A Miniature Biomedical Sensor for Rapid Detection of Schistosoma japonicum Antibodies
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Reagents
2.2. Fabrication of the AlGaN/GaN HEMT Sensor
2.3. Immobilization Procedure
2.4. I-V Characteristic Measurements
2.5. Rabbit Serum Testing
3. Results and Discussion
3.1. Fabrication and Characterisation of AlGaN/GaN HEMT Sensors
3.2. Functionalization and Characterization of AlGaN/GaN HEMT Sensors
3.3. Detection of SEA Antibody in PBS Buffer
3.4. Analysis of Serum Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashour, A.S.; Hawas, A.R.; Guo, Y.H. Comparative study of multiclass classification methods on light microscopic images for hepatic schistosomiasis fibrosis diagnosis. Health Inf. Sci. Syst. 2018, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.Z.; Ma, H.H.; Jiang, S.Q.; Zhong, Z.R.; Wang, X.L.; Li, C.X.; Yu, D.; Liu, L.; Xu, J.; Xia, C.M. Interleukin-9 blockage reduces early hepatic granuloma formation and fibrosis during Schistosoma japonicum infection in mice. Immunology 2019, 158, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, S.-Z.; Zhang, L.-J.; Bergquist, R.; Dang, H.; Wang, Q.; Lv, S.; Wang, T.-P.; Lin, D.-D.; Liu, J.-B.; et al. Surveillance-based evidence: Elimination of schistosomiasis as a public health problem in the Peoples’ Republic of China. Infect. Dis. Poverty 2020, 9, 63. [Google Scholar] [CrossRef]
- Souza, C.O.S.; Espindola, M.S.; Fontanari, C.; Prado, M.K.B.; Frantz, F.G.; Rodrigues, V.; Gardinassi, L.G.; Faccioli, L.H. CD18 Regulates Monocyte Hematopoiesis and Promotes Resistance to Experimental Schistosomiasis. Fron. Immunol. 2018, 9, 1970. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.Y.; Zhu, L.; Li, Y.B.; Liu, C.H.; Cheng, L.X. Ultrasound-Induced Amino Acid-Based Hydrogels with Superior Mechanical Strength for Controllable Long-Term Release of Anti-Cercariae Drug. Front. Bioeng. Biotechnol. 2021, 9, 703582. [Google Scholar] [CrossRef]
- Campelo, Y.; Ombredane, A.; Vasconcelos, A.G.; Albuquerque, L.; Moreira, D.C.; Placido, A.; Rocha, J.; Fokoue, H.H.; Yamaguchi, L.; Mafud, A.; et al. Structure-Activity Relationship of Piplartine and Synthetic Analogues against Schistosoma mansoni and Cytotoxicity to Mammalian Cells. Int. J. Mol. Sci. 2018, 19, 1802. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.F.; Zhang, W.W.; Zhang, L.N.; Xu, L.; Chen, X.J.; Zhou, S.; Xu, Z.P.; Xiao, M.; Bai, H.; Liu, F.; et al. IL-7 suppresses macrophage autophagy and promotes liver pathology in Schistosoma japonicum-infected mice. J. Cell. Mol. Med. 2018, 22, 3353–3363. [Google Scholar] [CrossRef]
- Vicentino, A.R.R.; Carneiro, V.C.; Allonso, D.; Guilherme, R.D.; Benjamim, C.F.; dos Santos, H.A.M.; Xavier, F.; Pyrrho, A.D.; Gomes, J.D.S.; Fonseca, M.D.; et al. Emerging Role of HMGB1 in the Pathogenesis of Schistosomiasis Liver Fibrosis. Front. Immunol. 2018, 9, 1979. [Google Scholar] [CrossRef]
- Kabuyaya, M.; Chimbari, M.J.; Manyangadze, T.; Mukaratirwa, S. Efficacy of praziquantel on Schistosoma haematobium and re-infection rates among school-going children in the Ndumo area of uMkhanyakude district, KwaZulu-Natal, South Africa. Infect. Dis. Poverty 2017, 6, 83. [Google Scholar] [CrossRef]
