shi, S.; Li, Y.; Ngo-Dinh, B.-N.; Markmann, J.; Weissmüller, J. Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science 2021, 371, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y. Chapter 19—Hierarchical Materials. In Modern Inorganic Synthetic Chemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 545–574. [Google Scholar]
- Kamada, A.; Herneke, A.; Lopez-Sanchez, P.; Harder, C.; Ornithopoulou, E.; Wu, Q.; Wei, X.; Schwartzkopf, M.; Müller-Buschbaum, P.; Roth, S.V.; et al. Hierarchical propagation of structural features in protein nanomaterials. Nanoscale 2022, 14, 2502–2510. [Google Scholar] [CrossRef]
- Baranov, O.; Belmonte, T.; Levchenko, I.; Bazaka, K.; Košiček, M.; Cvelbar, U. Hierarchical Nanomaterials by Selective Deposition of Noble Metal Nanoparticles: Insight into Control and Growth Processes. Adv. Theory Simul. 2023, 6, 2300288. [Google Scholar] [CrossRef]
- Tseng, P.; Napier, B.; Zhao, S.; Mitropoulos, A.N.; Applegate, M.B.; Marelli, B.; Kaplan, D.L.; Omenetto, F.G. Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures. Nat. Nanotechnol. 2017, 12, 474–480. [Google Scholar] [CrossRef]
- Hamon, C.; Novikov, S.; Scarabelli, L.; Basabe-Desmonts, L.; Liz-Marzán, L.M. Hierarchical Self-Assembly of Gold Nanoparticles into Patterned Plasmonic Nanostructures. ACS Nano 2014, 8, 10694–10703. [Google Scholar] [CrossRef]
- Bonacchi, S.; Antonello, S.; Dainese, T.; Maran, F. Atomically Precise Metal Nanoclusters: Novel Building Blocks for Hierarchical Structures. Chem. A Eur. J. 2021, 27, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.E.; Ramakrishna, S. Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Compos. Sci. Technol. 2009, 69, 1804–1817. [Google Scholar] [CrossRef]
- Zelada-Guillén, G.A.; Escárcega-Bobadilla, M.V.; Wegrzyn, M.; Giménez, E.; Maier, G.; Kleij, A.W. Enhanced Conductivity for Carbon Nanotube Based Materials through Supramolecular Hierarchical Self-Assembly. Adv. Mater. Interfaces 2018, 5, 1701585. [Google Scholar] [CrossRef]
- Osada, M.; Sasaki, T. Nanosheet architectonics: A hierarchically structured assembly for tailored fusion materials. Polym. J. 2015, 47, 89–98. [Google Scholar] [CrossRef]
- Cameron, J.M.; Guillemot, G.; Galambos, T.; Amin, S.S.; Hampson, E.; Haidaraly, K.M.; Newton, G.N.; Izzet, G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: From functional building blocks to hierarchical nanomaterials. R. Soc. Chem. 2022, 51, 293–328. [Google Scholar] [CrossRef] [PubMed]
- Mitzi, D.B. Thin-Film Deposition of Organic−Inorganic Hybrid Materials. Chem. Mater. 2001, 13, 3283–3298. [Google Scholar] [CrossRef]
- Schubert, U. Cluster-based inorganic–organic hybrid materials. Chem. Soc. Rev. 2011, 40, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Fahmi, A.; Pietsch, T.; Mendoza, C.; Cheval, N. Functional hybrid materials. Mater. Today 2009, 12, 44–50. [Google Scholar] [CrossRef]
- Kickelbick, G. Hybrid Materials—Past, Present and Future. Hybrid Mater. 2014, 1, 39–51. [Google Scholar] [CrossRef]
- Sun, G.; Chen, D.; Zhu, G.; Li, Q. Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook. Thin-Walled Struct. 2022, 172, 108760. [Google Scholar] [CrossRef]
- Alemán, J.V.; Chadwick, A.V.; He, J.; Hess, M.; Horie, K.; Jones, R.G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; et al. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl. Chem. 2007, 79, 1801–1829. [Google Scholar] [CrossRef]
- Ashby, M. Hybrid Materials to Expand the Boundaries of Material-Property Space. J. Am. Ceram. Soc. 2011, 94, s3–s14. [Google Scholar] [CrossRef]
- Nicole, L.; Laberty-Robert, C.; Rozes, L.; Sanchez, C. Hybrid materials science: A promised land for the integrative design of multifunctional materials. Nanoscale 2014, 6, 6267–6292. [Google Scholar] [CrossRef] [PubMed]
- Houbertz, R.; Domann, G.; Cronauer, C.; Schmitt, A.; Martin, H.; Park, J.U.; Fröhlich, L.; Buestrich, R.; Popall, M.; Streppel, U.; et al. Inorganic–organic hybrid materials for application in optical devices. Thin Solid Films 2003, 442, 194–200. [Google Scholar] [CrossRef]
- Semenova, D.; Silina, Y.E. The Role of Nanoanalytics in the Development of Organic-Inorganic Nanohybrids—Seeing Nanomaterials as They Are. Nanomaterials 2019, 9, 1673. [Google Scholar] [CrossRef] [PubMed]
- Napi, M.L.M.; Sultan, S.M.; Ismail, R.; How, K.W.; Ahmad, M.K. Electrochemical-Based Biosensors on Different Zinc Oxide Nanostructures: A Review. Materials 2019, 12, 2985. [Google Scholar] [CrossRef] [PubMed]
- Kerry, R.G.; Ukhurebor, K.E.; Kumari, S.; Maurya, G.K.; Patra, S.; Panigrahi, B.; Majhi, S.; Rout, J.R.; Rodriguez-Torres, M.D.P.; Das, G.; et al. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Sensor 2015, 5, 14539–14568. [Google Scholar]
- Al-Ahmady, Z.S.; Ali-Boucetta, H. Nanomedicine & Nanotoxicology Future Could Be Reshaped Post-COVID-19 Pandemic. Front. Nanotechnol. 2020, 2, 610465. [Google Scholar]
- Singh, C.K.; Sodhi, K.K. The emerging significance of nanomedicine-based approaches to fighting COVID-19 variants of concern: A perspective on the nanotechnology’s role in COVID-19 diagnosis and treatment. Front. Nanotechnol. 2023, 4, 1084033. [Google Scholar] [CrossRef]
- Singh, P.; Yadava, R. Chapter 26—Nanosensors for health care. In Nanosensors for Smart Cities; Elsevier: Amsterdam, The Netherlands, 2020; pp. 433–450. [Google Scholar]
- Hulanicki, A.; Glab, S.; Ingman, F. Analytical Chemistry division commission on general aspects of analytical chemistry. Pure Appl. Chem. 1991, 63, 1247–1250. [Google Scholar] [CrossRef]
- Riu, J.; Maroto, A.; Rius, F.X. Nanosensors in environmental analysis. Talanta 2006, 69, 288–301. [Google Scholar] [CrossRef]
- Tonyushkina, K.; Nichols, J.H. Glucose Meters: A Review of Technical Challenges to Obtaining Accurate Results. J. Diabetes Sci. Technol. 2009, 3, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Jackman, J.A.; Yang, H.-H.; Chen, P.; Cho, N.-J.; Kim, D.-H. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 2015, 10, 213–239. [Google Scholar] [CrossRef]
- Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors definitions and classification. Pure Appl. Chem. 1991, 63, 1247–1250. [Google Scholar] [CrossRef]
- Hammond, J.L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J. Electrochemical biosensors and nanobiosensors. Essays Biochem. 2016, 60, 69–80. [Google Scholar]
- Qi, H.; Yue, S.; Bi, S.; Ding, C.; Song, W. Isothermal exponential amplification techniques: From basic principles to applications in electrochemical biosensors. Biosens. Bioelectron. 2018, 110, 207–217. [Google Scholar] [CrossRef]
- Welch, E.C.; Powell, J.M.; Clevinger, T.B.; Fairman, A.E.; Shukla, A. Advances in Biosensors and Diagnostic Technologies Using Nanostructures and Nanomaterials. Adv. Funct. Mater. 2021, 31, 2104126. [Google Scholar] [CrossRef]
- Jia, Y.; Yi, X.; Li, Z.; Zhang, L.; Yu, B.; Zhang, J.; Wang, X.; Jia, X. Recent advance in biosensing applications based on two-dimensional transition metal oxide nanomaterials. Talanta 2019, 219, 121308. [Google Scholar] [CrossRef]
- Fang, L.; Liu, B.; Liu, L.; Li, Y.; Huang, K.; Zhang, Q. Direct electrochemistry of glucose oxidase immobilized on Au nanoparticles-functionalized 3D hierarchically ZnO nanostructures and its application to bioelectrochemical glucose sensor. Sens. Actuators B Chem. 2016, 222, 1096–1102. [Google Scholar] [CrossRef]
- Tripathy, N.; Kim, D.-H. Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Converg. 2018, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Eivazzadeh-Keihan, R.; Noruzi, E.B.; Chidar, E.; Jafari, M.; Davoodi, F.; Kashtiaray, A. Applications of carbon-based conductive nanomaterials in biosensors. Chem. Eng. J. 2022, 442, 136183. [Google Scholar] [CrossRef]
- Xia, Y.; Halas, N.J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30, 338–348. [Google Scholar] [CrossRef]
- Korotcenkov, G. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations. Part 1: 1D and 2D Nanostructures. Nanomaterials 2020, 10, 1392. [Google Scholar] [CrossRef]
- Ni, J.; Liu, D.; Wang, W.; Wang, A.; Jia, J.; Tian, J.; Xing, Z. Hierarchical defect-rich flower-like BiOBr/Ag nanoparticles/ultrathin g-C3N4 with transfer channels plasmonic Z-scheme heterojunction photocatalyst for accelerated visible-light-driven photothermal-photocatalytic oxytetracycline degradation. Chem. Eng. J. 2021, 419, 129969. [Google Scholar] [CrossRef]
- Xiang, Z.; Xiong, J.; Deng, B.; Cui, E.; Yu, L.; Zeng, Q.; Pei, K.; Chen, R.; Lu, W. Rational design of 2D hierarchically laminated Fe3O4@ nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J. Mater. Chem. C 2020, 8, 2123–2134. [Google Scholar] [CrossRef]
- Pietá, I.S.; Rathib, A.; Piedad, P.; Nowakowski, R.; Holdynski, M.; Pisarek, M.; Kaminska, A.; Gawandeb, M.; Zborilb, R. Electrocatalytic methanol oxidation over Cu, Ni and bimetallic Cu-Ni nanoparticles supported on graphitic carbon nitride. Appl. Catal. B Environ. 2019, 244, 272–283. [Google Scholar] [CrossRef]
