Fast-Response Non-Contact Flexible Humidity Sensor Based on Direct-Writing Printing for Respiration Monitoring
Abstract
:1. Introduction
2. Material and Method
2.1. Materials
2.2. Preparation of GNP/MWCNT Precursor Solution
2.3. Preparation of PDMS Flexible Substrate
2.4. Direct-Writing Printing of Sensitive Sensor Units
2.5. Characterization and Testing
3. Results and Discussion
3.1. Preparation of the Flexible Humidity Sensor
3.2. Surface Modification of the PDMS Substrate
3.3. Performance of the Flexible Humidity Sensor
3.4. Sensitivivity Mechanism of the Flexible Humidity Sensor
3.5. Application of Non-Contact Flexible Humidity Sensors in Respiratory Monitoring
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Yang, G.; Shen, Y.; Yang, H.; Xu, K. Multifunctional Flexible Humidity Sensor Systems Towards Noncontact Wearable Electronics. Nano Micro Lett. 2022, 14, 150. [Google Scholar] [CrossRef] [PubMed]
- Handa, D.; Peschel, J.M. A Review of Monitoring Techniques for Livestock Respiration and Sounds. Front. Anim. Sci. 2022, 3, 904834. [Google Scholar] [CrossRef]
- Merritt, C.R.; Nagle, H.T.; Grant, E. Textile-Based Capacitive Sensors for Respiration Monitoring. IEEE Sens. J. 2009, 9, 71–78. [Google Scholar] [CrossRef]
- Al-Khalidi, F.Q.; Saatchi, R.; Burke, D.; Elphick, H.E.; Tan, S. Respiration Rate Monitoring Methods: A Review. Pediatr. Pulmonol. 2011, 46, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Jiang, Y.; Tai, H. Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C 2021, 9, 14963–14980. [Google Scholar] [CrossRef]
- Haghi, M.; Asadov, A.; Boiko, A.; Ortega, J.A.; Martínez Madrid, N.; Seepold, R. Validating Force Sensitive Resistor Strip Sensors for Cardiorespiratory Measurement during Sleep: A Preliminary Study. Sensors 2023, 23, 3973. [Google Scholar] [CrossRef]
- Gonzales, C.J.; Goonatilake, R. Particulate matter air quality analysis and the possible effects of increasing airborne pollutants on the human respiratory system. Int. J. Appl. Environ. Sci. 2010, 5, 337. [Google Scholar]
- Sun, Y.; Gao, X.; Shiwei, A.; Fang, H.; Lu, M.; Yao, D.; Lu, C. Hydrophobic Multifunctional Flexible Sensors with a Rapid Humidity Response for Long-Term Respiratory Monitoring. ACS Sustain. Chem. Eng. 2023, 6, 2375–2386. [Google Scholar] [CrossRef]
- Zhu, Q.; Jin, Y.; Wang, W.; Sun, G.; Wang, D. Bioinspired Smart Moisture Actuators Based on Nanoscale Cellulose Materials and Porous, Hydrophilic EVOH Nanofibrous Membranes. ACS Appl. Mater. Interfaces 2019, 1, 1440–1448. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, J.; Xia, B.; Xue, Q. Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators B Chem. 2014, 203, 263–270. [Google Scholar] [CrossRef]
- Qi, R.; Zhang, T.; Guan, X.; Dai, J.; Liu, S.; Zhao, H.; Fei, T. Capacitive humidity sensors based on mesoporous silica and poly(3,4-ethylenedioxythiophene) composites. J. Colloid Interface Sci. 2020, 565, 592–600. [Google Scholar] [CrossRef]
- Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhänen, T. Ultrafast Graphene Oxide Humidity Sensors. ACS Nano 2013, 7, 11166–11173. [Google Scholar] [CrossRef]