- Melkus, M.W.; Le, L.; Siddiqui, A.J.; Molehin, A.J.; Zhang, W.D.; Lazarus, S.; Siddiqui, A.A. Elucidation of Cellular Responses in Non-human Primates with Chronic Schistosomiasis Followed by Praziquantel Treatment. Cell. Infect. Microbiol. 2020, 10, 57. [Google Scholar] [CrossRef]
- Angeles, J.M.M.; Wanlop, A.; Dang-Trinh, M.A.; Kirinoki, M.; Kawazu, S.I.; Yajima, A. Evaluation of Crude and Recombinant Antigens of Schistosoma japonicum for the Detection of Schistosoma mekongi Human Infection. Diagnostics 2023, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Graeff-Teixeira, C.; Favero, V.; de Souza, R.P.; Pascoal, V.F.; Bittencourt, H.R.; Fukushige, M.; Geiger, S.M.; Negrao-Correa, D. Use of Schistosoma mansoni soluble egg antigen (SEA) for antibody detection and diagnosis of schistosomiasis: The need for improved accuracy evaluations of diagnostic tools. Acta Trop. 2021, 215, 105800. [Google Scholar] [CrossRef]
- Song, H.B.; Kim, J.; Jin, Y.; Lee, J.S.; Jeoung, H.G.; Lee, Y.H.; Saeed, A.; Hong, S.T. Comparison of ELISA and Urine Microscopy for Diagnosis of Schistosoma haematobium Infection. J. Korean Med. Sci. 2018, 33, e238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Jiang, Y.Y.; Wang, Y.J.; Liu, H.; Shen, Y.J.; Yuan, Z.Y.; Hu, Y.; Xu, Y.X.; Cao, J.P. Higher Frequency of Circulating PD-1(high) CXCR5(+)CD4(+) Tfh Cells in Patients with Chronic Schistosomiasis. Int. J. Biol. Sci. 2015, 11, 1049–1055. [Google Scholar] [CrossRef]
- Yang, Y.Y.M.; van Diepen, A.; Brzezicka, K.; Reichardt, N.C.; Hokke, C.H. Glycan Microarray-Assisted Identification of IgG Subclass Targets in Schistosomiasis. Front. Immunol. 2018, 9, 2331. [Google Scholar] [CrossRef] [PubMed]
- Botana, L.; Matia, B.; San Martin, J.V.; Romero-Mate, A.; Castro, A.; Molina, L.; Fernandez, L.; Ibarra-Meneses, A.; Aguado, M.; Sanchez, C.; et al. Cellular Markers of Active Disease and Cure in Different Forms of Leishmania infantum-lnduced Disease. Front. Cell. Infect. Microbiol. 2018, 8, 381. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Feng, T.; Lin, D.D.; Wang, Q.Z.; Tang, L.; Wu, X.H.; Guo, J.G.; Peeling, R.W.; Zhou, X.N. Performance of a dipstick dye immunoassay for rapid screening of Schistosoma japonicum infection in areas of low endemicity. Parasites Vectors 2011, 4, 87. [Google Scholar] [CrossRef]
- Rogers, M.J.; McManus, D.P.; Muhi, S.; Gordon, C.A. Membrane Technology for Rapid Point-of-Care Diagnostics for Parasitic Neglected Tropical Diseases. Clin. Microbiol. Rev. 2021, 34, e0032920. [Google Scholar] [CrossRef]
- Hinz, R.; Schwarz, N.G.; Hahn, A.; Frickmann, H. Serological approaches for the diagnosis of schistosomiasis—A review. Mol. Cell. Probes 2017, 31, 2–21. [Google Scholar] [CrossRef]
- Chen, R.; Liang, Y.A.; Han, J.W.; Lu, Q.H.; Chen, Q.; Wang, Z.Y.; Wang, H.; Wang, X.; Yuan, R.J. Research on the Synergistic Effect of Total Ionization and Displacement Dose in GaN HEMT Using Neutron and Gamma-Ray Irradiation. Nanomaterials 2022, 12, 2126. [Google Scholar] [CrossRef]
- Guo, H.; Jia, X.L.; Dong, Y.; Ye, J.D.; Chen, D.J.; Zhang, R.; Zheng, Y.D. Applications of AlGaN/GaN high electron mobility transistor-based sensors in water quality monitoring. Semicond. Sci. Technol. 2020, 35, 123001. [Google Scholar] [CrossRef]
- Varghese, A.; Periasamy, C.; Bhargava, L. Analytical Modeling and Simulation-Based Investigation of AlGaN/AlN/GaN Bio-HEMT Sensor for C-erbB-2 Detection. IEEE Sens. J. 2018, 18, 9595–9603. [Google Scholar] [CrossRef]