- Wen, F.; Zhang, W.; Wei, G.; Wang, Y.; Zhang, J.; Zhang, M.; Shi, L. Synthesis of noble metal nanoparticles embedded in the shell layer of core-shell poly(styrene-co-4-vinylpyridine) microspheres and their application in catalysis. Chem. Mater. 2008, 20, 2144–2150. [Google Scholar] [CrossRef]
- Munawar, A.; Tahir, M.A.; Shaheen, A.; Lieberzeit, P.A.; Khan, W.S.; Bajwa, S.Z. Investigating nanohybrid material based on 3D CNTs@Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol. J. Hazard. Mater. 2018, 342, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zeng, G.; Xu, P.; Lai, C.; Tang, L. How Do Enzymes ‘Meet’ Nanoparticles and Nanomaterials? Trends Biochem. Sci. 2017, 42, 914–930. [Google Scholar] [CrossRef]
- Holler, R.P.M.; Dulle, M.; Thoma, S.; Mayer, M.; Steiner, A.M.; Förster, S.; Fery, A.; Kuttner, C.; Chanana, M. Protein-Assisted Assembly of modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties. ACS Nano 2016, 6, 5740–5750. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, P.F.M.; Torresi, R.M.; Emmerling, F.; Camargo, P.H. Challenges and Opportunities in the Bottom-up Mechanochemical Synthesis of Noble Metal Nanoparticles. J. Mater. Chem. A Mater. Energy Sustain. 2020, 8, 16114–16141. [Google Scholar] [CrossRef]
- Yan, N.; Liu, H.; Zhu, Y.; Jiang, W.; Dong, Z. Entropy-driven hierarchical nanostructures from cooperative self-assembly of gold nanoparticles/block copolymers under three-dimensional confinement. Macromolecules 2015, 48, 5980–5987. [Google Scholar] [CrossRef]
- Prominski, A.; Tomczyk, E.; Pawlak, M.; Jedrych, A.; Mieczkowki, J.; Lewandowski, W.; Wójcik, M. Size-dependent thermal- and photoresponsive plasmonic properties of liquid crystalline gold nanoparticles. Materials 2020, 13, 875. [Google Scholar] [CrossRef]
- Adesuji, E.T.; Torres-Guerrero, V.O.; Arizpe-Zapata, J.A.; Videa, M.; Sánchez-Domínguez, M.; Fuentes, K.M. Bicontinuous microemulsion as confined reaction media for the synthesis of plasmonic silver self-ass. Nanotechnology 2020, 31, 425601. [Google Scholar] [CrossRef]
- Chen, H.; Shao, L.; Li, Q.; Wang, J. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724. [Google Scholar] [CrossRef]
- Henry, A.-I.; Bingham, J.M.; Ringe, E.; Marks, L.D.; Schatz, G.C.; Van Duyne, R.P. Correlated Structure and Optical property Studies of plasmonic nanoparticles. J. Phys. Chem. 2011, 115, 9291–9305. [Google Scholar] [CrossRef]
- Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G.V.; Li, X.; Marquez, M.; Xia, Y. Gold nanostrutures: Engineering their plasmonic properties for biomedical application. Chem. Soc. Rev. 2006, 35, 1084–1094. [Google Scholar] [CrossRef]
- Sayan, J.S.; Kuruvilla, J.; Appukuttan, S. Development of Hierarchical Nanostructures for Energy Storage. In Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 663–695. [Google Scholar]
- Knebel, A.; Wulfert-Holzman, P.; Friebe, S.; Pavel, J.; Srauß, I.; Mundstock, A.; Steibach, F.; Caro, J. Hierarchical nanostructures of metal-Organic Frameworks applied in gas separating ZIF-8on-ZIF-67 membranes. Chemistry 2017, 24, 5728–5733. [Google Scholar] [CrossRef]
- Cölfen, H.; Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Organ. Nanostruct. 2003, 42, 2350–2365. [Google Scholar] [CrossRef]
- Srivastava, M.; Srivastava, N.; Mishra, P.; Malhotra, B.D. Prospects of nanomaterials-enabled biosensors for COVID-19 detection. Sci. Total Environ. 2021, 754, 142363. [Google Scholar] [CrossRef]
- Kurnia Sari, A. The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP. J. Electrochem. Sci. Eng. 2022, 12, 219–235. [Google Scholar] [CrossRef]
- Gao, Y.; Han, Y.; Wang, C.; Qiang, L.; Gao, J.; Wang, Y.; Liu, H.; Han, L.; Zhang, Y. Rapid and sensitive triple-mode detection of causative SARS-CoV-2 virus specific genes through interaction between genes and nanoparticles. Anal. Chim. Acta 2021, 1154, 338330. [Google Scholar] [CrossRef]
- Drobysh, M.; Ramanaviciene, A.; Viter, R.; Chen, C.F.; Samukaite-Bubniene, U.; Ratautaite, V.; Ramanavicius, A. Biosensors for the Determination of SARS-CoV-2 Virus and Diagnosis of COVID-19 Infection. Int. J. Mol. Sci. 2022, 23, 666. [Google Scholar] [CrossRef]
- Wang, X.; Kong, D.; Guo, M.; Wang, L.; Gu, C.; Dai, C.; Wang, Y.; Jiang, Q.; Ai, Z.; Zhang, C.; et al. Rapid SARS-CoV-2 Nucleic Acid Testing and Pooled Assay by Tetrahedral DNA Nanostructure Transistor. Nanoletters 2021, 21, 9450–9457. [Google Scholar] [CrossRef]
- Dighe, K.; Moitra, P.; Alafeef, M.; Gunaseelan, N.; Pan, D. A rapid RNA extraction-free lateral flow assay for molecular point-of-care detection of SARS-CoV-2 augmented by chemical probes. Biosens. Bioelectron. 2022, 200, 113900. [Google Scholar] [CrossRef]
- White, A.M.; Lin, W.; Cheng, X. Discovery of COVID-19 Inhibitors Targeting the SARS-CoV-2 Nsp13 Helicase. J. Phys. Chem. Lett. 2020, 11, 9144–9151. [Google Scholar] [CrossRef]
- Salcedo, N.; Reddy, A.; Gomez, A.R.; Bosch, I.; Herrera, B.B. Monoclonal antibody pairs against SARS-CoV-2 for rapid antigen test development. PLoS Negl. Trop. Dis. 2022, 16, e0010311. [Google Scholar] [CrossRef]
- Younes, N.; Al-Sadeq, D.W.; Al-Jinghefee, H.; Younes, S.; AL-Jamal, O.; Daas, H.I.; Yassine, H.M.; Nasrallah, G. Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2. Viruses 2020, 12, 582. [Google Scholar] [CrossRef]
- Wang, J.; Drelich, A.J.; Hopkins, C.M.; Mecozzi, S.; Li, L.; Know, G.; Hong, S. Gold nanoparticles in virus detection: Recent advances and potential considerations for SARS-CoV-2 testing development. WIREs Nanomed. Nanobiotechnol. 2021, 14, e1754. [Google Scholar] [CrossRef]
- Özmen, E.N.; Kartal, E.; Turan, M.B.; Yaziciglu, A.; Niazi, J.H.; Qureshi, A. Graphene and carbon nanotubes interfaced electrochemical nanobiosensors for the detection of SARS-CoV-2 (COVID-19) and other respiratory viral infections: A review. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 129, 112356. [Google Scholar] [CrossRef]
- Mattioli, I.A.; Hassan, A.; Oliveira, O.N.; Crespilho, F.N. On the Challenges for the Diagnosis of SARS-CoV-2 Based on a Review of Current Methodologies. ACS Sens. 2020, 5, 3655–3677. [Google Scholar] [CrossRef]
- Yadav, S.; Sadique, M.; Ranjan, P.; Kumar, N.; Singhal, A.; Srivastava, A.K.; Khan, R. SERS Based Lateral Flow Immunoassay for Point-of-Care Detection of SARS-CoV-2 in Clinical Samples. ACS Appl. Bio Mater. 2021, 4, 2974–2995. [Google Scholar] [CrossRef]
- Avelino, K.Y.S.; Santos, G.S.D.; Frías, I.A.M.; Silva-Junior, A.G.; Pereira, M.C.; Pitta, M.G.R.; de Araújo, B.C.; Errachid, A.; Oliveira, M.D.; Andrade, C.A.S. Nanostructured sensor platform based on organic polymer conjugated to metallic nanoparticle for the impedimetric detection of SARS-CoV-2 at various stages of viral infection. J. Pharm. Biomed. Anal. 2021, 206, 114392. [Google Scholar] [CrossRef]
- Fan, Z.; Yao, B.; Ding, Y.; Xu, D.; Zhao, J.; Zhang, K. Rational engineering the DNA tetrahedrons of dual wavelength ratiometric electrochemiluminescence biosensor for high efficient detection of SARS-CoV-2 RdRp gene by using entropy-driven and bipedal DNA walker amplification strategy. Chem. Eng. J. 2022, 427, 131686. [Google Scholar] [CrossRef]
- Adeel, M.; Asif, K.; Alshabouna, F.; Canzonieri, V.; Rahman, M.M.; Ansari, S.A.; Güder, F.; Rizzolio, F.; Daniele, S. Label-free electrochemical aptasensor for the detection of SARS-CoV-2 spike protein based on carbon cloth sputtered gold nanoparticles. Biosens. Bioelectron. X 2022, 12, 100256. [Google Scholar] [CrossRef]
- Cajigas, S.; Alzate, D.; Fernández, M.; Muskus, C.; Orozco, J. Electrochemical genosensor for the specific detection of SARS-CoV-2. Talanta 2022, 245, 123482. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, F.; Xie, W.; Zhou, T.-C.; Yang, J.O.; Jin, L.; Li, H.; Zhao, C.-Y.; Zhang, L.; Wei, J.; et al. Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sens. Actuators B Chem. 2021, 327, 128899. [Google Scholar] [CrossRef]
- Park, Y.; Ryu, B.; Ki, S.J.; Chen, M.; Liang, X.; Kurabayashi, K. Bioinspired Plasmo-virus for Point-of-Care SARS-CoV-2 Detection. Nanoletters 2023, 23, 98–106. [Google Scholar] [CrossRef]
- Rabiee, N.; Akhavan, O. CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin. Chemosphere 2022, 306, 135578. [Google Scholar] [CrossRef]
- Villa-Manso, A.M.; Guerrero-Esteban, T.; Pariente, F.; Toyos-Rodríguez, C.; de la Escosura-Muñiz, A.; Revenga-Parra, M. Gutiérrez-Sánchez and E. Lorenzo. Bifunctional Au@Pt/Au nanoparticles as electrochemiluminescence signaling probes for SARS-CoV-2 detection. Talanta 2023, 260, 124614. [Google Scholar] [CrossRef]
- Babadi, A.A.; Rahmati, S.; Fakhlaei, R.; Heidari, R.; Baradaran, S.; Akbariqomi, M.; Wang, S.; Tavoosidana, G.; Doherty, W.; Ostrikov, K. SARS-CoV-2 detection by targeting four loci of viral genome using graphene oxide and gold nanoparticle DNA biosensor. Sci. Rep. 2022, 12, 19416. [Google Scholar] [CrossRef]