- Zhou, G.; Byun, J.H.; Oh, Y.; Jung, B.M.; Cha, H.J.; Seong, D.G.; Um, M.K.; Hyun, S.; Chou, T.W. Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(vinyl alcohol) Filaments. Acs Appl. Mater. Interfaces 2017, 9, 4788. [Google Scholar] [CrossRef]
- Trung, T.Q.; Duy, L.T.; Ramasundaram, S.; Lee, N.E. Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Res. 2017, 10, 2021–2033. [Google Scholar] [CrossRef]
- Li, T.; Li, L.; Sun, H.; Xu, Y.; Wang, X.; Luo, H.; Liu, Z.; Zhang, T. Porous Ionic Membrane Based Flexible Humidity Sensor and its Multifunctional Applications. Adv. Sci. 2017, 4, 1600404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, Z.; Hu, T.; Zhao, Y.; Zang, W.; Xing, L.; Xue, X. High-performance self-powered/active humidity sensing of Fe-doped ZnO nanoarray nanogenerator. Sens. Actuators B Chem. 2015, 213, 382–389. [Google Scholar]
- Fu, Y.; He, H.; Zhao, T.; Dai, Y.; Han, W.; Ma, J.; Xing, L.; Zhang, Y.; Xue, X. A Self-Powered Breath Analyzer Based on PANI/PVDF Piezo-Gas-Sensing Arrays for Potential Diagnostics Application. Nano Micro Lett. 2018, 10, 354–365. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wu, Z.; Xu, H.; Wu, Q.; Liu, C.; Yang, B.R.; Gui, X.; Xie, X.; Tao, K.; Shen, Y. An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 2019, 6, 595–603. [Google Scholar] [CrossRef]
- Cha, J.R.; Gong, M.S. Preparation of epoxy/polyelectrolyte IPNs for flexible polyimide-based humidity sensors and their properties. Sens. Actuators B Chem. 2013, 178, 656–662. [Google Scholar] [CrossRef]
- Zhu, P.; Liu, Y.; Fang, Z.; Kuang, Y.; Zhang, Y.; Peng, C.; Chen, G. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotubes composite film. Langmuir 2019, 35, 4834–4842. [Google Scholar] [CrossRef]
- Abed, H.; Bellemare-Rousseau, S.; Belanger-Huot, B.; Ahadi, M.; Drouin, E.; Roudjane, M.; Dugas, M.A.; Miled, A.; Messaddeq, Y. A Wire-Free and Fiber-Based Smart T-Shirt for Real-Time Breathing Rate Monitoring. IEEE Sens. J. 2022, 22, 4463–4471. [Google Scholar] [CrossRef]
- Ghanem, S.; Telia, A.; Boukaous, C.; Aida, M.S. Humidity sensor characteristics based on ZnO nanostructure grown by sol-gel method. Int. J. Nanotechnol. 2015, 12, 697. [Google Scholar] [CrossRef]
- Gong, M.; Li, Y.; Guo, Y.; Lv, X.; Dou, X. 2D TiO2 nanosheets for ultrasensitive humidity sensing application benefited by abundant surface oxygen vacancy defects. Sens. Actuators B. Chem. 2018, 262, 350–358. [Google Scholar] [CrossRef]
- Hsueh, H.T.; Hsueh, T.J.; Chang, S.J.; Hung, F.Y.; Wen, K.H. A Flexible ZnO Nanowire-Based Humidity Sensor. IEEE Trans. Nanotechnol. 2012, 11, 520–525. [Google Scholar] [CrossRef]
- Su, P.-G.; Shiu, W.-L.; Tsai, M.-S. Flexible humidity sensor based on Au nanoparticles/graphene oxide/thiolated silica sol-gel film. Sens. Actuators B. Chem. 2015, 216, 467–475. [Google Scholar] [CrossRef]
- Heo, S.; Ha, J.; Son, S.J.; Choi, I.S.; Lee, H.; Oh, S.; Jekal, J.; Kang, M.H.; Lee, G.J.; Jung, H.H. Instant, multiscale dry transfer printing by atomic diffusion control at heterogeneous interfaces. Sci. Adv. 2021, 7, eabh0040. [Google Scholar] [CrossRef]
