Conjugated Oligoelectrolyte with DNA Affinity for Enhanced Nuclear Imaging and Precise DNA Quantification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis and Characterization of COE-S3
2.3. Spectroscopy Assays
2.4. Molecular Docking Analysis
2.5. Cell Imaging and Localizations
2.6. DNase and RNase Treatment
2.7. Cell Cycle Treatment
3. Results
3.1. Affinity to DNA and Interactions Mechanism
3.2. Co-Localization in Cell Organelles
3.3. Nuclease Digestion Assay and Nucleus Imaging
3.4. Photostability and Cytotoxicity Evaluation
3.5. Quantitative Detection of Intracellular DNA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.-L.; Hu, Y.-J.; Wang, H.; Yu, B.-Q.; Yue, H.-L. Molecular Spectroscopy Evidence of Berberine Binding to DNA: Comparative Binding and Thermodynamic Profile of Intercalation. Biomacromolecules 2012, 13, 873–880. [Google Scholar] [CrossRef]
- Ogrodnik, M. Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell 2021, 20, e13338. [Google Scholar] [CrossRef]
- Heckenbach, I.; Mkrtchyan, G.V.; Ezra, M.B.; Bakula, D.; Madsen, J.S.; Nielsen, M.H.; Oro, D.; Osborne, B.; Covarrubias, A.J.; Idda, M.L.; et al. Nuclear morphology is a deep learning biomarker of cellular senescence. Nat. Aging 2022, 2, 742–755. [Google Scholar] [CrossRef]
- Steenbergen, R.D.M.; Snijders, P.J.F.; Heideman, D.A.M.; Meijer, C.J.L.M. Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nat. Rev. Cancer 2014, 14, 395–405. [Google Scholar] [CrossRef]
- Tian, M.; Sun, J.; Dong, B.; Lin, W. Unique pH-Sensitive RNA Binder for Ratiometric Visualization of Cell Apoptosis. Anal. Chem. 2019, 91, 10056–10063. [Google Scholar] [CrossRef]
- Galindo-Murillo, R.; Cheatham, T.E. Ethidium bromide interactions with DNA: An exploration of a classic DNA-ligand complex with unbiased molecular dynamics simulations. Nucleic Acids Res. 2021, 49, 3735–3747. [Google Scholar] [CrossRef]
- Lerman, L.S. Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 1961, 3, 18–30. [Google Scholar] [CrossRef]
- Graça, D.L.; Blakemore, W.F. Delayed remyelination in rat spinal cord following ethidium bromide injection. Neuropathol. Appl. Neurobiol. 1986, 12, 593–605. [Google Scholar] [CrossRef]
- Levine, J.M.; Reynolds, R. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp. Neurol. 1999, 160, 333–347. [Google Scholar] [CrossRef]
- Song, Y.; Xu, L.; Wu, Q.; Xiao, S.; Zeng, H.; Gong, Y.; Li, C.; Cheng, S.; Li, Q.; Zhang, L.; et al. A New Strategy to Reduce Toxicity of Ethidium Bromide by Alternating Anions: New Derivatives with Excellent Optical Performances, Convenient Synthesis, and Low Toxicity. Small Methods 2020, 4, 1900779. [Google Scholar] [CrossRef]
- Åkerman, B.; Tuite, E. Single- and Double-Strand Photocleavage of DNA by YO, YOYO and TOTO. Nucleic Acids Res. 1996, 24, 1080–1090. [Google Scholar] [CrossRef]
- Fidanovski, K.; Mawad, D. Conjugated Polymers in Bioelectronics: Addressing the Interface Challenge. Adv. Healthc. Mater. 2019, 8, e1900053. [Google Scholar] [CrossRef]
- Inal, S.; Rivnay, J.; Suiu, A.O.; Malliaras, G.G.; McCulloch, I. Conjugated Polymers in Bioelectronics. Acc. Chem. Res. 2018, 51, 1368–1376. [Google Scholar] [CrossRef]
- Zhou, C.; Chia, G.W.N.; Yong, K.T. Membrane-intercalating conjugated oligoelectrolytes. Chem. Soc. Rev. 2022, 51, 9917–9932. [Google Scholar] [CrossRef]