- Liang, P.; Guo, Q.; Zhao, T.; Wen, C.-Y.; Tian, Z.; Shang, Y.; Xing, J.; Jiang, Y.; Zeng, J. Ag Nanoparticles with Ultrathin Au Shell-Based Lateral Flow Immunoassay for Colorimetric and SERS Dual-Mode Detection of SARS-CoV-2 IgG. Anal. Chem. 2022, 94, 8466–8473. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Feng, S.; Pei, F.; Xia, M.; Hao, Q.; Liu, B.; Tong, Z.; Wang, J.J.; Lei, W.; Mu, X. Magnetic/fluorescent dual-modal lateral flow immunoassay based on multifunctional nanobeads for rapid and accurate SARS-CoV-2 nucleocapsid protein detection. Anal. Chim. Acta 2022, 1233, 340486. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, X.; Liu, L.; Zhang, X.; Yang, X.; Zheng, S.Z.; Rong, Z.; Shengqi, W. Ultrasensitive and Simultaneous Detection of Two Specific SARS-CoV-2 Antigens in Human Specimens Using Direct/Enrichment Dual-Mode Fluorescence Lateral Flow Immunoassay. ACS Appl. Mater. Interfaces 2021, 13, 40342–40353. [Google Scholar] [CrossRef]
- Haghayegh, F.; Salahandish, R.; Hassani, M.; Sanati-Nezhad, A. Highly Stable Buffer-Based Zinc Oxide/Reduced Graphene Oxide Nanosurface Chemistry for Rapid Immunosensing of SARS-CoV-2 Antigens. ACS Appl. Mater. Interfaces 2022, 14, 10844–10855. [Google Scholar] [CrossRef]
- Sarwar, S.; Lin, M.-C.; Amezaga, C.; Wei, Z.; Iyayi, E.; Polk, H.; Wang, R.; Wang, H.; Zhang, X. Ultrasensitive electrochemical biosensors based on zinc sulfide/graphene hybrid for rapid detection of SARS-CoV-2. Adv. Compos. Hybrid Mater. 2023, 6, 49. [Google Scholar] [CrossRef]
- Wang, W.; Yang, X.; Rong, Z.; Tu, Z.; Zhang, X.; Gu, B.; Wang, C.; Wang, S. Introduction of graphene oxide-supported multilayer-quantum dots nanofilm into multiplex lateral flow immunoassay: A rapid and ultrasensitive point-of-care testing technique for multiple respiratory viruses. Nano Res. 2023, 16, 3062–3073. [Google Scholar] [CrossRef]
- Dahiya, U.R.; Gupt, G.D.; Dhaka, R.S.; Kalyanasundaram, D. Functionalized Co2FeAl Nanoparticles for Detection of SARS-CoV-2 Based on Reverse Transcriptase Loop-Mediated Isothermal Amplification. ACS Appl. Nano Mater. 2021, 4, 5871–5882. [Google Scholar] [CrossRef]
- Chen, W.Y.; Lin, H.; Barui, A.K.; Gomez, A.M.U.; Wendt, M.K.; Stanciu, L.A. DNA-Functionalized Ti3C2Tx MXenes for Selective and Rapid Detection of SARS-CoV-2 Nucleocapsid Gene. ACS Appl. Nano Mater. 2022, 5, 1902–1910. [Google Scholar] [CrossRef]
- Mei, J.; Wang, D.; Zhang, Y.; Wu, D.; Cui, J.; Gan, M.; Liu, P. Portable Paper-Based Nucleic Acid Enrichment for Field Testing. Adv. Sci. 2023, 10, 2205217. [Google Scholar] [CrossRef]
- Karuppaiah, G.; Vashist, A.; Nair, M.; Veerapandian, M.; Manickam, P. Emerging trends in point-of-care biosensing strategies for molecular architectures and antibodies of SARS-CoV-2. Biosens. Bioelectron. X 2023, 13, 100324. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Z.; Liu, H.; Perea-López, N.; Ranasinghe, J.C.; Bepete, G.; Minns, A.M.; Rossi, R.M.; Lindner, S.E.; Huan, S.X.; et al. Understanding the Excitation Wavelength Dependence and Thermal Stability of the SARS-CoV-2 Receptor-Binding Domain Using Surface-Enhanced Raman Scattering and Machine Learning. ACS Photonics 2022, 9, 2963–2972. [Google Scholar] [CrossRef]
- Ni, R.; Chau, Y. Structural Mimics of Viruses Through Peptide/DNA Co-Assembly. J. Am. Chem. Soc. 2014, 136, 17902–17905. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Wang, Y.; Zhao, W.; Qi, R.; Han, Y.; Wu, R.; Wang, Y.; Xu, H. Peptide-Induced DNA Condensation into Virus-Mimicking Nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 24349–24360. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.A.; van Doremalen, N.; Greaney, A.J.; Andersen, H.; Sharma, A.; Starr, T.N.; Keeffe, J.R.; Fan, C.; Schulz, J.E.; Gnanapragasam, P.N.P.; et al. Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science 2022, 377, eabq0839. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, K.; Wang, Q. Tailoring the Self-Assembly Behaviors of Recombinant Tobacco Mosaic Virus by Rationally Introducing Covalent Bonding at the Protein-Protein Interface. Small 2016, 12, 4955–4959. [Google Scholar] [CrossRef]
- Moitra, P.; Iftesum, M.; Skrodzki, D.; Paul, P.; Sheikh, E.; Gray, J.L.; Dighe, K.; Sheffield, Z.; Gartia, M.R.; Pan, D. Nucleotide-Driven Molecular Sensing of Monkeypox Virus Through Hierarchical Self-Assembly of 2D Hafnium Disulfide Nanoplatelets and Gold Nanospheres. Adv. Funct. Mater. 2023, 33, 2212569. [Google Scholar] [CrossRef]
- Ali, A.; Hu, C.; Zhang, F.; Jahan, S.; Yuan, B.; Saleh, M.S.; Gao, S.-J.; Panat, R. N protein-based ultrasensitive SARS-CoV-2 antibody detection in seconds via 3D nanoprinted, microarchitected array electrodes. Med. Virol. 2022, 94, 2067–2078. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Y.; Lin, C.; Long, L.; Hu, J.; He, J.; Zeng, H.; Huang, Z.; Li, Z.-Y.; Tanemura, M.; et al. Human ACE2-Functionalized Gold “Virus-Trap” Nanostructures for Accurate Capture of SARS-CoV-2 and Single-Virus SERS Detection. Nano-Micro Lett. 2021, 13, 109. [Google Scholar] [CrossRef]
- El-Said, W.A.; Al-Bogami, A.S.; Alshitari, W. Synthesis of gold nanoparticles@reduced porous graphene-modified ITO electrode for spectroelectrochemical detection of SARS-CoV-2 spike protein. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 264, 120237. [Google Scholar] [CrossRef]
- Palanisamy, S.; Lee, L.-Y.; Kao, C.-F.; Chen, W.-L.; Wang, H.-C.; Shen, S.-T.; Jian, J.-W.; Yuan, S.-S.F.; Kung, Y.-A.; Wang, Y.-M. One-step-one-pot hydrothermally derived metal-organic-framework-nanohybrids for integrated point-of-care diagnostics of SARS-CoV-2 viral antigen/pseudovirus utilizing electrochemical biosensor chip. Sens. Actuators B Chem. 2023, 390, 133960. [Google Scholar] [CrossRef]
- Zhou, C.; Lin, C.; Hu, Y.; Zan, H.; Xu, X.; Sun, C.; Zou, H.; Li, Y. Sensitive fluorescence biosensor for SARS-CoV-2 nucleocapsid protein detection in cold-chain food products based on DNA circuit and g-CNQDs@Zn-MOF. LWT-Food Sci. Technol. 2022, 169, 114032. [Google Scholar] [CrossRef]
- Wang, C.; Yang, X.; Zheng, S.; Cheng, X.; Xiao, R.; Li, Q.; Wang, W.; Liu, X.; Wang, S. Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS-CoV-2 antigen and influenza A virus. Sens. Actuators B Chem. 2021, 345, 130372. [Google Scholar] [CrossRef]
- Kim, J.; Mayorga-Martinez, C.C.; Vyskočil, J.; Ruzek, D.; Pumera, M. Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout. Appl. Mater. Today 2022, 27, 101402. [Google Scholar] [CrossRef]
- Yao, B.; Zhang, J.; Fan, Z.; Ding, Y.; Zhou, B.; Yang, R.; Zhao, J.; Zhang, K. Rational Engineering of the DNA Walker Amplification Strategy by Using a Au@Ti3C2@PEI-Ru(bpy)32+ Nanocomposite Biosensor for Detection of the SARS-CoV-2 RdRp Gene. ACS Appl. Mater. Interfaces 2021, 13, 19816–19824. [Google Scholar] [CrossRef]
- Tan, Q.; Wu, S.; Liu, Z.; Wu, X.; Forsberg, E.; He, S. High sensitivity detection of SARS-CoV-2 by an optofluidic hollow eccentric core fiber. Biomed. Opt. Express 2022, 13, 4592–4605. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.J.; Le, T.N.; Hsiao WW, W.; Tung, K.L.; Ostrikov, K.K.; Chiang, W.H. Plasmonic nanostructure-enhanced Raman scattering for detection of SARS-CoV-2 nucleocapsid protein and spike protein variants. Anal. Chim. Acta 2023, 1239, 340651. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wu, W.; Chena, F.; Ren, P. Highly sensitive and selective surface plasmon resonance biosensor for the detection of SARS-CoV-2 spike S1 protein. Analyst 2022, 147, 2809–2818. [Google Scholar] [CrossRef]
- Chang, H.; Jiang, M.; Zhu, Q.; Liu, A.; Wua, Y.; Li, C.; Jib, X.; Gongb, L.; Li, S.; Chen, Z.; et al. A novel photoelectrochemical immunosensor based on TiO2@Bi2WO6 hollow microspheres and Ag2S for sensitive detection of SARS-CoV-2 nucleocapsid protein. Microchem. J. 2022, 182, 107866. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, Z.R.; Roushani, M.; Hosseini, H.; Choobin, H. Label-free electrochemical aptasensor for rapid detection of SARS-CoV-2 spike glycoprotein based on the composite of Cu(OH)2 nanorods arrays as a high-performance surface substrate. Bioelectrochemistry 2022, 146, 108106. [Google Scholar] [CrossRef]
- Rahmati, Z.; Roushani, M. SARS-CoV-2 virus label-free electrochemical nanohybrid MIP-aptasensor based on Ni3(BTC)2 MOF as a high-performance surface substrate. Microchim. Acta 2022, 189, 287. [Google Scholar] [CrossRef]
- Liu, H.; Xue, D.; Zhang, J.; Gu, C.; Wei, G.; Jiang, T. Quantitative monitoring of SARS-CoV-2 mediated by the intrinsic Raman signal of silicon nanoparticles and SiC@RP composite semiconductor SERS substrate. Sens. Actuators B Chem. 2023, 394, 134404. [Google Scholar] [CrossRef]
- Peng, Y.; Lin, C.; Li, Y.; Gao, Y.; Wang, J.; He, J.; Huang, Z.; Liu, J.; Luo, X.; Yang, Y. Identifying infectiousness of SARS-CoV-2 by ultra-sensitive SnS2 SERS biosensors with capillary effect. Matter 2022, 5, 694–709. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef]
