A D-Shaped Polymer Optical Fiber Surface Plasmon Resonance Biosensor for Breast Cancer Detection Applications
Abstract
:1. Introduction
2. Biosensor Design and Fabrication
2.1. Simulation
2.2. Device Fabrication
2.3. Bio-Modification
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rachel, F.; Megan, J.; Jennifer, L. Screening Breast Ultrasound: Past, Present, and Future. Am. J. Roentgenol. 2015, 204, 234–240. [Google Scholar]
- Slamon, D.; Leyland, J.; Shak, S.; Bajamonde, A. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Joel, P.; Michael, M.; Samuel, L. Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. J. Clin. Oncol. 2019, 27, 1160–1167. [Google Scholar]
- Jemal, A.; Bray, F.; Center, M.; Ferlay, J. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Soerjomataram, I.; Louwman, W.; Ribot, J. An overview of prognostic factors for long-term survivors of breast cancer. Breast Cancer Res. Treat. 2008, 107, 309–330. [Google Scholar] [CrossRef] [PubMed]
- Esteva, F.; Yu, H.; Hung, M. Molecular predictors of response to trastuzumab and lapatinib in breast cancer. Nat. Rev. Clin. Oncol. 2010, 7, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Daniela, F.; Francois, S.; Simon, J.; Caroline, D. Advantages and Disadvantages of Technologies for HER2 Testing in Breast Cancer Specimens. Am. J. Clin. Pathol. 2015, 144, 686–703. [Google Scholar]
- Jafari, S.H.; Saadatpour, Z.; Salmaninejad, A.; Momeni, F. Breast cancer diagnosis: Imaging techniques and biochemical markers. J. Cell. Physiol. 2018, 233, 5200–5213. [Google Scholar] [CrossRef]
- Shamsipur, M.; Emami, M.; Farzin, L. A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosens. Bioelectron. 2018, 103, 54–61. [Google Scholar] [CrossRef]
- Loyez, M.; Lobry, M.; Hassan, E.M.; DeRosa, M.C. HER2 breast cancer biomarker detection using a sandwich optical fiber assay. Talanta 2021, 221, 121452. [Google Scholar] [CrossRef]
- Poturnayova, A.; Dzubinova, L.; Burikova, M. Detection of breast cancer cells using acoustics aptasensor specific to HER2 receptors. Biosensors 2019, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.; Bakhshpour, M.; Gokturk, I. Quartz crystal microbalance (QCM) based biosensor functionalized by HER2/Neu antibody for breast cancer cell detection. Chemosensors 2021, 9, 80. [Google Scholar] [CrossRef]
- Yumusak, C.; Singh, T.B.; Sariciftci, N.S.; Grote, J.G. Bio-organic field-effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric. Appl. Phys. Lett. 2009, 95, 263304. [Google Scholar] [CrossRef]
- Wu, X.; Liu, H.; Liu, J.; Haley, K.N. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003, 21, 46. [Google Scholar]
- Liedberg, B.; Nylander, C.; Lundstrom, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators B 1983, 4, 299–304. [Google Scholar] [CrossRef]
- Fan, X.; White, I.; Zhu, H. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef]
- Homola, J.; Yee, S.; Gauglitz, G. Surface plasmon resonance sensors: A review. Sens. Actuators B 1999, 54, 3. [Google Scholar] [CrossRef]
- White, S.R.; Sottos, N.R. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef]
- Liedberg, B.; Lundstrom, I.; Stenberg, E. Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens. Actuators B 1993, 11, 63–72. [Google Scholar] [CrossRef]
- Sharma, A.K.; Gupta, B.D. Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review. IEEE Sens. J. 2007, 7, 1118–1129. [Google Scholar] [CrossRef]
- Wong, W.C.; Chan, C.C. Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 4602107. [Google Scholar] [CrossRef]
- Zhao, X.; Tsao, Y.C.; Lee, F.J. Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies. J. Virol. Methods 2016, 233, 15–22. [Google Scholar] [CrossRef]
- Wang, Q.; Jing, J.; Wang, B. Highly Sensitive SPR Biosensor Based on Graphene Oxide and Staphylococcal Protein a Co-Modified TFBG for Human IgG Detection. IEEE Trans. Instrum. Meas. 2019, 68, 3350–3357. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X. U-fiber-based biosensor for temperature-compensated acetylcholine-specific measurement. Opt. Lett. 2023, 48, 2138–2141. [Google Scholar] [CrossRef] [PubMed]
- Akouibaa, A.; Masrour, R. Study of the Sensitivity of D-Shaped Optical Fiber Sensor Based on Surface Plasmon Resonance to Detect the Refractive Index Changes in the Human Blood. Plasmonics 2023, 18, 137–154. [Google Scholar] [CrossRef]
