Enhanced Nanozymatic Activity on Rough Surfaces for H2O2 and Tetracycline Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Electrochemical Measurements
2.4. Preparation of BP–Nonspherical Au NP Hybrid Structure
2.5. Preparation of BP–Spherical Au NP Hybrid Structure
2.6. Conjugation of Aptamer with SCN/BP-nsAu NPs
2.7. The Optimization of Reaction Conditions
2.8. Kinetic Parameter Study of BP-Au NPs
2.9. DPPH Test
2.10. Terephthalic Acid (TA) Test
2.11. H2O2 Detection Using BP-Au NPs
2.12. Tetracycline Detection Using BP-Au NPs
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.R.; Chand, R.; Kumar, S.; Mittal, N.; Srinivasan, S.; Rajabzadeh, A. Recent Biosensing Advances in the Rapid Detection of Illicit Drugs. TrAC Trends Anal. Chem. 2020, 131, 116006. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Cardoso, A.G.; Kumar, S.; Ortega, G.A.; Srinivasan, S.; Rajabzadeh, A.R. Nanozymes in Biosensing and Bioimaging; CRC Press: Boca Raton, FL, USA, 2021; Chapter 7; pp. 115–143. [Google Scholar]
- Ahmed, S.R.; Sherazee, M.; Srinivasan, S.; Rajabzadeh, A.R. Nanozymatic Detection of Thiocyanate through Accelerating the Growth of Ultra-small Gold Nanoparticles/Graphene Quantum Dots Hybrids. Food Chem. 2022, 379, 132152. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.R.; Sherazee, M.; Srinivasan, S.; Rajabzadeh, A.R. Positively Charged Gold Quantum Dots: An Nanozymatic “Off-On” Sensor for Thiocyanate Detection. Foods 2022, 11, 1189. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.R.; Cardoso, A.G.; Cobas, H.V.; Das, P.; Srinivasan, S.; Rajabzadeh, A.R. Graphdiyne Quantum Dots for H2O2 and Dopamine Detection. ACS Appl. Nano Mater. 2023, 10, 8434–8443. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Kim, J.; Suzuki, T.; Lee, J.; Park, E.Y. Enhanced Catalytic Activity of Gold Nanoparticle carbon Nanotube Hybrids for Influenza Virus Detection. Biosens. Bioelectron. 2016, 85, 503–508. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Kim, J.; Suzuki, T.; Lee, J.; Park, E.Y. Detection of Influenza Virus Using Peroxidase-Mimic of Gold Nanoparticles. Biotechnol. Bioeng. 2016, 113, 2298–2303. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Takemeura, K.; Li, T.; Kitamoto, N.; Tanaka, T.; Suzuki, T.; Park, E.Y. Size-Controlled Preparation of Peroxidase-like Graphene-gold Nanoparticle Hybrids for the Visible Detection of Norovirus-like Particles. Biosens. Bioelectron. 2017, 87, 558–565. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Kim, J.; Tran, V.T.; Suzuki, T.; Neethirajan, S.; Lee, J.; Park, E.Y. In Situ Self-assembly of Gold Nanoparticles on Hydrophilic and Hydrophobic Substrates for Influenza Virus-sensing Platform. Sci. Rep. 2017, 7, 44495. [Google Scholar] [CrossRef]
- Jv, Y.; Li, B.; Cao, R. Positively charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 2010, 46, 8017–8019. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Ortega, G.A.; Kumar, S.; Srinivasan, S.; Rajabzadeh, A.R. Strong nanozymatic activity of thiocyanate capped gold nanoparticles: An enzyme–nanozyme cascade reaction based dual mode ethanol detection in saliva. New J. Chem. 2022, 46, 1194–1202. [Google Scholar] [CrossRef]
- Alzahrani, A.; Alsulami, T.; Salamatullah, A.M.; Ahmed, S.R. Non-spherical gold nanoparticles enhnaced fluorescence of carbon dots for norovirus-like particles detection. J. Biol. Eng. 2023, 17, 33. [Google Scholar] [CrossRef]