- Gong, C.; Sun, S.; Zhang, Y.; Sun, L.; Su, Z.; Wu, A.; Wei, G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. Nanoscale 2019, 11, 4147–4182. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Puente-Santiago, A.R.; Rodríguez-Padrón, D.; Muñoz-Batista, M.J.; Ahsan, M.A.; Noveron, J.C.; Luque, R. Nature-inspired hierarchical materials for sensing and energy storage applications. Chem. Soc. Rev. 2021, 50, 4856–4871. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhang, X.; Sun, Y.; Yang, S.; Song, X.; Yang, Z. Hierarchical CuO nanoflowers: Water-required synthesis and their application in a nonenzymatic glucose biosensor. Phys. Chem. Chem. Phys. 2013, 15, 10904–10913. [Google Scholar] [CrossRef] [PubMed]
- Si, P.; Ding, S.; Yuan, J.; Lou, X.W.; Kim, D.H. Hierarchically Structured One-Dimensional TiO2 for Protein Immobilization, Direct Electrochemistry, and Mediator-Free Glucose Sensing. ACS Nano 2011, 5, 7617–7626. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, Y.; Zhao, W.; Wu, Q.; Chen, Y.; Huang, X.; Sun, Z.; Zhu, Y.; Liu, X. Hierarchical 0D-2D bio-composite film based on enzyme-loaded polymeric nanoparticles decorating graphene nanosheets as a high-performance bio-sensing platform. Biosens. Bioelectron. 2020, 156, 112134. [Google Scholar] [CrossRef]
- Ren, Z.; Guo, Y.; Liu, C.-H.; Gao, P.-X. Hierarchically nanostructured materials for sustainable environmental applications. Front. Chem. 2013, 1, 18. [Google Scholar] [CrossRef]
- Yao, T.; Dong, G.; Qian, S.; Cui, Y.; Chen, X.; Tan, T.; Li, L. Persistent luminescence nanoparticles/hierarchical porous ZIF-8 nanohybrids for autoluminescence-free detection of dopamine. Sens. Actuators B Chem. 2022, 357, 131470. [Google Scholar] [CrossRef]
- Sanko, V.; Şenocak, A.; Tümay, S.O.; Çamurcu, T.; Demirbas, E. Core-shell Hierarchical Enzymatic Biosensor Based on Hyaluronic Acid Capped Copper Ferrite Nanoparticles for Determination of Endocrine-disrupting Bisphenol A. Electroanalysis 2022, 34, 561–572. [Google Scholar] [CrossRef]
- Song, J.; Xu, L.; Xing, R.; Qin, W.; Dai, Q.; Song, H. Ag nanoparticles coated NiO nanowires hierarchical nanocomposites electrode for nonenzymatic glucose biosensing. Sens. Actuators B Chem. 2013, 182, 675–681. [Google Scholar] [CrossRef]
- Zhao, K.; Yan, X.; Gu, Y.; Kang, Z.; Bai, Z.; Cao, S.; Liu, Y.; Zhang, X.; Zhang, Y. Self-Powered Photoelectrochemical Biosensor Based on CdS/RGO/ZnO Nanowire Array Heterostructure. Small 2016, 12, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Anichini, C.; Samorì, P.; Criado, A.; Prato, M. 2D Van der Waals Heterostructures for Chemical Sensing. Adv. Funct. Mater. 2022, 32, 2207065. [Google Scholar] [CrossRef]
- Wang, B.; Cao, J.-T.; Liu, Y.-M. Recent progress of heterostructure-based photoelectrodes in photoelectrochemical biosensing: A mini review. Analyst 2020, 145, 1121–1128. [Google Scholar] [CrossRef]
- Shinde, P.V.; Saxena, M.; Singh, M.K. Chapter 11—Recent Developments in Graphene-Based Two-Dimensional Heterostructures for Sensing Applications. In Fundamentals and Sensing Applications of 2D Materials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 407–436. [Google Scholar]
- Martín-Palma, R.J.; Manso, M.; Torres-Costa, V. Optical Biosensors Based on Semiconductor Nanostructures. Sensors 2009, 9, 5149–5172. [Google Scholar] [CrossRef]
- Sakthivel, R.; Keerthi, M.; Chung, R.-J.; He, J.-H. Heterostructures of 2D materials and their applications in biosensing. Prog. Mater. Sci. 2023, 132, 101024. [Google Scholar] [CrossRef]
- Li, J.; Xiong, P.; Tang, J.; Liu, L.; Gao, S.; Zeng, Z.; Xie, H.; Tang, D.; Zhuang, J. Biocatalysis-induced formation of BiOBr/Bi2S3 semiconductor heterostructures: A highly efficient strategy for establishing sensitive photoelectrochemical sensing system for organophosphorus pesticide detection. Sens. Actuators B Chem. 2021, 331, 129451. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Issaabadi, Z.; Sajjadi, M.; Sajadi, S.M.; Atarod, M. Chapter 2—Types of Nanostructures. Interface Sci. Technol. 2019, 28, 29–80. [Google Scholar]
- Haes, A.J.; Van Duyne, R.P. A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticle. J. Am. Chem. Soc. 2002, 124, 10597–10604. [Google Scholar] [CrossRef]
- Pina-Coronado, C.; Martínez-Sobrino, Á.; Gutiérrez-Gálvez, L.; Del Caño, R.; Martínez-Periñán, E.; García-Nieto, D.; Rodríguez-Peña, M.; Luna, M.; Milán-Rois, P.; Castellanos, M.; et al. Methylene Blue functionalized carbon nanodots combined with different shape gold nanostructures for sensitive and selective SARS-CoV-2 sensing. Sens. Actuators B Chem. 2022, 369, 132217. [Google Scholar] [CrossRef]
- Achadu, O.J.; Nwaji, N.; Lee, D.; Lee, J.L.; Akinoglu, E.M.; Giersig, M.; Park, E.Y. 3D hierarchically porous magnetic molybdenum trioxide@gold nanospheres as a nanogap-enhanced Raman scattering biosensor for SARS-CoV-2. Nanoscale Adv. 2022, 4, 871–883. [Google Scholar] [CrossRef]
- Chen, Y.; Duan, W.; Xu, L.; Li, G.; Wan, Y.; Li, H. Nanobody-based label-free photoelectrochemical immunoassay for highly sensitive detection of SARS-CoV-2 spike protein. Anal. Chim. Acta 2022, 1211, 339904. [Google Scholar] [CrossRef]
- Panferov, V.G.; Byzova, N.A.; Biketov, S.F.; Zherdev, A.V.; Dzantiev, B.B. Comparative Study of In Situ Techniques to Enlarge Gold Nanoparticles for Highly Sensitive Lateral Flow Immunoassay of SARS-CoV-2. Biosensor 2021, 11, 229. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Jo, E.-J.; Jung, C.; Kim, M.-G. Absorption-Modulated SiO2@Au Core-Satellite Nanoparticles for Highly Sensitive Detection of SARS-CoV-2 Nucleocapsid Protein in Lateral Flow Immunosensors. ACS Appl. Mater. Interfaces 2022, 14, 45189–45200. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yin, Z.-Z.; Zheng, G.; Zhou, M.; Zhang, H.; Li, J.; Cai, W.; Kong, Y. Molecularly imprinted miniature electrochemical biosensor for SARS-CoV-2 spike protein based on Au nanoparticles and reduced graphene oxide modified acupuncture needle. Bioelectrochemistry 2023, 151, 108375. [Google Scholar] [CrossRef] [PubMed]
- Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M.B.; Pan, D. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano 2020, 14, 6359–7674. [Google Scholar] [CrossRef]
- Li, Y.; Lin, C.; Peng, Y.; He, J.; Yang, Y. High-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor. Sens. Actuators B Chem. 2022, 365, 131974. [Google Scholar] [CrossRef]
- Guo, A.; Pei, F.; Feng, S.S.; Hu, W.; Zhang, P.; Xia, M.; Mu, X.; Tong, Z.; Wang, F.; Liu, B. A photoelectrochemical immunosensor based on magnetic all-solid-state Z-scheme heterojunction for SARS-CoV-2 nucleocapsid protein detection. Sens. Actuators B Chem. 2023, 374, 132800. [Google Scholar] [CrossRef]
- Liu, X.; Bai, L.; Cao, X.C.; Wu, F.; Yin, T.; Lu, W. Rapid determination of SARS-CoV-2 nucleocapsid proteins based on 2D/2D MXene/P–BiOCl/Ru(bpy)32+ heterojunction composites to enhance electrochemiluminescence performanc. Anal. Chim. Acta 2022, 1234, 340522. [Google Scholar] [CrossRef]
- Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. Highly selective and sensitive sandwich immunosensor platform modified with MUA-capped GNPs for detection of spike Receptor Binding Domain protein: A precious marker of COVID 19 infection. Sens. Actuators B Chem. 2021, 345, 130355. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Jia, X.; Zhou, J.; Li, H.; Wang, X.; Chen, Y.; Deng, J.; Jin, Z.; Wang, G. Directly and ultrasensitivity detecting SARS-CoV-2 spike protein in pharyngeal swab solution by using SERS-based biosensor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 303, 123275. [Google Scholar] [CrossRef]
- Rahmati, Z.; Roushani, M.; Hosseini, H.; Choobin, H. An electrochemical immunosensor using SARS-CoV-2 spike protein-nickel hydroxide nanoparticles bio-conjugate modified SPCE for ultrasensitive detection of SARS-CoV-2 antibodies. Microchem. J. 2021, 170, 106718. [Google Scholar] [CrossRef]
- Kawasaki, D.; Yamada, H.; Sueyoshi, K.; Hisamoto, H.; Endo, T. Imprinted Photonic Crystal-Film-Based Smartphone-Compatible Label-Free Optical Sensor for SARS-CoV-2 Testing. Biosensors 2022, 12, 200. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J.; Wu, T.; Fu, Z.; Zhang, W.; Lian, Z.; Cai, S.; Yang, R. Dual ligand-induced photoelectrochemical sensing by integrating Pt/MoS2 heterostructure and Au polyhedra for sensitive detection of SARS-CoV-2. Sens. Actuators B Chem. 2023, 376, 132970. [Google Scholar] [CrossRef]
- Vadlamani, B.S.; Uppal, T.; Verma, S.C.; Misra, M. Functionalized TiO2 Nanotube-Based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2. Sensors 2020, 20, 5871. [Google Scholar] [CrossRef]
- Rabiee, N.; Fatahi, Y.; Ahmadi, S.; Abbariki, N.; Ojaghi, A.; Rabiee, M.; Radmanesh, F.; Dinarvand, R.; Bagherzadeh, M.; Mostafavi, E.; et al. Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. Sci. Total Environ. 2022, 825, 153902. [Google Scholar] [CrossRef]
- Daoudi, K.; Ramachandran, K.; Alawadhi, H.; Boukherroub, R.; Dogheche, E.; El Khakani, M.A.; Gaidi, M. Ultra-sensitive and fast optical detection of the spike protein of the SARS-CoV-2 using AgNPs/SiNWs nanohybrid based sensors. Surf. Interfaces 2021, 27, 101454. [Google Scholar] [CrossRef]