- Jain, S.; Paliwal, A.; Gupta, V.; Tomar, M. Smartphone integrated handheld Long Range Surface Plasmon Resonance basedfiber-optic biosensor with tunable SiO2 sensing matrix. Biosens. Bioelectron. 2022, 201, 113919. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hou, L.; Lei, J. Design and Analysis of D-shaped Surface Plasmon Resonance Fiber Biosensor for Liquid Analytes. ACTA Photonica Sin. 2022, 51, 0906007. [Google Scholar]
- Teng, C.; Wang, Y.; Yuan, L. Polymer optical fibers based surface plasmon resonance sensors and their applications: A review. Opt. Fiber Technol. 2023, 77, 1068–5200. [Google Scholar] [CrossRef]
- He, W.; Huang, Y.; Wu, J. Enzyme-Free Glucose Biosensors Based on MoS2 Nanocomposites. Nanoscale Res. Lett. 2020, 15, 60. [Google Scholar] [CrossRef]
- Chen, S.; Hu, S.; Wu, Y. Ultrasensitive Biosensor with Hyperbolic Metamaterials Composed of Silver and Zinc Oxide. Nanomaterials 2021, 11, 2220. [Google Scholar] [CrossRef]
- Wu, T.; Shao, Y.; Wang, Y. Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt. Express 2017, 25, 20313–20322. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Qin, Y.N.; Li, D.; Wang, T.S. Highly sensitive and selective detection of cancer cells with a label-free electrochemical gyrosensor. Biosens. Bioelectron. 2013, 41, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Shao, Y.; Wang, Y.; Wu, T. Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber. Opt. Express 2018, 26, 3988–3994. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Cao, S.; Liao, C.; Wang, Y. Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sens. Actuators B 2016, 230, 206–211. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.; Xu, G. Compact Surface Plasmon Resonance IgG Sensor Based on H-Shaped Optical Fiber. Biosensors 2022, 12, 141. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, Z.; Cheng, W.; Wu, T. Surface plasmon resonance biosensor for exosome detection based on reformative tyramine signal amplification activated by molecular aptamer beacon. J. Nanobiotechnol. 2021, 19, 450. [Google Scholar] [CrossRef]
- Centane, S.; Nyokong, T. Aptamer versus antibody as probes for the impedimetric biosensor for human epidermal growth factor receptor. J. Inorg. Biochem. 2022, 230, 111764. [Google Scholar] [CrossRef] [PubMed]
- Ravalli, A.; Rocha, C. A label-free electrochemical affisensor for cancer marker detection: The case of HER2. Bioelectrochemistry 2015, 106, 268–275. [Google Scholar] [CrossRef]
- Mucelli, S.; Zamuner, M.; Tormen, M. Nanoelectrode ensembles as recognition platform for electrochemical immunosensors. Biosens. Bioelectron. 2008, 23, 12. [Google Scholar] [CrossRef]
- Lobry, M.; Loyez, M. HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings. Biomed. Opt. Express 2020, 11, 4862–4871. [Google Scholar] [CrossRef]
Measuring Method | LOD | Time | References |
---|---|---|---|
Reformative tyramine signal amplification | 1.0 × 107 particles/mL (3 pg/mL) | 30 min | [36] |
Aptasensors | 15 ng/ml | - | [37] |
Electrochemical affisensor | 6.0 g/l | 60 min | [38] |
Nanoelectrode ensembles | 0.1 g/ml | 30 min | [39] |
SPR-envelope biosensing | 1 g/ml | 10 min | [40] |
SPR fiber biosensing | 0.95 g/ml | 10 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Wang, Y.; Zhang, J.; Zhang, Y.; Rao, X.; Chen, C.; Liu, H.; Deng, Y.; Liao, C.; Smietana, M.J.; et al. A D-Shaped Polymer Optical Fiber Surface Plasmon Resonance Biosensor for Breast Cancer Detection Applications. Biosensors 2024, 14, 15. https://doi.org/10.3390/bios14010015
Wu X, Wang Y, Zhang J, Zhang Y, Rao X, Chen C, Liu H, Deng Y, Liao C, Smietana MJ, et al. A D-Shaped Polymer Optical Fiber Surface Plasmon Resonance Biosensor for Breast Cancer Detection Applications. Biosensors. 2024; 14(1):15. https://doi.org/10.3390/bios14010015
Chicago/Turabian StyleWu, Xun, Ying Wang, Jiaxiong Zhang, Yunfang Zhang, Xing Rao, Chen Chen, Han Liu, Yubin Deng, Changrui Liao, Mateusz Jakub Smietana, and et al. 2024. "A D-Shaped Polymer Optical Fiber Surface Plasmon Resonance Biosensor for Breast Cancer Detection Applications" Biosensors 14, no. 1: 15. https://doi.org/10.3390/bios14010015
APA StyleWu, X., Wang, Y., Zhang, J., Zhang, Y., Rao, X., Chen, C., Liu, H., Deng, Y., Liao, C., Smietana, M. J., Chen, G. Y., Liu, L., Qu, J., & Wang, Y. (2024). A D-Shaped Polymer Optical Fiber Surface Plasmon Resonance Biosensor for Breast Cancer Detection Applications. Biosensors, 14(1), 15. https://doi.org/10.3390/bios14010015