- Sherazee, M.; Ahmed, S.R.; Das, P.; Srinivasan, S.; Rajabzadeh, A.R. Electrochemically enhanced peroxidase-like activity of nanohybrids for rapid and sensitive detection of H2O2 and Dopamine. Colloids Surf. A Physicochem. Eng. Asp. 2023, 679, 132576. [Google Scholar] [CrossRef]
- Cardoso, A.G.; Ahmed, S.R.; Keshavarz-Motamed, Z.; Srinivasan, S.; Rajabzadeh, A.R. Recent advancements of nanomodified electrodes-towards Point-of-Care detection of cardiac biomarkers. Bioelectrochemistry 2023, 152, 108440. [Google Scholar]
- Cardoso, A.G.; Viltres, H.; Ortega, G.A.; Phung, V.; Grewal, R.; Mozaffari, H.; Ahmed, S.R.; Srinivasan, S.; Rajabzadeh, A.R. Electrochemical sensing of analytes in saliva: Challenges, progress, and perspectives. TrAC Trends Anal. Chem. 2023, 160, 116995. [Google Scholar] [CrossRef]
- Hammami, I.; Alabdullah, N.M.; Jomaa, A.A.; Kamoun, M. Gold nanoparticles: Synthesis, properties and applications. J. King Saud Univ. Sci. 2021, 33, 101560. [Google Scholar] [CrossRef]
- Zhang, J.; Mou, L.; Jiang, X. Surface chemistry of gold nanoparticles for health-related applications. Chem. Sci. 2020, 11, 923–936. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Sherazee, M.; Das, P.; Das, P.; Dondapati, J.; Srinivasan, S.; Rajabzadeh, A.R. Borophene quantum dots with enhanced nanozymatic activity for the detection of H2O2 and cardiac biomarkers. ACS Appl. Nano Mater. 2023, 6, 19939–19946. [Google Scholar] [CrossRef]
- Akhter, S.; Shalauddin, M.; Basirun, W.J.; Lee, V.S.; Ahmed, S.R.; Srinivasan, S.; Rajabzadeh, A. A highly selective bifunctional nanosensor based on nanocellulose and 3D Polypyrrole decorated with silver-gold bimetallic alloy to simultaneously detect methotrexate andciprofloxacin. Sens. Actuators B Chem. 2022, 373, 132743. [Google Scholar] [CrossRef]
- Baig, N. Two-dimensional nanomaterials: A critical review of recent progress, properties, applications, and future directions. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107362. [Google Scholar] [CrossRef]
- Shalauddin, M.; Akhter, S.; Basirun, W.J.; Lee, V.S.; Ahmed, S.R.; Rajabzadeh, A.R.; Srinivasan, S. Bimetallic metal organic framework anchored multi-layer black phosphorous nanosheets with enhanced electrochemical activity for paracetamol detection. Electrochim. Acta 2023, 454, 142423. [Google Scholar] [CrossRef]
- Tahin, M.B.; Fatima, N.; Fatima, U.; Sagir, M. A review on the 2D black phosphorus materials for energy applications. Inorg. Chem. Commun. 2021, 124, 108242. [Google Scholar]
- Ragavan, K.V.; Ahmed, S.R.; Weng, X.; Neethirajan, S. Chitosan as a peroxidase mimic: Paper based sensor for the detection of hydrogen peroxide. Sens. Actuators B Chem. 2018, 272, 8–13. [Google Scholar] [CrossRef]
- Merhi, A.; Khatib, S.E.; Haddad, J.; Hassan, H.F. A review of the antibiotic residues in food in the Arab countries. Appl. Food Res. 2023, 3, 100332. [Google Scholar] [CrossRef]
- Bahmani, K.; Shahbazi, Y.; Zahra Nikousefat, Z. Monitoring and risk assessment of tetracycline residues in foods of animal origin. Food Sci. Biotechnol. 2020, 29, 441–448. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Sherazee, M.; Das, P.; Shalauddin, M.; Akhter, S.; Basirun, W.J.; Srinivasan, S.; Rajabzadeh, A. Electrochemical assisted enhanced nanozymatic activity of functionalized borophene for H2O2 and tetracycline detection. Biosens. Bioelectron. 2024, 246, 115857. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Qiao, J.; Liu, W.; Qi, L. Enhancement of gold nanoclusters-based peroxidase nanozymes for detection of tetracycline. Microchem. J. 2020, 157, 104871. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Mu, Z.; Wu, S.; Wang, J.; Yang, Y.; Zhao, M.; Wang, Y. Label-Free Fluorescence Detection of Hydrogen Peroxide and Glucose Based on the Ni-MOF Nanozyme–Induced Self-Ligand Emission. Microchim. Acta 2022, 189, 219. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Mitra, K.; Singh, R.; Kumari, A.; Gupta, S.K.S.; Misra, N.; Maiti, P.; Ray, B. Colorimetric Detection of Hydrogen Peroxide and Glucose Using Brominated Graphene. Anal. Methods 2017, 9, 6675–6681. [Google Scholar] [CrossRef]
- Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X. Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. Adv. Mater. 2010, 22, 2206–2210. [Google Scholar] [CrossRef] [PubMed]
- Ezzatfar, R.; Dehghan, G.; Amini, M.; Khataee, A. Synthesis of Peroxidase-Like V2O5 Nanoparticles for Dye Removal from Aqueous Solutions. Top. Catal. 2022, 65, 694–702. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Cai, N.; Long, S.; Yu, F. Negatively Charged Gold Nanoparticles as an Intrinsic Peroxidase Mimic and Their Applications in the Oxidation of Dopamine. J. Mater. Sci. 2014, 49, 7143–7150. [Google Scholar] [CrossRef]
- Bilalis, P.; Karagouni, E.; Toubanaki, D.K. Peroxidase-like Activity of Fe3O4 Nanoparticles and Fe3O4-Graphene Oxide Nanohybrids: Effect of the Amino- and Carboxyl-Surface Modifications on H2O2 Sensing. Appl. Organomet. Chem. 2022, 36, e6803. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, C.; Guo, Y.; Nie, G.; Xu, L. Peroxidase-like Activity of Apoferritin Paired Gold Clusters for Glucose Detection. Biosens. Bioelectron. 2015, 64, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Q.; Gong, S.-W.; Zhang, Y.; Yang, T.; Wang, C.-Y.; Gu, N. Prussian Blue Modified Iron Oxide Magnetic Nanoparticles and Their High Peroxidase-like Activity. J. Mater. Chem. 2010, 20, 5110–5116. [Google Scholar] [CrossRef]
- Ma, M.; Xie, J.; Zhang, Y.; Chen, Z.; Gu, N. Fe3O4@Pt Nanoparticles with Enhanced Peroxidase-like Catalytic Activity. Mater. Lett. 2013, 105, 36–39. [Google Scholar] [CrossRef]
- Ghosh, S.; Singh, P.; Roy, S.; Bhardwaj, K.; Jaiswal, A. Superior Peroxidase-Like Activity of Gold Nanorattles in Ultrasensitive H2O2 Sensing and Antioxidant Screening. ChemBioChem 2022, 23, e202100691. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Zhong, L.; Song, Z.; Guo, L.; Wu, H.; Guo, Q.; Chen, Y.; Fu, F.; Chen, G. Visual Detection of Blood Glucose Based on Peroxidase-like Activity of WS2 Nanosheets. Biosens. Bioelectron. 2014, 62, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-M.; Liu, J.-W.; Jiang, J.-H.; Zhong, W. Cobalt Oxyhydroxide Nanoflakes with Intrinsic Peroxidase Catalytic Activity and Their Application to Serum Glucose Detection. Anal. Bioanal. Chem. 2017, 409, 4225–4232. [Google Scholar] [CrossRef]
- Dalui, A.; Pradhan, B.; Thupakula, U.; Khan, A.H.; Kumar, G.S.; Ghosh, T.; Satpati, B.; Acharya, S. Insight into the Mechanism Revealing the Peroxidase Mimetic Catalytic Activity of Quaternary CuZnFeS Nanocrystals: Colorimetric Biosensing of Hydrogen Peroxide and Glucose. Nanoscale 2015, 7, 9062–9074. [Google Scholar] [CrossRef]
- Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J.M. Oxidase-Like Activity of PolymerCoated Cerium Oxide Nanoparticles. Angew. Chem. 2009, 121, 2344–2348. [Google Scholar] [CrossRef]