- Gu, Z.Q.; Wang, J.; Miao, B.; Zhao, L.; Liu, X.S.; Wu, D.M.; Li, J.D. Highly sensitive AlGaN/GaN HEMT biosensors using an ethanolamine modification strategy for bioassay applications. RSC Adv. 2019, 9, 15341–15349. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.B.; Chen, J.H.; Ding, Y.L.; Huang, W. Piezotronic effect on two-dimensional electron gas in AlGaN/ GaN heterostructure. Nano Energy 2022, 96, 107098. [Google Scholar] [CrossRef]
- Ene, V.L.; Dinescu, D.; Djourelov, N.; Zai, I.; Vasile, B.S.; Serban, A.B.; Leca, V.; Andronescu, E. Defect Structure Determination of GaN Films in GaN/AlN/Si Heterostructures by HR-TEM, XRD, and Slow Positrons Experiments. Nanomaterials 2020, 10, 197. [Google Scholar] [CrossRef]
- Yang, C.; Luo, X.R.; Sun, T.; Zhang, A.B.; Ouyang, D.F.; Deng, S.Y.; Wei, J.; Zhang, B. High Breakdown Voltage and Low Dynamic ON-Resistance AlGaN/GaN HEMT with Fluorine Ion Implantation in SiNx Passivation Layer. Nanoscale Res. Lett. 2019, 14, 191. [Google Scholar] [CrossRef]
- Lu, X.D.; Li, J.; Su, K.; Ge, C.; Li, Z.C.; Zhan, T.; Wang, G.H.; Li, J.M. Performance-Enhanced 365 nm UV LEDs with Electrochemically Etched Nanoporous AlGaN Distributed Bragg Reflectors. Nanomaterials 2019, 9, 862. [Google Scholar] [CrossRef]
- Lu, B.; Liu, L.T.; Wang, J.R.; Chen, Y.; Li, Z.J.; Gopinath, S.C.B.; Lakshmipriya, T.; Huo, Z.W. Detection of microRNA-335-5p on an Interdigitated Electrode Surface for Determination of the Severity of Abdominal Aortic Aneurysms. Nanoscale Res. Lett. 2020, 15, 105. [Google Scholar] [CrossRef]
- Sarkar, A.; Daniels-Race, T. Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates. Nanomaterials 2013, 3, 272–288. [Google Scholar] [CrossRef]
- Yu, H.; Yu, S.X.; Qiu, H.; Gao, P.; Chen, Y.Z.; Zhao, X.; Tu, Q.F.; Zhou, M.G.; Cai, L.; Huang, N.; et al. Nitric oxide-generating compound and bio-clickable peptide mimic for synergistically tailoring surface anti-thrombogenic and anti-microbial dual-functions. Bioact. Mater. 2021, 6, 1618–1627. [Google Scholar] [CrossRef]
- Hui, N.; Wang, J.; Wang, D.; Wang, P.; Luo, X.; Lv, S. An ultrasensitive biosensor for prostate specific antigen detection in complex serum based on functional signal amplifier and designed peptides with both antifouling and recognizing capabilities. Biosens. Bioelectron. 2022, 200, 113921. [Google Scholar] [CrossRef]
- Deng, S.Y.; Wei, J.; Zhang, C.; Liao, D.Z.; Sun, T.; Yang, K.M.; Xi, L.F.; Zhang, B.; Luo, X.R. High Performance Flip-Structure Enhancement-Mode HEMT with Face-to-Face Double Gates. Nanoscale Res. Lett. 2022, 17, 73. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.C.; Papadimitriou, V.A.; van Dongen, J.E.; Cordeiro, J.; Neeleman, Y.; Santoso, A.; Chen, S.Y.; Eijkel, J.C.T.; Peng, H.M.; Segerink, L.I.; et al. An optical aptasensor for real-time quantification of endotoxin: From ensemble to single-molecule resolution. Sci. Adv. 2023, 9, eadf5509. [Google Scholar] [CrossRef] [PubMed]