- Wang, S.; Liu, B.; Gaylord, B.S.; Bazan, G.C. Size-Specific Interactions Between Single- and Double-Stranded Oligonucleotides and Cationic Water-Soluble Oligofluorenes. Adv. Funct. Mater. 2003, 13, 463–467. [Google Scholar] [CrossRef]
- Liu, B.; Bazan, G.C. Interpolyelectrolyte Complexes of Conjugated Copolymers and DNA: Platforms for Multicolor Biosensors. J. Am. Chem. Soc. 2004, 126, 1942–1943. [Google Scholar] [CrossRef]
- Wang, S.; Gaylord, B.S.; Bazan, G.C. Fluorescein Provides a Resonance Gate for FRET from Conjugated Polymers to DNA Intercalated Dyes. J. Am. Chem. Soc. 2004, 126, 5446–5451. [Google Scholar] [CrossRef]
- Li, H.; Bazan, G.C. Conjugated Oligoelectrolyte/ssDNA Aggregates: Self-Assembled Multicomponent Chromophores for Protein Discrimination. Adv. Mater. 2009, 21, 964–967. [Google Scholar] [CrossRef]
- Liu, Y.; Ogawa, K.; Schanze, K.S. Conjugated polyelectrolytes as fluorescent sensors. J. Photochem. Photobiol. 2009, 10, 173–190. [Google Scholar] [CrossRef]
- Gaylord, B.S.; Heeger, A.J.; Bazan, G.C. DNA Hybridization Detection with Water-Soluble Conjugated Polymers and Chromophore-Labeled Single-Stranded DNA. J. Am. Chem. Soc. 2003, 125, 896–900. [Google Scholar] [CrossRef]
- Pu, K.Y.; Li, K.; Liu, B. Cationic oligofluorene-substituted polyhedral oligomeric silsesquioxane as light-harvesting unimolecular nanoparticle for fluorescence amplification in cellular imaging. Adv. Mater. 2010, 22, 643–646. [Google Scholar] [CrossRef]
- Zheng, Y.; Ding, Y.; Ren, J.; Xiang, Y.; Shuai, Z.; Tong, A. Simultaneously and Selectively Imaging a Cytoplasm Membrane and Mitochondria Using a Dual-Colored Aggregation-Induced Emission Probe. Anal. Chem. 2020, 92, 14494–14500. [Google Scholar] [CrossRef]
- Zhou, C.; Chia, G.W.N.; Ho, J.C.S.; Moreland, A.S.; Seviour, T.; Liedberg, B.; Parikh, A.N.; Kjelleberg, S.; Hinks, J.; Bazan, G.C. A Chain-Elongated Oligophenylenevinylene Electrolyte Increases Microbial Membrane Stability. Adv. Mater. 2019, 31, e1808021. [Google Scholar] [CrossRef]
- Zhou, C.; Chia, G.W.N.; Ho, J.C.S.; Seviour, T.; Sailov, T.; Liedberg, B.; Kjelleberg, S.; Hinks, J.; Bazan, G.C. Informed Molecular Design of Conjugated Oligoelectrolytes To Increase Cell Affinity and Antimicrobial Activity. Angew. Chem. Int. Ed. 2018, 57, 8069–8072. [Google Scholar] [CrossRef]
- Zhou, C.; Cox-Vázquez, S.J.; Chia, G.W.N.; Vázquez, R.J.; Lai, H.Y.; Chan, S.J.W.; Limwongyut, J.; Bazan, G.C. Water-soluble extracellular vesicle probes based on conjugated oligoelectrolytes. Sci. Adv. 2023, 9, eade2996. [Google Scholar] [CrossRef]
- Zhou, C.; Ho, J.C.S.; Chia, G.W.N.; Moreland, A.S.; Ruan, L.; Liedberg, B.; Kjelleberg, S.; Hinks, J.; Bazan, G.C. Gram-Typing Using Conjugated Oligoelectrolytes. Adv. Funct. Mater. 2020, 30, 2004068. [Google Scholar] [CrossRef]
- Zhou, C.; Li, Z.; Zhu, Z.; Chia, G.W.N.; Mikhailovsky, A.; Vázquez, R.J.; Chan, S.J.W.; Li, K.; Liu, B.; Bazan, G.C. Conjugated Oligoelectrolytes for Long-Term Tumor Tracking with Incremental NIR-II Emission. Adv. Mater. 2022, 34, 202201989. [Google Scholar] [CrossRef]
- Wang, B.; Queenan, B.N.; Wang, S.; Nilsson, K.P.R.; Bazan, G.C. Precisely Defined Conjugated Oligoelectrolytes for Biosensing and Therapeutics. Adv. Mater. 2019, 31, e1806701. [Google Scholar] [CrossRef]
- Hinks, J.; Poh, W.H.; Chu, J.J.; Loo, J.S.; Bazan, G.C.; Hancock, L.E.; Wuertz, S. Oligopolyphenylenevinylene-conjugated oligoelectrolyte membrane insertion molecules selectively disrupt cell envelopes of Gram-positive bacteria. Appl. Environ. Microbiol. 2015, 81, 1949–1958. [Google Scholar] [CrossRef]