- Kim, S.; Ryu, H.; Tai, S.; Pedowitz, M.; Rzasa, J.R.; Pennachio, D.J.; Hajzus, J.R.; Milton, D.K.; Myers-Ward, R.; Daniels, K.M. Real-time ultra-sensitive detection of SARS-CoV-2 by quasi-freestanding epitaxial graphene-based biosenso. Biosens. Bioelectron. 2022, 197, 113803. [Google Scholar] [CrossRef]
- Martin-Martinez, F.J.; Jin, K.; Barreiro, D.L.; Buehler, M.J. The Rise of Hierarchical Nanostructured Materials from Renewable Sources: Learning from Nature. ACS Nano 2018, 12, 7425–7433. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.M.; Karumuri, A.; Barney, I.T. Hierarchical nanostructures by nanotube grafting on porous cellular surfaces. J. Phys. D Appl. Phys. 2009, 42, 195503. [Google Scholar] [CrossRef]
- Passoni, L.; Criante, L.; Fumagalli, F.; Scotognella, F.; Lanzani, G.; Di Fonzo, F. Self-Assembled Hierarchical Nanostructures for High-Efficiency Porous Photonic Crystals. ACS Nano 2014, 8, 12167–12174. [Google Scholar] [CrossRef]
- Tao, Y.; Zohar, H.; Olsen, B.D.; Segalman, R.A. Hierarchical Nanostructure Control in Rod−Coil Block Copolymers with Magnetic Fields. Nano Lett. 2007, 7, 2742–2746. [Google Scholar] [CrossRef]
- Cheng, B.; Niu, Q.; Cui, Y.; Jiang, W.; Zhao, Y.; Kong, L. Effects of different hierarchical hybrid micro/nanostructure surfaces on implant osseointegration. Clin. Implant Dent. Relat. Res. 2017, 19, 539–548. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, W.; Xu, H.; Sun, S.; Shang, M. Bi2O3 Hierarchical Nanostructures: Controllable Synthesis, Growth Mechanism, and their Application in Photocatalysis. Chem. A Eur. J. 2009, 15, 1776–1782. [Google Scholar] [CrossRef]
- Faul, C.F.J. Ionic Self-Assembly for Functional Hierarchical Nanostructured Materials. Acc. Chem. Res. 2014, 47, 3428–3438. [Google Scholar] [CrossRef]
- Ferreira, L.M.C.; Reis, I.F.; Martins, P.R.; Marcolino-Junior, L.H.; Bergamini, M.F.; Camargo, J.R.J.R.; Janegitz, B.C.; Vicentini, F.C. Using low-cost disposable immunosensor based on flexible PET screen-printed electrode modified with carbon black and gold nanoparticles for sensitive detection of SARS-CoV-2. Talanta Open 2023, 7, 100201. [Google Scholar] [CrossRef]
- Gosselin, B.; Retout, M.; Dutour, R.; Troian-Gautier, L.; Bevernaegie, R.; Herens, S.; Lefèvre, P.; Denis, O.; Bruylants, G.; Jabin, I. Ultrastable Silver Nanoparticles for Rapid Serology Detection of Anti-SARS-CoV-2 Immunoglobulins G. Anal. Chem. 2022, 94, 7383–7390. [Google Scholar] [CrossRef]
- Chen, S.-H.; Chuang, Y.-C.; Lu, Y.-C.; Lin, H.-C.; Yang, Y.-L.; Lin, C.-S. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus. Nanotechnology 2009, 20, 215501. [Google Scholar] [CrossRef]
- Draz, M.S.; Shafiee, H. Applications of gold nanoparticles in virus detection. Theranostics 2018, 8, 1985–2017. [Google Scholar] [CrossRef]
- Lee, J.; Morita, M.; Takemura, K.; Park, E.Y. A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosens. Bioelectron. 2018, 102, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.R.; Kim, J.; Suzuki, T.; Lee, J.; Park, E.Y. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens. Bioelectron. 2016, 85, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, S.; John, A.T.; Nagabooshanam, S.; Mathur, A.; Narang, J. Graphene quantum dot-gold hybrid nanoparticles integrated aptasensor for ultra-sensitive detection of vitamin D3 towards point-of-care application. Appl. Surf. Sci. 2020, 521, 146427. [Google Scholar] [CrossRef]
- Singh, K.R.; Rathee, S.; Nagpure, G.; Singh, J.; Singh, R.P. Smart and emerging nanomaterials-based biosensor for SARS-CoV-2 detection. Mater. Lett. 2022, 307, 131092. [Google Scholar] [CrossRef]
- Mendes, R.G.; Wróbel, P.S.; Bachmatiuk, A.; Sun, J.; Gemming, T.; Liu, Z.; Rümmeli, M.H. Carbon Nanostructures as a Multi-Functional Platform for Sensing Applications. Chemosensors 2018, 6, 60. [Google Scholar] [CrossRef]
- Nakielski, P.; Pawłowska, S.; Rinoldi, C.; Ziai, Y.; De Sio, L.; Urbanek, O.; Zembrzycki, K.; Pruchniewski, M.; Lanzi, M.; Salatelli, E.; et al. Multifunctional Platform Based on Electrospun Nanofibers and Plasmonic Hydrogel: A Smart Nanostructured Pillow for Near-Infrared Light-Driven Biomedical Applications. ACS Aplied Mater. Interfaces 2020, 12, 54328–54342. [Google Scholar] [CrossRef]
- Kiremitler, N.B.; Kiremitler, N.B.; Kemerli, M.Z.; Kayaci, N.; Karagoz, S.; Sami, P.; Sarp, G.; Sanduvac, S.; Onses, M.S.; Yilmaz, E. Nanostructures for the Prevention, Diagnosis, and Treatment of SARS-CoV-2: A Review. ACS Appl. Nano Mater. 2022, 5, 6029–6054. [Google Scholar] [CrossRef]
- Mukherjee, S.; Manna, S.; Som, N.; Dhara, S. Organic–Inorganic Hybrid Nanocomposites for Nanotheranostics: Special Focus on Preventing Emerging Variants of SARS-CoV-2. Biomed. Mater. Devices 2023, 10, 633–647. [Google Scholar] [CrossRef]
- Ionescu, R.E. Updates on the Biofunctionalization of Gold Nanoparticles for the Rapid and Sensitive Multiplatform Diagnosis of SARS-CoV-2 Virus and Its Proteins: From Computational Models to Validation in Human Samples. Int. J. Mol. Sci. 2023, 24, 9249. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, J.; Petrochenko, P.; Zheng, J.; Hewlett, I. Sensitive detection of influenza viruses with Europium nanoparticles on an epoxy silica sol-gel functionalized polycarbonate-polydimethylsiloxane hybrid microchip. Biosens. Bioelectron. 2016, 86, 150–155. [Google Scholar] [CrossRef]
- Zhou, J.; Krishnan, N.; Jiang, Y.; Fang, R.H.; Zhang, L. Nanotechnology for virus treatment. Nano Today 2020, 36, 101031. [Google Scholar] [CrossRef] [PubMed]
Nanostructure(s) | Synthesis Method | Analyte(s) | Detection Limit | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|---|
PPy and AuNPs | Electrochemical synthesis | DNA molecules from SARS-CoV-2 | 258.01 copies μL−1 | Rough electrodes were found to have high electroactive areas that improve sensitivity and increase the number of active sites capable of recognizing target molecules | The sensing layer has an overall negative charge. This makes it difficult for electrons to pass between the transducer and the electroactive species | [145] |
DNA tetrahedron with Au-gC3 N4 and PEI-Ru@Ti3 C2 @AuNPs | Electrochemical synthesis | SARS-CoV-2 RdRp gene | 7.8 aM | The signal intensity increases, therefore the emission peak increases, therefore it effectively detects the RdRp gene of SARS-CoV-2 | Two feet without the participation of bandage DNA cannot walk on the track because they are farther apart | [146] |
Thiol-functionalized DNA aptamer flexible, carbon cloth coated with AuNPs | Electrochemical synthesis | SARS-CoV-2 spike protein | 0.11 ng/mL and 37.8 ng/mL 0.167 ng/mL and 46.2 ng/mL | The proposed platform showed good mechanical stability, revealing negligible changes in voltammetric responses to bending at various angles. The sensor showed good selectivity and repeatability | Although the response of the AuNPs is adequate, upon binding with the Fe(CN)6 redox probe and by applying the transport characteristics to the mass of the electrode surface, the substrate can bend, which causes flexibility and could affect the voltammetric responses | [147] |
Sandwich biotinylated signaling DNA–RNA hybrid nanobioconjugate with magnetic Au beads | Electrochemical synthesis | RNA from SARS-CoV-2 cell culture | 807 fM | The genosensor demonstrated good sensitivity and a low detection limit. When the streptavidin poly-HRP 20 enzyme complex was used, it specifically detected SARS-CoV-2 and discriminated against homologous viruses in enriched samples and SARS samples | The electrochemical signal for the positive sample extracted from the cell culture had a lower electrochemical response because the genetic material (1.89 pM RNA/total DNA) was lower than the concentration of synthetic DNA tested (10, 100, and 1000 pM). Furthermore, the synthetic DNA samples correspond to a short ssDNA sequence, compared to the real samples that correspond to the entire SARS-CoV-2 genome | [148] |
Au@Fe3O4 hybrid nanocomposites | Electrochemical synthesis | RNA of SARS-CoV-2 | 200 copies/mL | The resistance of the modified nanocomposite decreased drastically due to the high conductivity of AuNPs and RGO, which causes high sensitivity due to the good conductivity of these materials | The study was based on samples from the lower respiratory tract. However, upper respiratory tract samples are widely recommended for diagnosis because lower respiratory tract samples, especially for bronchoalveolar fluid and tracheal aspirates, have a high risk of aerosol generation | [149] |
BPV with AuNPs | Ionic adsorption | SARS-CoV-2 via a self-assembled plasmonic nanoprobe array on spike proteins | 1.4 × 101 pfu/mL | The BPV enables strong NIR extinction peaks due to plasmonic nanogaps | In some studies, it has been shown that in adenoviruses, plasma has an effect dependent on the type of virus and, surprisingly, infectivity could be amplified for some types of adenoviruses. It is important to verify this information for security reasons if you plan to use it on other types of viruses | [150] |