- Hosseini, M.; Sabet, F.S.; Khabbaz, H.; Aghazadeh, M.; Mizani, F.; Ganjali, M.R. Enhancement of the Peroxidase-like Activity of Cerium-Doped Ferrite Nanoparticles for Colorimetric Detection of H2O2 and Glucose. Anal. Methods 2017, 9, 3519–3524. [Google Scholar] [CrossRef]
- Lin, L.; Song, X.; Chen, Y.; Rong, M.; Zhao, T.; Wang, Y.; Jiang, Y.; Chen, X. Intrinsic Peroxidase-like Catalytic Activity of Nitrogen-Doped Graphene Quantum Dots and Their Application in the Colorimetric Detection of H2O2 and Glucose. Anal. Chim. Acta 2015, 869, 89–95. [Google Scholar] [CrossRef]
- Cai, S.; Han, Q.; Qi, C.; Lian, Z.; Jia, X.; Yang, R.; Wang, C. Pt74Ag26 Nanoparticle-Decorated Ultrathin MoS2 Nanosheets as Novel Peroxidase Mimics for Highly Selective Colorimetric Detection of H2O2 and Glucose. Nanoscale 2016, 8, 3685–3693. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Sun, J.; Qi, Y.; Zhang, B.; Guo, S.; Zhao, M. Influence of VO2 Nanoparticle Morphology on the Colorimetric Assay of H2O2 and Glucose. Nanomaterials 2017, 7, 347. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Lu, Q.; Sun, X.; Zhao, L.; Zhang, Y.; Yao, J.; Zhang, X.; Zhao, H. Dual-Active Au@PNIPAm Nanozymes for Glucose Detection and Intracellular H2O2 Modulation. Langmuir 2022, 38, 8077–8086. [Google Scholar] [CrossRef]
- He, J.; He, D.; Yang, L.; Wu, G.-L.; Tian, J.; Liu, Y.; Wang, W. Preparation of Urchin-like Pd-PtIr Nanozymes and Their Application for the Detection of Ascorbic Acid and Hydrogen Peroxide. Mater. Lett. 2022, 314, 131851. [Google Scholar] [CrossRef]
- Lee, G.; Kim, C.; Kim, D.; Hong, C.; Kim, T.; Lee, M.; Lee, K. Multibranched Au–Ag–Pt Nanoparticle as a Nanozyme for the Colorimetric Assay of Hydrogen Peroxide and Glucose. ACS Omega 2022, 7, 40973–40982. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tian, Y.; Huang, P.; Wu, F. Using target-specific aptamers to enhance the peroxidase-like activity of gold nanoclusters for colorimetric detection of tetracycline antibiotics. Talanta 2020, 208, 120342. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, Y.; Yiwei Liu, Y.; Tang, Y.; Zhao, F.; Zeng, B. Colorimetric and electrochemical detection platforms for tetracycline based on surface molecularly imprinted polyionic liquid on Mn3O4 nanozyme. Biosens. Bioelectron. 2022, 216, 114650. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhu, H.; Feng, R.; Wang, M.; Hu, P.; Pan, J.; Niu, X. Facile molecular imprinting on magnetic nanozyme surface for highly selective colorimetric detection of tetracycline. Sens. Actuators B Chem. 2022, 370, 132451. [Google Scholar] [CrossRef]
- Wen, W.; Liu, Y.; Li, Z.; Wen, G.; Li, H.; Li, L. Magnetic Fe–N–C nanoparticles as a dual nanozyme for label-free colorimetric detection of antibiotics. Environ. Sci. Adv. 2023, 2, 731–739. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsulami, T.; Alzahrani, A. Enhanced Nanozymatic Activity on Rough Surfaces for H2O2 and Tetracycline Detection. Biosensors 2024, 14, 106. https://doi.org/10.3390/bios14020106
Alsulami T, Alzahrani A. Enhanced Nanozymatic Activity on Rough Surfaces for H2O2 and Tetracycline Detection. Biosensors. 2024; 14(2):106. https://doi.org/10.3390/bios14020106
Chicago/Turabian StyleAlsulami, Tawfiq, and Abdulhakeem Alzahrani. 2024. "Enhanced Nanozymatic Activity on Rough Surfaces for H2O2 and Tetracycline Detection" Biosensors 14, no. 2: 106. https://doi.org/10.3390/bios14020106
APA StyleAlsulami, T., & Alzahrani, A. (2024). Enhanced Nanozymatic Activity on Rough Surfaces for H2O2 and Tetracycline Detection. Biosensors, 14(2), 106. https://doi.org/10.3390/bios14020106