- Limwongyut, J.; Nie, C.; Moreland, A.S.; Bazan, G.C. Molecular design of antimicrobial conjugated oligoelectrolytes with enhanced selectivity toward bacterial cells. Chem. Sci. 2020, 11, 8138–8144. [Google Scholar] [CrossRef]
- Wang, B.; Feng, G.; Seifrid, M.; Wang, M.; Liu, B.; Bazan, G.C. Antibacterial Narrow-Band-Gap Conjugated Oligoelectrolytes with High Photothermal Conversion Efficiency. Angew. Chem. Int. Ed. Engl. 2017, 56, 16063–16066. [Google Scholar] [CrossRef]
- Wang, B.; Wang, M.; Mikhailovsky, A.; Wang, S.; Bazan, G.C. A Membrane-Intercalating Conjugated Oligoelectrolyte with High-Efficiency Photodynamic Antimicrobial Activity. Angew. Chem. Int. Ed. Engl. 2017, 56, 5031–5034. [Google Scholar] [CrossRef]
- Yan, H.; Catania, C.; Bazan, G.C. Membrane-intercalating conjugated oligoelectrolytes: Impact on bioelectrochemical systems. Adv. Mater. 2015, 27, 2958–2973. [Google Scholar] [CrossRef]
- Hard, T.; Fan, P.; Kearns, D.R. A fluorescence study of the binding of Hoechst 33258 and DAPI to halogenated DNAs. Photochem. Photobiol. 1990, 51, 77–86. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Zhang, H.; Zhou, D.H.; Liu, Y.H.; Ran, X.Y.; Xiang, F.F.; Zhang, L.N.; Chen, Y.J.; Yu, X.Q.; Li, K. Migration from Lysosome to Nucleus: Monitoring Lysosomal Alkalization-Related Biological Processes with an Aminofluorene-Based Probe. Anal. Chem. 2023, 95, 7294–7302. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Niu, H.; Wang, K.; Wang, G.; Liu, J.; James, T.D.; Zhang, H. mtDNA-Specific Ultrasensitive Near-Infrared Fluorescent Probe Enables the Differentiation of Healthy and Apoptotic Cells. Anal. Chem. 2022, 94, 7510–7519. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Wang, L.; Xia, Q.; Liu, R.; Qu, J. A nucleic acid-specific fluorescent probe for nucleolus imaging in living cells. Talanta 2019, 192, 212–219. [Google Scholar] [CrossRef]
- Peng, X.; Wu, T.; Fan, J.; Wang, J.; Zhang, S.; Song, F.; Sun, S. An effective minor groove binder as a red fluorescent marker for live-cell DNA imaging and quantification. Angew. Chem. Int. Ed. Engl. 2011, 50, 4180–4183. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Tian, X.; Wang, A.; Guan, L.; Zheng, J.; Li, F.; Li, S.; Zhou, H.; Wu, J.; Tian, Y. Nucleic acid-selective light-up fluorescent biosensors for ratiometric two-photon imaging of the viscosity of live cells and tissues. Chem. Sci. 2016, 7, 2257–2263. [Google Scholar] [CrossRef]
- Sovenyhazy, K.M.; Bordelon, J.A.; Petty, J.T. Spectroscopic studies of the multiple binding modes of a trimethine-bridged cyanine dye with DNA. Nucleic Acids Res. 2003, 31, 2561–2569. [Google Scholar] [CrossRef]
- Sun, Y.; Bi, S.; Song, D.; Qiao, C.; Mu, D.; Zhang, H. Study on the interaction mechanism between DNA and the main active components in Scutellaria baicalensis Georgi. Sens. Actuators B 2008, 129, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, G.; Pan, J.; Xiong, C.; Gong, D. Intercalation binding of food antioxidant butylated hydroxyanisole to calf thymus DNA. J. Photochem. Photobiol. B 2014, 141, 253–261. [Google Scholar] [CrossRef]