CaZnO-based nanoghosts | Radiochemical reduction | ssDNA, pCRISPR, and recombinant SARS-CoV-2 spike | 10 nM | One of the key advantages of these NGs is their contactless interaction with cells/tissues/organs, which is a considerable advantage compared to other types of inorganic nanomaterials, including metal–organic frameworks (MOFs) | When performing this experiment, the fluorescence emission spectra did not show a significant decrease (presumably due to the lack of O-P bonds on the pCRISPR surface). The surface morphology of the completely quenched NG porphyrin showed little tubular structure for ssDNA | [151] |
Bifunctional Au@Pt/Au nanoparticles | The Turkevich’s method (colloidal method) and galvanic replacement reaction | N protein of the SARS-CoV-2 | 1.27 pg/mL | Resonance energy transfer efficiency between Au@Pt/AuNPs | The protein shows some areas with agglomerates of particles, which can cause breakage in these agglomerates | [152] |
DNA biosensor with AuNPs and graphene oxide | Modified Hummer method and Wang’s method | Targets four different regions of the SARS-CoV-2 viral genome | 0.16 ng/μL | The GO/AuNP hybrid provides two significant absorption peaks, so the linear response and continuous increase in absorbance confirm the reliable and constant response of the biosensor towards the viral RNA | The first layer has the possibility of self-agglomeration of the AuNPs in the absence of RNA | [153] |
Ag nanoparticles with ultrathin Au layers embedded with 4-mercaptobenzoic acid | Manufactured by a ligand-assisted epitaxial growth method | SARS-CoV-2 spike protein | 0.22 pg/mL | Chemical advantages due to the surface of Au but also superior optical characteristics from Ag. It has great potential in practical clinical applications and can be used to detect and track the early immune response to SARS-CoV-2 | Serum samples were used which increases the time for the analytical process | [154] |
PEI with Fe3O4 core with dual layers of quantum dots | Electrostatic adsorption and chemical substance | SARS-CoV-2 nucleocapsid protein (NP) | 0.235 ng mL−1 and 0.012 ng mL−1 | One strategy of layer-by-layer modified assembly is that it involves electrostatic and chemical adsorption. Good magnetization which can provide magnetic signals for SARS-CoV-2 NP detection | The SM values of the materials gradually decreased because the proportion of the Fe3O4 core gradually decreased | [155] |
MagTQD nanocomposites with Fe3O4 | Colloidal method | SARS-CoV-2 spike (S) and nucleocapsid protein (NP) antigens | 1 and 0.5 pg/mL | It provides superior fluorescence signals, enrichment capacity, and detectability for antigen tests | It is limited by the weak magnetic response, resulting in time consumption and sample waste in the magnetic separation process | [156] |
Zinc oxide/reduced graphene oxide (bZnO/rGO) nanocomposite | Photochemical reduction | SARS-CoV-2 nucleocapsid (N) protein antigens in spiked | 21 fg/mL over a linear range of 1–10,000 pg/mL | A nanocomposite coated on screen-printed carbon electrodes is used for the electrochemical immunobiodetection of capsid of SARS-CoV-2. The immunobiosensor provides a low detection limit over a wide linear range and exhibits adequate sensitivity for the detection of N protein in spiked samples | In some studies, graphene can have toxic effects on human and animal cells, especially when they are in the form of nanoparticles | [157] |
Zinc sulfide/graphene hybrid | Microwave irradiation | Nucleic acid SARS-CoV-2 | 3.5 × 10−15 M | It provides a much higher current due to the presence of a large amount of conductive graphene, indicating a slow kinetic electron transfer process. Detects low concentrations of all different SARS-CoV-2 samples, using S, ORF 1a, and ORF 1b gene sequences as targets | No particular trend was found for these samples; the results can be inconsistent | [158] |
CdSe@ZnS−COOH quantum dots (QDs) | Reduction and colloidal method | SARS-CoV-2, influenza A virus, and human adenovirus | 8 pg/mL, 488 copies/mL, and 471 copies/mL | They provide larger reaction interfaces and specific active surface areas, higher QD loadings, and better luminescence and dispersibility than traditional spherical fluorescent microspheres for LFA applications | Only a test sample was used. It is necessary to conduct more tests since it is a good candidate, and experiments should be carried and its effectiveness should be corroborated external factors | [159] |
Functionalized Co2 FeAl Nanoparticles | Coprecipitation method | RT-LAMP assay for the accurate detection of SARS-CoV-2 virus | 10 copies of SARS-CoV-2 virus | Completely eliminated the incidence of false positives since it has good magnetic separation (because it uses a novel nanocapture system) | More tests need to be conducted to confirm that the false positives were eliminated | [160] |
DNA-Functionalized Ti3C2 Tx MXenes | Noncovalent adsorption (soft epitaxy) | SARS-CoV-2 Nucleocapsid Gene | 105 copies/mL | Sensitive and selective detection of the SARS-CoV-2 N gene using nucleic acid hybridization and chemoresistive transduction | It has some drawbacks such as a long processing time, tedious sample preparation, and the need for laboratory facilities, which limits its applicability | [161] |
Nanostructure(s) | Method of Measurement | Analyte(s) | Detection Limit | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|---|
AuNPs assembled by means of reduced graphene oxide (rGO) nanosheets | SEM | N protein SARS-CoV-2 | 13 fm | It can measure the change in dielectric properties of an electrode surface as a result of antibody–protein interactions. Detection is achieved in seconds and the sensor displays an excellent LOD and optimal detection range. Additionally, the sensor can be regenerated at least 10 times, reducing the cost per test | They can only be detected after 8 days of infection and if their concentration remains constant for a long period of time | [170] |
ACE2-functionalized gold nanoparticles (AuNPs) | SERS, SEM | Angiotensin-converting enzyme 2 (ACE2) | 80 copies mL−1 | The SERS sensor functionalized with ACE2 is capable of accurately capturing unknown coronaviruses as long as its S protein can combine with the ACE2 protein | There are too many other proteins and biomacromolecules in the water contaminated by the SARS-CoV-2 virus, so these optically engineered SERS substrates suffer from overwhelming Raman signals from other impurities, leading to a poor signal-to-interference ratio | [171] |
The ITO substrate modified with AuNPs@rPGO | NIR laser, SERS, and electrochemical techniques | SARS-CoV-2 spike protein | 39.5 fmol L−1 | Both Raman signals and electrochemical conductivity are improved based on both AuNPs and the graphene material. As a result, an excellent ability to monitor a wide range of COVID-19 protein concentrations was observed | Other sensors show better sensitivity. Concentrations of 50 nmol L−1 were used to see the results of the SERS intensities and only those quantities were used. It would be good if it could handle different saturations to observe the effectiveness and thus be able to ensure that it is a reliable test at the point of care | [172] |
Synthesized CoFeBDCNH2-CoFe2O4 MOF-nanohybrid-modified gold chip | X-ray, PXRD, FETEM, FESEM, XPS, IR | SARS-CoV-2 spike glycoprotein | 6.68 fg/mL and 6.20 fg/mL | The synergistic effects of CoFeBDCNH2-MOF and CoFe2O4 nanomaterials as MOF nanohybrids led to improvement in electrochemical detection of various targets, which can be used not only to detect the SARS-CoV-2 viral antigen but also any other disease-based biomarker | It is proposed to perform this test in real and time-dependent samples, including human saliva or nasal swabs since it is necessary to check if it is effective in these biological samples | [173] |
Products based on DNA circuit and g-CNQDs@Zn-MOF | Fluorescence spectroscopy | SARS-CoV-2 nucleocapsid protein | 1.0 pg/mL | It significantly amplified the signals while maintaining a lower background, so the fluorescence emission spectra were higher. Amplifying the signals allowed for a sensitive and highly specific detection of SARS-CoV-2 | Long hours of analytical time and high price make it difficult to implement around the world | [174] |
Multilayer silica-QD nanobead with Au | Fluorescence spectroscopy | FluA and SARS-CoV-2 | 5 pg/mL and 50 pfu/mL | QDs generate high luminescence and surface carboxyls are suitable for surface functionalization and generating hydrophobicity and colloidal stability. This can results in a high performance in biological samples in terms of sensitivity, stability, specificity, and reproducibility | SiO2 alone does not show any obvious fluorescent signal. These defects make it difficult to implement it in the diagnosis of respiratory viruses | [175] |
