A Silicon-Based Field-Effect Biosensor for Drug-Induced Cardiac Extracellular Calcium Ion Change Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle
2.1.1. Biological Basis of Extracellular/Intracellular Ca2+ Cycling
2.1.2. The Principle of Calcium Ion Detection Based on Ion-Sensitive LAPS
2.2. Materials and Reagents
2.3. Calcium-Ion-Sensitive LAPS Chip Fabrication
2.4. Detection System Set Up of Ca2+-Sensitive LAPS
2.5. Cell Culture
3. Results and Discussion
3.1. Ca2+-Sensitive LAPS Chip Calibration
3.2. Characterization of Potentiometric Selectivity Coefficient
3.3. Electrophysiology Assessment of Verapamil and Bay K8644 on HL-1
3.4. Extracellular Calcium Ion Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clapham, D.E. Calcium signaling. Cell 2007, 131, 1047–1058. [Google Scholar] [CrossRef]
- Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21. [Google Scholar] [CrossRef]
- Zamponi, G.W.; Striessnig, J.; Koschak, A.; Dolphin, A.C. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 2015, 67, 821–870. [Google Scholar] [CrossRef] [PubMed]
- Monteith, G.R.; Prevarskaya, N.; Roberts-Thomson, S.J. The calcium–cancer signalling nexus. Nat. Rev. Cancer 2017, 17, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Hofer, A.M.; Brown, E.M. Extracellular calcium sensing and signalling. Nat. Rev. Mol. Cell Biol. 2003, 4, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Stein, A.; Bühlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- Zhao, L.; Jiang, Y.; Wei, H.; Jiang, Y.; Ma, W.; Zheng, W.; Cao, A.-M.; Mao, L. In vivo measurement of calcium ion with solid-state ion-selective electrode by using shelled hollow carbon nanospheres as a transducing layer. Anal. Chem. 2019, 91, 4421–4428. [Google Scholar] [CrossRef] [PubMed]
- Richa, A.; Fizir, M.; Touil, S. Advanced monitoring of hydroponic solutions using ion-selective electrodes and the internet of things: A review. Environ. Chem. Lett. 2021, 19, 3445–3463. [Google Scholar] [CrossRef]
- Chai, D.; Sun, Y.; Li, Z.; Yang, H.; Mao, S.; Tang, J.; Gong, W.; Zeng, X. A novel inorganic redox buffer of r-GO/Ag@ AgCl/TMMCl utilized as an effective ion-to-electron transducer for a solid contact calcium ion-selective electrode. Sens. Actuators B Chem. 2022, 367, 132055. [Google Scholar] [CrossRef]
- Son, D.; Park, S.Y.; Kim, B.; Koh, J.T.; Kim, T.H.; An, S.; Jang, D.; Kim, G.T.; Jhe, W.; Hong, S. Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions. ACS Nano 2011, 5, 3888–3895. [Google Scholar] [CrossRef]
- Schöning, M.J.; Sauke, M.; Steffen, A.; Marso, M.; Kordos, P.; Lüth, H.; Kauffmann, F.; Erbach, R.; Hoffmann, B. Ion-sensitive field-effect transistors with ultrathin Langmuir-Blodgett membranes. Sens. Actuators B Chem. 1995, 27, 325–328. [Google Scholar] [CrossRef]
- Asadnia, M.; Myers, M.; Umana-Membreno, G.A.; Sanders, T.M.; Mishra, U.K.; Nener, B.D.; Baker, M.V.; Parish, G. Ca2+ detection utilising AlGaN/GaN transistors with ion-selective polymer membranes. Anal. Chim. Acta 2017, 987, 105–110. [Google Scholar] [CrossRef]
- Moser, N.; Leong, C.L.; Hu, Y.; Cicatiello, C.; Gowers, S.; Boutelle, M.; Georgiou, P. Complementary metal–oxide–semiconductor potentiometric field-effect transistor array platform using sensor learning for multi-ion imaging. Anal. Chem. 2020, 92, 5276–5285. [Google Scholar] [CrossRef]
- Hyun, T.-H.; Cho, W.-J. Pushing the Limits of Biosensing: Selective Calcium Ion Detection with High Sensitivity via High-k Gate Dielectric Engineered Si Nanowire Random Network Channel Dual-Gate Field-Effect Transistors. Sensors 2023, 23, 6720. [Google Scholar] [CrossRef]
- Chen, X.-W.; Huang, N.-T. Dual ion-selective membrane deposited ion-sensitive field-effect transistor integrating a whole blood processing microchamber for in situ blood ion testing. ACS Sens. 2023, 8, 904–913. [Google Scholar] [CrossRef]
- McConnell, H.M.; Owicki, J.C.; Parce, J.W.; Miller, D.; Baxter, G.T.; Wada, H.G.; Pitchford, S. The cytosensor microphysiometer: Biological applications of silicon technology. Science 1992, 257, 1906–1912. [Google Scholar] [CrossRef]