- Afrin, S.; Rahman, Y.; Sarwar, T.; Husain, M.A.; Ali, A.; Shamsuzzaman; Tabish, M. Molecular spectroscopic and thermodynamic studies on the interaction of anti-platelet drug ticlopidine with calf thymus DNA. Spectrochim. Acta Part A 2017, 186, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Shahabadi, N.; Razlansari, M. Insight into the binding mechanism of macrolide antibiotic; erythromycin to calf thymus DNA by multispectroscopic and computational approaches. J. Biomol. Struct. Dyn. 2021, 40, 6171–6182. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hu, X.; Pan, J.; Zhang, G.; Gong, D. Interaction of isoeugenol with calf thymus DNA and its protective effect on DNA oxidative damage. J. Mol. Liq. 2019, 282, 356–365. [Google Scholar] [CrossRef]
- Yang, W.; Xia, P.F.; Wong, M.S. Highly Ordered Assembly of π-Stacked Distyrylbenzenes by Oligoadenines. Org. Lett. 2010, 12, 4018–4021. [Google Scholar] [CrossRef]
- Li, N.; Hu, X.; Pan, J.; Zhang, Y.; Gong, D.; Zhang, G. Insights into the mechanism of groove binding between 4-octylphenol and calf thymus DNA. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 238, 118454. [Google Scholar] [CrossRef]
- Li, S.; Pan, J.; Zhang, G.; Xu, J.; Gong, D. Characterization of the groove binding between di-(2-ethylhexyl) phthalate and calf thymus DNA. Int. J. Biol. Macromol. 2017, 101, 736–746. [Google Scholar] [CrossRef]
- Wang, K.N.; Chao, X.J.; Liu, B.; Zhou, D.J.; He, L.; Zheng, X.H.; Cao, Q.; Tan, C.P.; Zhang, C.; Mao, Z.W. Red fluorescent probes for real-time imaging of the cell cycle by dynamic monitoring of the nucleolus and chromosome. Chem. Commun. 2018, 54, 2635–2638. [Google Scholar] [CrossRef]
- Li, Q.; Shao, M.; Ran, W.; Sun, X.; Liu, H.; Wang, Q.; Liu, X.; Tian, L.; Chen, G.; Liu, Z. An AIE-featured triphenyltin(IV)-triphenylamine acylhydrazone compound and anticancer application. Dye. Pigment. 2022, 201, 110231. [Google Scholar] [CrossRef]
- Nurse, P. A long twentieth century of the cell cycle and beyond. Cell 2000, 100, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Roukos, V.; Pegoraro, G.; Voss, T.C.; Misteli, T. Cell cycle staging of individual cells by fluorescence microscopy. Nat. Protoc. 2015, 10, 334–348. [Google Scholar] [CrossRef]
- Heliez, C.; Baricault, L.; Barboule, N.; Valette, A. Paclitaxel increases p21 synthesis and accumulation of its AKT-phosphorylated form in the cytoplasm of cancer cells. Oncogene 2003, 22, 3260–3268. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhou, C.; Hou, J.; Feng, G.; Xu, Z.; Shao, Y.; Yang, C.; Xu, G. Conjugated Oligoelectrolyte with DNA Affinity for Enhanced Nuclear Imaging and Precise DNA Quantification. Biosensors 2024, 14, 105. https://doi.org/10.3390/bios14020105
Zhang X, Zhou C, Hou J, Feng G, Xu Z, Shao Y, Yang C, Xu G. Conjugated Oligoelectrolyte with DNA Affinity for Enhanced Nuclear Imaging and Precise DNA Quantification. Biosensors. 2024; 14(2):105. https://doi.org/10.3390/bios14020105
Chicago/Turabian StyleZhang, Xinmeng, Cheng Zhou, Jianxun Hou, Gang Feng, Zhourui Xu, Yonghong Shao, Chengbin Yang, and Gaixia Xu. 2024. "Conjugated Oligoelectrolyte with DNA Affinity for Enhanced Nuclear Imaging and Precise DNA Quantification" Biosensors 14, no. 2: 105. https://doi.org/10.3390/bios14020105
APA StyleZhang, X., Zhou, C., Hou, J., Feng, G., Xu, Z., Shao, Y., Yang, C., & Xu, G. (2024). Conjugated Oligoelectrolyte with DNA Affinity for Enhanced Nuclear Imaging and Precise DNA Quantification. Biosensors, 14(2), 105. https://doi.org/10.3390/bios14020105