Fe3 O4/Au/AgNPs | HAADF-STEM | SARS-CoV-2 RNA | 6.1 ng/mL | An autonomous movement generates stronger mass transfer and therefore, a higher probability of capture and hybridization of the target viral RNA | Strains with a single mismatched base showed an obvious decrease in signal compared to perfectly matched sequences due to reduced hybridization efficiency. Non-complementary sequences are not detected in the assay because they do not react with the ssDNA probes and are left unhybridized | [176] |
Nanohybrid Au@Ti3C2 | SEM, TEM, FT-IR, EIS, CV | RNA-dependent RNA polymerase gene SARS-CoV-2 | 0.21 fM | Possible luminescence mechanism of the ECL biosensor makes a sensor with a wide detection range and a low detection limit | In this system, the ECL biosensor could not perform the “shutdown signal” state | [177] |
Ag–Au NP alloy film | Optical spectrometer | SARS-CoV-2 spike glycoprotein (SARS-CoV-2 S2) | 26.8 pM | Better light intensity in the two light paths of the interference structure resulted in a higher contrast ratio of the transmission spectrum and a more uniform distribution of interference peaks | The HCF simply acts as a beam splitter in the hollow core area and the effective detection area is the core surface of the HECF, resulting in a slight change in the power and contrast ratio of the sensor’s transmission spectrum | [178] |
Antibody-functionalized silver microplasma-engineered nanoassemblies (AgMENs) | SERS, TEM SEM, XRD, XPS | SARS-CoV-2 nucleocapsid protein and spike protein variants | 1 fg mL−1 and 0.1 pg mL−1 | They greatly improve the molecular adsorption for biomolecular detection. They have a high adsorption capacity, and the coupling of the electromagnetic field into the porous structures improved the SERS response, allowing for the detection of target antigens even at low concentrations | The levels of immunoglobulins, such as IgM and IgG, can only be detected approximately 10 to 14 days after infection | [179] |
Ti3C2 nanosheets and PDA–Ag nanoparticles | UV–Vis | SARS-CoV-2 S1 spike protein | 12 fg mL−1 | The analysis showed good reproducibility and high specificity, a wide linear range, and low LOD. It can be reprogrammed to detect any protein antigen if the corresponding specific nanobody is available | The study used artificial saliva and human serum but did not use complex body fluids | [180] |
TiO2 @Bi2 WO6 y Ag2 S hollow microspheres | HRTEM, SEM, EDS, XRD, EIS | SARS-CoV-2 nucleocapsid protein | 0.38 pg/mL | The system, TiO2 and Bi2 WO6, formed heterojunctions, which improved the absorption of visible light by using Ag2S. The hollow microspheres were sensitized, which effectively improved the photocurrent response, resulting in high sensitivity and good selectivity, reproducibility, and stability | TiO2 has a wide energy gap, so it could only absorb ultraviolet light from solar energy, which results in an inefficient use of light | [181] |
Cu (OH)2 nanorod arrays | X-ray, XRD, and FESEM | SARS-CoV-2 spike glycoprotein | 0.03 fg mL−1 | Cu (OH) 2NRs, by providing a highly active surface, can not only act as a biocompatible scaffold to anchor aptamer chains and charge them further, but also as an electrochemical probe, which resulted in a wide dynamic range, high sensitivity, excellent sensitivity, low cost, good stability, good accuracy, and a low detection limit | The concentration and time required for aptamer immobilization were optimized as important factors in the preparation of aptasensors. Therefore, the concentration of aptamers on the electrode surface could directly affect the capture efficiency of the target | [182] |
Nanohybrid MIP–aptasensor based on Ni3(BTC)2 MOF | FESEM, EDS | SARS-CoV-2 S protein-specific aminoaptamer | 3.3 ± 0.04 PFU/mL | The high biocompatible surface increases the charge of the aptamer by covalent bonds, as well as the presence of cavities, which would increase the sensitivity of the electrochemical measurements | Aptamer performance may be affected by acidic solvents and some nuclease enzymes at high temperatures | [183] |
Silicon nanoparticles and SiC@RP composite semiconductor SERS substrate | SERS and SEM | SARS-CoV-2 in saliva | 7.6 × 10−11 g/mL | SiC maintains promising biocompatibility, stability, and electrical properties. A significant SERS effect was found, which improved charge transfer | SiC can only offer a weak SERS enhancement factor at a low level, which is a bottleneck found in most semiconductor substrates | [184] |
SnS2 with “nano-gun” hierarchical nanostructure | XPS, SEM, TEM, and HRTEM | SARS-CoV-2 S protein and RNA | 10 PFU/mL, 18 copies/mL, and 10−13 M | A unique hierarchical nanogun structure of SnS microspheres was produced for capillary effect-triggered molecular enrichment. Furthermore, it benefited from the contribution of lattice tension and sulfur vacancies for chemical enhancement. SnS2 microspheres exhibited an ultra-low LOD | When the concentration of MeB was less than 10−10 M, the Raman intensity no longer decreased linearly with decreasing concentration of MeB molecules. The viral culture method suffers from the disadvantages of a long culture time and complicated experimental operation | [185] |
Nanoparticle(s) | Type of Nanostructure | Analyte(s) | Distribution of Building Blocks | LOD | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|---|---|
MB-CD nanodots and AuN | Spherical and triangular gold nanoparticles | SARS-CoV-2 | AFM images showed average length and height | 2.0 aM | The developed DNA sensor is capable of detecting a SARS-CoV-2 sequence with a detection limit of 2.0 aM and in the presence of other possible interfering sequences corresponding to other viruses | Fluorescence was only observed for modified electrodes | [205] |
Magnetic molybdenum trioxide @gold | Nanospheres | Spike protein of SARS-CoV-2 | SEM images showed well-defined hierarchical nanostructures with average diameters | ~4.5 fg mL−1, ~9.7 fg mL−1 | The proposed MINERS-based biosensor not only provides exceptionally and stably enhanced Raman signals in a magnetic field, but also exhibits excellent repeatability and point-to-point consistency in the produced signals | The result is the formation of “hot spots”. It is at odds with the experimental results and the understanding of the real mechanisms of the MINERS approach since it requires advanced knowledge of quantum mechanical and plasmonic calculations | [206] |
Au nanoparticles and TiO2 | Nanoparticle spheres | SARS-CoV-2 spike protein | In the SEM images, stacked spheres and nanoparticles with different sizes were observed | 5 fg mL−1 | The SPR effect of Au nanoparticles can greatly enhance the nanomaterial with stronger visible light harvesting, faster transmission efficiency of photoinduced charges, and better photoelectric signals than TiO2. This immunosensor achieved satisfactory sensitivity, stability, reproducibility, and applicability | When AA concentrations are higher than 0.1 mol L−1, the photocurrent response of SP/BSA/Nb/Au@TiO2/ITO decreases slightly because AA can retard the electron transfer between them and the surface of the electrode | [207] |
Gold nanoparticles | Spherical Au NPs | Spike protein of SARS-CoV-2 | The Au NPs were monodisperse and not aggregated | 1 pg/mL | The assay developed with gold enhancement was able to detect inactivated SARS-CoV-2 virions at 500-fold lower dilutions compared to the conventional assay. This approach uses stable reagents, facilitates rapid (8 min) and easy point-of-need testing, and could potentially be used in practice outside the laboratory | Non-specific TZ staining was observed for this enhancement method | [208] |
SiO2 @Au CSNPs | Gold nanoparticle-assembled SiO2 core-satellite | SARS-CoV-2 nucleocapsid protein | Showed numerous SiO2 @Au CSNPs undesirably trapped in small-sized pore membranes | 0.24 pg mL−1 | AuNP satellites in the synthesis of SiO2 @Au CSNP significantly improved its light absorption and detection sensitivity and lowered the detection limit by 2 orders of magnitude relative to conventional gold colloids. They also enabled highly sensitive detection of the SARS-CoV-2 nucleocapsid protein | In different studies, the main drawback of silica is that it has a high melting point, which means that it requires more energy to melt than many other semiconductors. This needs to be taken into account for mass production | [209] |
AuNP, rGO, PMB/PILs, and PILs | Nanosheets | SARS-CoV-2 spike protein | The SEM images showed that AN exhibits a very polished surface, while on the surface of the AuNP/AN, well-distributed AuNPs with an average size were observed | 0.1~1000 ng mL−1 | The developed miniature biosensor exhibits high specificity and stability | The maximum currents decrease noticeably at some points due to the poor conductivity of the SARS-CoV-2 protein | [210] |
