WSCNet: Biomedical Image Recognition for Cell Encapsulated Microfluidic Droplets †
Abstract
:1. Introduction
2. Working Principle
2.1. Principles of Droplet Generation
2.2. Droplet Encapsulation and Poisson Distribution
2.3. Droplet Recognition and Cell Counting
3. Materials and Methods
3.1. Microfluidic Chips and Experimental Platform
3.2. Convolutional Neural Network-Based Imaging Recognition
3.3. Network Implementation and Evaluation Metrics
3.4. Experimental Setup for Droplet Generation and Cell Encapsulation
4. Results and Discussion
4.1. Preliminary Experimental Analysis of Droplet Generation
4.2. Quantitative Performance of Droplet Recognition
4.3. Quantitative Performance and Comparison of Cell Recognition
4.4. Independent Test Performance on Cell-Encapsulated Droplets
5. Conclusions and Perspectives
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazutis, L.; Gilbert, J.; Ung, W.L.; Weitz, D.A.; Griffiths, A.D.; Heyman, J.A. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 2013, 8, 870–891. [Google Scholar] [CrossRef] [PubMed]
- Gerard, A.; Woolfe, A.; Mottet, G.; Reichen, M.; Castrillon, C.; Menrath, V.; Ellouze, S.; Poitou, A.; Doineau, R.; Briseno-Roa, L.; et al. High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat. Biotechnol. 2020, 38, 756. [Google Scholar] [CrossRef] [PubMed]
- Edd, J.F.; Di Carlo, D.; Humphry, K.J.; Köster, S.; Irimia, D.; Weitz, D.A.; Toner, M. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 2008, 8, 1262–1264. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; Wang, S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J. Pharm. Anal. 2018, 9, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Wang, L. Passive and active droplet generation with microfluidics: A review. Lab Chip 2017, 17, 34–75. [Google Scholar] [CrossRef] [PubMed]
- Umbanhowar, P.B.; Prasad, V.; Weitz, D.A. Monodisperse Emulsion Generation via Drop Break off in a Coflowing Stream. Langmuir 1999, 16, 347–351. [Google Scholar] [CrossRef]
- Anna, S.L.; Bontoux, N.; Stone, H.A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 2003, 82, 364–366. [Google Scholar] [CrossRef]
- Thorsen, T.; Roberts, R.W.; Arnold, F.H.; Quake, S.R. Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Phys. Rev. Lett. 2001, 86, 4163–4166. [Google Scholar] [CrossRef] [Green Version]
- Priest, C.; Herminghaus, S.; Seemann, R. Generation of monodisperse gel emulsions in a microfluidic device. Appl. Phys. Lett. 2006, 88, 024106. [Google Scholar] [CrossRef]
- Collins, D.J.; Neild, A.; Demello, A.; Liu, A.-Q.; Ai, Y. The Poisson distribution and beyond: Methods for microfluidic droplet production and single cell encapsulation. Lab Chip 2015, 15, 3439–3459. [Google Scholar] [CrossRef]
- Kemna, E.W.M.; Schoeman, R.M.; Wolbers, F.; Vermes, I.; Weitz, D.A.; Van Den Berg, A. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 2012, 12, 2881–2887. [Google Scholar] [CrossRef]
- Yue, X.; Fang, X.; Sun, T.; Yi, J.; Kuang, X.; Guo, Q.; Wang, Y.; Gu, H.; Xu, H. Breaking through the Poisson Distribution: A compact high-efficiency droplet microfluidic system for single-bead encapsulation and digital immunoassay detection. Biosens. Bioelectron. 2022, 211, 114384. [Google Scholar] [CrossRef]
- Lun, A.T.L.; Riesenfeld, S.; Andrews, T.; Dao, T.P.; Gomes, T.; Marioni, J.C.; participants in the 1st Human Cell Atlas Jamboree. EmptyDrops: Distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 2019, 20, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, A.S. Droplet morphometry and velocimetry (DMV): A. video processing software for time-resolved, label-free tracking of droplet parameters. Lab Chip 2013, 13, 1892–1901. [Google Scholar] [CrossRef]
- Tor, S.B.; Gañán-Calvo, A.M.; Chong, Z.J.; Loh, N.H.; Nguyen, N.-T.; Tan, S.H. Automated droplet measurement (ADM): An enhanced video processing software for rapid droplet measurements. Microfluid. Nanofluidics 2016, 20, 14. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Frohberg, N.J.; Zhou, E.; Sulchek, T.; Qiu, P. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices. PLoS ONE 2018, 13, e0192463. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Su, S.; Liu, B.; Zhu, L.; Yang, W.; Gao, N.; Jing, G.; Guo, Y. A real-time cosine similarity algorithm method for continuous monitoring of dynamic droplet generation processes. AIP Adv. 2019, 9, 105201. [Google Scholar] [CrossRef] [Green Version]
- Lashkaripour, A.; Rodriguez, C.; Mehdipour, N.; Mardian, R.; McIntyre, D.; Ortiz, L.; Campbell, J.; Densmore, D. Machine learning enables design automation of microfluidic flow-focusing droplet generation. Nat. Commun. 2021, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Zang, E.; Brandes, S.; Tovar, M.; Martin, K.; Mech, F.; Horbert, P.; Henkel, T.; Figge, M.T.; Roth, M. Real-time image processing for label-free enrichment of Actinobacteria cultivated in picolitre droplets. Lab Chip 2013, 13, 3707–3713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svensson, C.M.; Shvydkiv, O.; Dietrich, S.; Mahler, L.; Weber, T.; Choudhary, M.; Tovar, M.; Figge, M.T.; Roth, M. Coding of Experimental Conditions in Microfluidic Droplet Assays Using Colored Beads and Machine Learning Supported Image Analysis. Small 2019, 15, 14. [Google Scholar] [CrossRef] [Green Version]