- Hafeman, D.G.; Parce, J.W.; McConnell, H.M. Light-addressable potentiometric sensor for biochemical systems. Science 1988, 240, 1182–1185. [Google Scholar] [CrossRef]
- Zhou, B.; Jiang, Y.; Guo, Q.; Das, A.; Sobrido, A.B.J.; Hing, K.A.; Zayats, A.V.; Krause, S. Photoelectrochemical Detection of Calcium Ions Based on Hematite Nanorod Sensors. ACS Appl. Nano Mater. 2022, 5, 17087–17094. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, P.; Liu, S.; Chen, Y.; Liang, D.; Wang, M.; Du, L.; Wu, C. The Light-Addressable Potentiometric Sensor and Its Application in Biomedicine towards Chemical and Biological Sensing. Chemosensors 2022, 10, 156. [Google Scholar] [CrossRef]
- Liang, T.; Zhou, S.; Wang, X.; Jiang, N.; Qiu, Y.; Lin, W.; Wan, H.; Wang, P. Silicone-Rubber Based Multiplex Ion-Sensitive Light-Addressable Potentiometric Sensor (ISLAPS) System for Physiological Ions Detection. Electrochem. Soc. Meet. Abstr. 2021, MA2021-01, 1417. [Google Scholar] [CrossRef]
- Stein, B.; George, M.; Gaub, H.; Behrends, J.; Parak, W. Spatially resolved monitoring of cellular metabolic activity with a semiconductor-based biosensor. Biosens. Bioelectron. 2003, 18, 31–41. [Google Scholar] [CrossRef]
- Liang, T.; Wu, Q.; Gu, C.; Gan, Y.; Tu, J.; Hu, Q.; Wan, H.; Wang, P. Light addressable potentiometric sensor (LAPS) integrated microfluidic system for real-time cell acidification detection. In Proceedings of the 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Fukuoka, Japan, 26–29 May 2019; pp. 1–4. [Google Scholar]
- Liang, T.; Gu, C.; Gan, Y.; Wu, Q.; He, C.; Tu, J.; Pan, Y.; Qiu, Y.; Kong, L.; Wan, H. Microfluidic chip system integrated with light addressable potentiometric sensor (LAPS) for real-time extracellular acidification detection. Sens. Actuators B Chem. 2019, 301, 127004. [Google Scholar] [CrossRef]
- Hu, N.; Wu, C.; Ha, D.; Wang, T.; Liu, Q.; Wang, P. A novel microphysiometer based on high sensitivity LAPS and microfluidic system for cellular metabolism study and rapid drug screening. Biosens. Bioelectron. 2013, 40, 167–173. [Google Scholar] [CrossRef]
- Hafner, F. Cytosensor® Microphysiometer: Technology and recent applications. Biosens. Bioelectron. 2000, 15, 149–158. [Google Scholar] [CrossRef]
- Jiang, N.; Liang, T.; Qin, C.; Yuan, Q.; Liu, M.; Zhuang, L.; Wang, P. A Microphysiometric System Based on LAPS for Real-Time Monitoring of Microbial Metabolism. Chemosensors 2022, 10, 177. [Google Scholar] [CrossRef]
- Dantism, S.; Takenaga, S.; Wagner, T.; Wagner, P.; Schöning, M.J. Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors. Electrochim. Acta 2017, 246, 234–241. [Google Scholar] [CrossRef]
- Dantism, S.; Röhlen, D.; Dahmen, M.; Wagner, T.; Wagner, P.; Schöning, M.J. LAPS-based monitoring of metabolic responses of bacterial cultures in a paper fermentation broth. Sens. Actuators B Chem. 2020, 320, 128232. [Google Scholar] [CrossRef]
- Clapham, D.E. Calcium signaling. Cell 1995, 80, 259–268. [Google Scholar] [CrossRef]
- Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529. [Google Scholar] [CrossRef]
- Ertel, E.A.; Campbell, K.P.; Harpold, M.M.; Hofmann, F.; Mori, Y.; Perez-Reyes, E.; Schwartz, A.; Snutch, T.P.; Tanabe, T.; Birnbaumer, L. Nomenclature of voltage-gated calcium channels. Neuron 2000, 25, 533–535. [Google Scholar] [CrossRef]
- Ramsey, I.S.; Delling, M.; Clapham, D.E. An introduction to TRP channels. Annu. Rev. Physiol. 2006, 68, 619–647. [Google Scholar] [CrossRef]
- Feske, S. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 2007, 7, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zeng, X.; Wang, S. Calcium ion as cellular messenger. Sci. China Life Sci. 2015, 58, 1–5. [Google Scholar] [CrossRef]
- Zhao, Y.-T.; Valdivia, C.R.; Gurrola, G.B.; Hernández, J.J.; Valdivia, H.H. Arrhythmogenic mechanisms in ryanodine receptor channelopathies. Sci. China Life Sci. 2015, 58, 54–58. [Google Scholar] [CrossRef] [PubMed]
- De Stefani, D.; Rizzuto, R.; Pozzan, T. Enjoy the trip: Calcium in mitochondria back and forth. Annu. Rev. Biochem. 2016, 85, 161–192. [Google Scholar] [CrossRef] [PubMed]