ASO/AuNPs | A box shape is shown | N gene of the SARS-CoV-2 viral genome | TEM images showed that ASO-capped AuNPs were individually dispersed without visible aggregation | 0.18 ng/μL | The current methodology guarantees its viability even with mutated N gene forms of the virus during its spread, since the assay has been designed to simultaneously target two separate regions of the gene | An increase in absorbance was observed at a wavelength of 660 nm with a redshift of ~40 nm with a color difference from violet to dark blue, but a marked change in visual appearance was desired if it is to be used for the detection of SARS-CoV-2 | [211] |
Fe3 O4–Au nanoparticles | Nanoneedle array and microsphere microstructure | SARS-CoV-2 from nasal and throat swabs | The HRTEM image showed that Fe3O4 was made up of many ultrafine nanoparticles | 100 copies/mL | The optimal magnetic SERS biosensor with high sensitivity was obtained | The Raman intensity was proportional to the amount of analyte, so the 5- to 6-fold gradual growth of the Fe3O4-Au nanocomposite was the best magnetic SERS substrate for SERS detection. However, compared with 5-fold grown Au NPs, 6-fold growth would cause severe agglomeration and be more time-consuming | [212] |
Fe3 O4 | Spherical shape | SARS-CoV-2 N protein | TEM images revealed that Fe3 O4 presented a uniform spherical shape with an average diameter of approximately 180 nm | 2.9 pg mL−1 | It had an excellent magnetic response that can simplify the separation and washing process, while allowing immunological recognition to be carried out in the liquid phase. The PEC immunosensor exhibited a wide linear range and low detection limit, providing an applicable method for the diagnosis of SARS-CoV-2 | At one point in the experiment, the union of these nanoparticles resulted in the accumulation of electrons in the CB of TiO2 and holes in the VB of CdS. Therefore, a good method must be sought so that the generated electrons are easily transferred | [213] |
Ti3 AlC 2MXene/P–BiOCl/Ru(bpy)3 2+ | 2D sheet-shaped nanostructure with stacked distribution | SARS-CoVNP | SEM showed that Ti3 AlC 2 has a highly stacked morphology and showed that MXene after etching and exfoliation has a larger interlayer spacing compared to Ti3 AlC2 | 0.49 fg/mL (/N = 3) | Performs reliable recognition of CoVNP, obtaining a wide linear range and low LOD. Furthermore, combining 2D MXene architectures with 2D semiconductor materials has the potential for building high-performance ECL sensing platforms. Presents a new perspective for ECL applications in the field of nanomedicine in the prevention of various diseases | When MXene/P–BiOCl/Ru(bpy)32+/GCE is sequentially anchored with Ab (curve d), BSA (curve e), and CoVNP (curve f), the ECL signal gradually decreases | [214] |
ITO/GNPs@MUA | Sandwich-type and spherical nanoparticles | Spike protein RBD | The SEM images proved that GNPs present as uniformly dispersed spheres and numerous groups of GNPs@MUA | 0.577 fg mL−1 | The sandwich immunosensor showed high sensitivity, a low detection limit, good repeatability, and perfect reproducibility | Although the sensor shows good results in its sensitivity, it is necessary to apply it not only to artificial saliva, but also to human saliva samples, to corroborate the data. | [215] |
Monolayer Ag nanoparticles (MAgNPs) covered with graphene | Nanosheet nanostructure | SARS-CoV-2 spike protein | They have a uniformly rough surface | 0.1 fg mL−1 and 10 fg mL−1 | In comparison with polymerase chain reaction (PCR), surface-enhanced Raman scattering (SERS) is a promising method for detecting SARS-CoV-2 due to its fast, easy operation, and high-sensitivity properties | A disadvantage in the study would be its preparation method since in some studies, CVD tends to form tensions, higher diffusion rates of the elements from the substrate to the film, and the possible degradation of the substrate | [216] |
Ni (OH) 2 NP @ SPCE of carbon | Flower-shaped nanostructure | Ultrasensitive detection of antibodies against SARS-CoV-2 | FESEM images showed that the surface of SPCE consists of a uniform layer of carbon particles | 1 fg mL−1 to 1 µg mL−1 | The electrochemical biodevice was able to accurately and easily detect and determine IgM/IgG levels in human blood serum with a remarkable detection limit in less than 20 min with a wide dynamic range | The biosensor is sensitive to other types of coronaviruses, which would affect the search for a biosensor that only detects SARS-CoV-2 | [217] |
IPCF | Nanostructured pattern with nanoholes | Spike proteins in artificial saliva | SEM image showed that the IPCF had a nanostructured pattern with periodically arranged nanoholes | 429 fg/mL | The IPCF sensor is expected to be suitable for widely available and highly usable antigen tests with smartphones and can be used in digital medical diagnostic systems, such as POC | When the sample concentration was 1 pg/mL, the same response was obtained between the PBS and saliva sample solutions. Contaminants adsorbed non-specifically to the saliva samples were expected to increase the response in the low peak concentration range | [218] |
Pt/MoS2 | Nanosheet | S1 protein and SARS-CoV-2 pseudovirus | TEM image showed uniform distribution of elements in the sample | 0.53 ng/mL | The formation of 1 T-MoS2 within the Pt/MoS2 heterostructure improved the material’s conductivity, stability, light harvesting ability, and photoelectric conversion capacity. It could specifically capture the S1 protein, causing a decrease in photocurrent intensity due to high steric hindrance and low conductivity | It is possible that if there was an excessively high electrical pulse, it would cause photocurrent overflow under the same conditions, so these conditions must be prevented | [219] |
TiO2 (Co-TNT) | Nanotubes | SARS-CoV-2 S-RBD protein | The SEM images showed the presence of precipitates on the TNT surface | 0.7 nM | This simple, inexpensive, rapid and non-invasive diagnostic platform has the potential to detect SARS-CoV-2 in clinical samples, including nasal, nasopharyngeal swab, and saliva samples | The molecular weight of the S-RBD protein was slightly larger (~35 kda) compared to the calculated size | [220] |
MOF-5/CoNi2 S4 | Semi-cylindrical nanostructures | SARS-CoV-2 recombinant spike antigen | AFM results showed different types of roughness at different points. At other points, the roughness was more homogeneous than the other two points mentioned | 5 nM | The use of the inorganic–organic nanocomposite composed of MOF-5 and porphyrins could reduce interactions with cell walls | The presence of CoNi2 S4 increased cytotoxicity due to nickel, which is highly toxic even at ppm concentrations | [221] |
SiNWs/AgNPs | Nanowires | SARS-CoV-2 (S protein) | A highly ordered vertical nanowire arrays with homogeneous decoration using spherical AgNPs | 0.90 µm | The SiNW/AgNP sensor platform was sensitive and accurate for the SARS-CoV-2 spike protein even at an exceptionally minimal picomolar concentration | This study was a preliminary study and the authors aim to develop a direct detection method for SARS-CoV-2 virus at the protein level (spike RBD) and needs further improvements (labeled detection for specific targets) to promote it as a real-time monitoring diagnostic device | [222] |
Graphene-based | Quadratic epitaxial heterostructure | SARS-CoV-2 spike protein S1 antigen | AFM images indicate indicating the root-mean-square roughness | 60 copies/mL, 1 ag/mL | The sensor is reusable, allowing for reimmobilization of the crosslinker and antibodies on the biosensor after desorption of biomarkers by NaCl solution or heat treatment above 40 °C | The resulting bias field of the PLL is reduced. It produces inhomogeneity in the field, which can generate stress in the underlying graphene sheet. This inhomogeneity would produce a compressive stress as it removes the positive charge that interacts with the positively charged QFS EG layer. Therefore, this stress would reduce the local carrier concentration and induce stress on other nearby C-C bonds, propagating its effect | [223] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medrano-Lopez, J.A.; Villalpando, I.; Salazar, M.I.; Torres-Torres, C. Hierarchical Nanobiosensors at the End of the SARS-CoV-2 Pandemic. Biosensors 2024, 14, 108. https://doi.org/10.3390/bios14020108
Medrano-Lopez JA, Villalpando I, Salazar MI, Torres-Torres C. Hierarchical Nanobiosensors at the End of the SARS-CoV-2 Pandemic. Biosensors. 2024; 14(2):108. https://doi.org/10.3390/bios14020108
Chicago/Turabian StyleMedrano-Lopez, Jael Abigail, Isaela Villalpando, Ma Isabel Salazar, and Carlos Torres-Torres. 2024. "Hierarchical Nanobiosensors at the End of the SARS-CoV-2 Pandemic" Biosensors 14, no. 2: 108. https://doi.org/10.3390/bios14020108
APA StyleMedrano-Lopez, J. A., Villalpando, I., Salazar, M. I., & Torres-Torres, C. (2024). Hierarchical Nanobiosensors at the End of the SARS-CoV-2 Pandemic. Biosensors, 14(2), 108. https://doi.org/10.3390/bios14020108