- Gardner, K.; Uddin, M.M.; Tran, L.; Pham, T.; Vanapalli, S.; Li, W. Deep learning detector for high precision monitoring of cell encapsulation sta-tistics in microfluidic droplet. Lab Chip 2022, 22, 4067–4080. [Google Scholar] [CrossRef] [PubMed]
- Vo, P.Q.N.; Husser, M.C.; Ahmadi, F.; Sinha, H.; Shih, S.C.C. Image-based feedback and analysis system for digital microfluidics. Lab Chip 2017, 17, 3437–3446. [Google Scholar] [CrossRef]
- Vaithiyanathan, M.; Safa, N.; Melvin, A.T. FluoroCellTrack: An algorithm for automated analysis of high-throughput droplet microfluidic data. PLoS ONE 2019, 14, e0215337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcan, G.; Ghorbani, M.; Kosar, A.; Unel, M. A new visual tracking method for the analysis and characterization of jet flow. Flow Meas. Instrum. 2016, 51, 55–67. [Google Scholar] [CrossRef]
- Zhao, H.F.; Zhou, J.; Gu, Y.Y.; Ho, C.M.B.; Tan, S.H.; Gao, Y. Real-Time Computing for Droplet Detection and Recognition. In Proceedings of the IEEE International Conference on Real-time Computing and Robotics (IEEE RCAR), Kandima, Maldives, 1–5 August 2018. [Google Scholar]
- Soldati, G.; Del Ben, F.; Brisotto, G.; Biscontin, E.; Bulfoni, M.; Piruska, A.; Steffan, A.; Turetta, M.; Della Mea, V. Microfluidic droplets content classification and analysis through convolutional neural networks in a liquid biopsy workflow. Am. J. Transl. Res. 2018, 10, 4004–4016. [Google Scholar] [PubMed]
- Xie, W.D.; Noble, J.A.; Zisserman, A. Microscopy cell counting and detection with fully convolutional regression networks. Comput. Methods Biomech. Biomed. Eng.-Imaging Vis. 2018, 6, 283–292. [Google Scholar] [CrossRef]
- Guo, Y.; Stein, J.; Wu, G.R.; Krishnamurthy, A. SAU-Net: A Universal Deep Network for Cell Counting. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics (ACM-BCB), Niagara Falls, NY, USA, 7–10 September 2019. [Google Scholar]
- Sirinukunwattana, K.; Raza, S.E.A.; Tsang, Y.-W.; Snead, D.R.J.; Cree, I.A.; Rajpoot, N.M. Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images. IEEE Trans. Med. Imaging 2016, 35, 1196–1206. [Google Scholar] [CrossRef] [Green Version]
- Montanero, J.M.; Ganan-Calvo, A.M. Dripping, jetting and tip streaming. Rep. Prog. Phys. 2020, 83, 089501. [Google Scholar] [CrossRef]
- Cubaud, T.; Mason, T.G. Capillary threads and viscous droplets in square microchannels. Phys. Fluids 2008, 20, 053302. [Google Scholar] [CrossRef]
- Jensen, M.J.; Stone, H.A.; Bruus, H. A numerical study of two-phase Stokes flow in an axisymmetric flow-focusing device. Phys. Fluids 2006, 18, 077103. [Google Scholar] [CrossRef] [Green Version]
- Cristini, V.; Tan, Y.-C. Theory and numerical simulation of droplet dynamics in complex flows—A review. Lab Chip 2004, 4, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Yue, P.; Feng, J.J. Dynamic Simulation of Droplet Interaction and Self-Assembly in a Nematic Liquid Crystal. Langmuir 2008, 24, 3099–3110. [Google Scholar] [CrossRef] [PubMed]
- Stone, H.A.; Leal, L.G. Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech. 1989, 198, 399–427. [Google Scholar] [CrossRef] [Green Version]
- Bodla, N.; Singh, B.; Chellappa, R.; Davis, L.S. Soft-NMS-Improving Object Detection with One Line of Code. In Proceedings of the 16th IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
Stage | Category | Training * | Inference | |||
---|---|---|---|---|---|---|
All | Train | Validate | Test | |||
Background | -- | 28,000 | 7000 | 7000 | -- | |
Empty | 134,188 | 12,000 | 3000 | 3000 | >200,000 | |
Single | 18,933 | 12,185 | 3358 | 3390 | ~25,000 | |
Multiple | 5830 | 3821 | 945 | 1064 | ~8000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Mao, Y.; Gu, M.; Cheng, Z. WSCNet: Biomedical Image Recognition for Cell Encapsulated Microfluidic Droplets. Biosensors 2023, 13, 821. https://doi.org/10.3390/bios13080821
Zhou X, Mao Y, Gu M, Cheng Z. WSCNet: Biomedical Image Recognition for Cell Encapsulated Microfluidic Droplets. Biosensors. 2023; 13(8):821. https://doi.org/10.3390/bios13080821
Chicago/Turabian StyleZhou, Xiao, Yuanhang Mao, Miao Gu, and Zhen Cheng. 2023. "WSCNet: Biomedical Image Recognition for Cell Encapsulated Microfluidic Droplets" Biosensors 13, no. 8: 821. https://doi.org/10.3390/bios13080821
APA StyleZhou, X., Mao, Y., Gu, M., & Cheng, Z. (2023). WSCNet: Biomedical Image Recognition for Cell Encapsulated Microfluidic Droplets. Biosensors, 13(8), 821. https://doi.org/10.3390/bios13080821