- Pulikkathodi, A.K.; Sarangadharan, I.; Lo, C.Y.; Chen, P.H.; Chen, C.C.; Wang, Y.L. Miniaturized Biomedical Sensors for Enumeration of Extracellular Vesicles. Int. J. Mol. Sci. 2018, 19, 2213. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.H.; Sarangadharan, I.; Regmi, A.; Chen, Y.W.; Hsu, C.P.; Chang, W.H.; Lee, G.Y.; Chyi, J.I.; Chen, C.C.; Shiesh, S.C.; et al. Beyond the Debye length in high ionic strength solution: Direct protein detection with field-effect transistors (FETs) in human serum. Sci. Rep. 2017, 7, 5256. [Google Scholar] [CrossRef] [PubMed]
- Nasibullin, I.; Smirnov, I.; Ahmadi, P.; Vong, K.; Kurbangalieva, A.; Tanaka, K. Synthetic prodrug design enables biocatalytic activation in mice to elicit tumor growth suppression. Nat. Commun. 2022, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Wu, J.; Wang, S.P.; Shen, G.L.; Yu, R.Q. An amplified mass piezoelectric immunosensor for Schistosoma japonicum. Biosens. Bioelectron. 2006, 22, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.F.; Zhang, Y.; Wang, H.; Wang, S.P.; Shen, G.L. Superhydrophobic surface-based magnetic electrochemical immunoassay for detection of Schistosoma japonicum antibodies. Biosens. Bioelectron. 2012, 33, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Xiang, Z.F.; Fu, X.; Wang, S.P.; Shen, G.L.; Yu, R.Q. Silver-enhanced colloidal gold metalloimmunoassay for Schistosoma japonicum antibody detection. J. Immunol. Methods 2005, 301, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Gong, W.C.; Zhou, H.; Hu, Y.; Wang, L.; Shen, Y.J.; Yu, G.Y.; Cao, J.P. A Novel miRNA from Egg-Derived Exosomes of Schistosoma japonicum Promotes Liver Fibrosis in Murine Schistosomiasis. Front. Immunol. 2022, 13, 860807. [Google Scholar] [CrossRef]
Assay Format | Assay Time | Labelling or Signal Amplification | Immunosensor Type | Linear Range | Lowest Concentration of Anti-SEA | Reference |
---|---|---|---|---|---|---|
Sandwich immunoassay | ~20 min | 4-chloro-1-naphthol and HRP | mass piezoelectric immunosensor | 10–100 ng/mL | 5 ng/mL in PBS | [37] |
Sandwich immunoassay | ~20 min | Cu, AuNP | magnetic electrochemical immunosensor | 2 ng/mL–15 μg/mL | 1.3 ng/mL in spiked serum | [38] |
Sandwich immunoassay | / | HRP and AuNP | metalloimmunosensor | 6.4 ng/mL–100 μg/mL | 3 ng/mL in PBS | [39] |
Sandwich immunoassay | <15 min | rSPG-RFP | fluorescence immunochromatographic strip | / | 1:10000 in serum | [40] |
Direct Immunoassay | <200 s | Label-free | AlGaN/GaN HEMT | 10–105 ng/mL | 1 ng/mL in PBS buffer and spiked serum | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Jiang, X.; Yang, L.; Tang, X.; Yang, G.; Hu, Y.; Wang, J.; Lu, N. A Miniature Biomedical Sensor for Rapid Detection of Schistosoma japonicum Antibodies. Biosensors 2023, 13, 831. https://doi.org/10.3390/bios13080831
Hu S, Jiang X, Yang L, Tang X, Yang G, Hu Y, Wang J, Lu N. A Miniature Biomedical Sensor for Rapid Detection of Schistosoma japonicum Antibodies. Biosensors. 2023; 13(8):831. https://doi.org/10.3390/bios13080831
Chicago/Turabian StyleHu, Shengjie, Xuecheng Jiang, Liang Yang, Xue Tang, Guofeng Yang, Yuanyuan Hu, Jie Wang, and Naiyan Lu. 2023. "A Miniature Biomedical Sensor for Rapid Detection of Schistosoma japonicum Antibodies" Biosensors 13, no. 8: 831. https://doi.org/10.3390/bios13080831
APA StyleHu, S., Jiang, X., Yang, L., Tang, X., Yang, G., Hu, Y., Wang, J., & Lu, N. (2023). A Miniature Biomedical Sensor for Rapid Detection of Schistosoma japonicum Antibodies. Biosensors, 13(8), 831. https://doi.org/10.3390/bios13080831