- Owicki, J.C.; Bousse, L.J.; Hafeman, D.G.; Kirk, G.L.; Olson, J.D.; Wada, H.G.; Parce, J.W. The light-addressable potentiometric sensor: Principles and biological applications. Annu. Rev. Biophys. Biomol. Struct. 1994, 23, 87–114. [Google Scholar] [CrossRef]
- Liang, T.; Jiang, N.; Zhou, S.; Wang, X.; Xu, Y.; Wu, C.; Kirsanov, D.; Legin, A.; Wan, H.; Wang, P. Multiplexed all-solid-state ion-sensitive light-addressable potentiometric sensor (ISLAPS) system based on silicone-rubber for physiological ions detection. Anal. Chim. Acta 2021, 1179, 338603. [Google Scholar] [CrossRef]
- Högg, G.; Lutze, O.; Cammann, K. Novel membrane material for ion-selective field-effect transistors with extended lifetime and improved selectivity. Anal. Chim. Acta 1996, 335, 103–109. [Google Scholar] [CrossRef]
- Cazalé, A.; Sant, W.; Launay, J.; Ginot, F.; Temple-Boyer, P. Study of field effect transistors for the sodium ion detection using fluoropolysiloxane-based sensitive layers. Sens. Actuators B Chem. 2013, 177, 515–521. [Google Scholar] [CrossRef]
- Ha, D.; Hu, N.; Wu, C.; Kirsanov, D.; Legin, A.; Khaydukova, M.; Wang, P. Novel structured light-addressable potentiometric sensor array based on PVC membrane for determination of heavy metals. Sens. Actuators B Chem. 2012, 174, 59–64. [Google Scholar] [CrossRef]
- Yoshinobu, T.; Schöning, M.J. Light-addressable potentiometric sensors for cell monitoring and biosensing. Curr. Opin. Electrochem. 2021, 28, 100727. [Google Scholar] [CrossRef]
- Guilbault, G. Recommendations for publishing manuscripts on ion-selective electrodes. Pure Appl. Chem. 1981, 53, 1907–1912. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Watkinson, M.; Gautrot, J.; Krause, S. High-sensitivity light-addressable potentiometric sensors using silicon on sapphire functionalized with self-assembled organic monolayers. Sens. Actuators B Chem. 2015, 209, 230–236. [Google Scholar] [CrossRef]
- Marathe, V.G.; Paily, R.; DasGupta, A.; DasGupta, N. A model to study the effect of selective anodic oxidation on ultrathin gate oxides. IEEE Trans. Electron Devices 2004, 52, 118–121. [Google Scholar]
- Chen, L.; Zhou, Y.; Krause, S.; Munoz, A.G.; Kunze, J.; Schmuki, P. Repair of thin thermally grown silicon dioxide by anodic oxidation. Electrochim. Acta 2008, 53, 3395–3402. [Google Scholar] [CrossRef]
- Umezawa, Y.; Bühlmann, P.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report). Pure Appl. Chem. 2000, 72, 1851–2082. [Google Scholar] [CrossRef]
- Opie, L. Pharmacological differences between calcium antagonists. Eur. Heart J. 1997, 18, 71–79. [Google Scholar] [CrossRef]
- Alexander, S.P.; Catterall, W.A.; Kelly, E.; Marrion, N.; Peters, J.A.; Benson, H.E.; Faccenda, E.; Pawson, A.J.; Sharman, J.L.; Southan, C. The Concise Guide to PHARMACOLOGY 2015/16: Voltage-gated ion channels. Br. J. Pharmacol. 2015, 172, 5904–5941. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Ma, C.; Jiang, N.; Jiang, D.; Yu, Z.; Liu, X.; Zhu, Y.; Yu, W.; Li, F.; Wan, H.; et al. A Silicon-Based Field-Effect Biosensor for Drug-Induced Cardiac Extracellular Calcium Ion Change Detection. Biosensors 2024, 14, 16. https://doi.org/10.3390/bios14010016
Qiu Y, Ma C, Jiang N, Jiang D, Yu Z, Liu X, Zhu Y, Yu W, Li F, Wan H, et al. A Silicon-Based Field-Effect Biosensor for Drug-Induced Cardiac Extracellular Calcium Ion Change Detection. Biosensors. 2024; 14(1):16. https://doi.org/10.3390/bios14010016
Chicago/Turabian StyleQiu, Yong, Chiyu Ma, Nan Jiang, Deming Jiang, Zhengyin Yu, Xin Liu, Yuxuan Zhu, Weijie Yu, Fengheng Li, Hao Wan, and et al. 2024. "A Silicon-Based Field-Effect Biosensor for Drug-Induced Cardiac Extracellular Calcium Ion Change Detection" Biosensors 14, no. 1: 16. https://doi.org/10.3390/bios14010016
APA StyleQiu, Y., Ma, C., Jiang, N., Jiang, D., Yu, Z., Liu, X., Zhu, Y., Yu, W., Li, F., Wan, H., & Wang, P. (2024). A Silicon-Based Field-Effect Biosensor for Drug-Induced Cardiac Extracellular Calcium Ion Change Detection. Biosensors, 14(1), 16. https://doi.org/10.3390/bios14010016