- Yang, M.; Cheng, Y.; Yue, Y.; Chen, Y.; Gao, H.; Li, L.; Cai, B.; Liu, W.; Wang, Z.; Guo, H. High-Performance Flexible Pressure Sensor with a Self-Healing Function for Tactile Feedback. Adv. Sci. 2022, 9, 2200507. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Luo, T.; Geng, D.; Shen, Z.; Zhou, W. Facile fabrication of a fast-response flexible temperature sensor via laser reduced graphene oxide for contactless human-machine interface. Carbon 2022, 187, 35–46. [Google Scholar] [CrossRef]
- Marquez, C.; Mata, J.J.; Renteria, A.; Gonzalez, D.; Gomez, S.G.; Lopez, A.; Baca, A.N.; Nuñez, A.; Hassan, M.S.; Burke, V. Direct Ink-Write Printing of Ceramic Clay with an Embedded Wireless Temperature and Relative Humidity Sensor. Sensors 2023, 23, 3352. [Google Scholar] [CrossRef]
- Saadi, M.; Maguire, A.; Pottackal, N.T.; Thakur, M.S.H.; Ikram, M.M.; Hart, A.J.; Ajayan, P.M.; Rahman, M.M. Direct ink writing: A 3D printing technology for diverse materials. Adv. Mater. 2022, 34, 2108855. [Google Scholar] [CrossRef]
- Kim, I.T.; Lee, J.H.; Shofner, M.L.; Jacob, K.; Tannenbaum, R. Crystallization kinetics and anisotropic properties of polyethylene oxide/magnetic carbon nanotubes composite films. Polymer 2012, 53, 2402–2411. [Google Scholar] [CrossRef]
- Li, W.; Dichiara, A.; Bai, J. Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos. Sci. Technol. 2013, 74, 221–227. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Lin, W.-N.; Huang, Y.-L.; Tien, H.-W.; Wang, J.-Y.; Ma, C.-C.M.; Li, S.-M.; Wang, Y.-S. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 2011, 49, 793–803. [Google Scholar] [CrossRef]
- Zhou, J.; Ellis, A.V.; Voelcker, N.H. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 2010, 31, 2–16. [Google Scholar] [CrossRef]
- Feng, J.; Peng, L.; Wu, C.; Sun, X.; Hu, S.; Lin, C.; Dai, J.; Yang, J.; Xie, Y. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 2012, 24, 1969–1974. [Google Scholar] [CrossRef]
- Sajid, M.; Siddiqui, G.U.; Kim, S.W.; Na, K.H.; Choi, Y.S.; Choi, K.H. Thermally modified amorphous polyethylene oxide thin films as highly sensitive linear humidity sensors. Sens. Actuators A Phys. 2017, 265, 102–110. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Lu, N.; Xu, Q.; Chen, G.; Zhou, Y.; Lu, J.; Gu, C.; Fan, Z. A flexible humidity sensor based on silver nanowires and polyimide. Mater. Res. Express 2019, 7, 025609. [Google Scholar]
- Khot, L.R.; Nemade, K.R.; Ghotekar, S.K. Graphene-based room temperature humidity sensor for biomedical applications. J. Mater. Sci. Mater. Electron. 2020, 31, 16803–16810. [Google Scholar]
- Chakraborty, S.; Pal, S.; Banerjee, D. Dandelion-like α-Fe2O3 microsphere coated thermoresponsive core-sheath electrospun nanofiber for high-performance humidity sensor. Sens. Actuators B Chem. 2021, 334, 129688. [Google Scholar]
- Hossain, M.M.; Kim, S.; Kim, J.H.; Lee, J.J. Self-Powered Triboelectric Nanogenerator-Based Humidity Sensor Fabricated Using Layer-by-Layer Assembly of GO and PEDOT:PSS. Sens. Actuators Phys. 2020, 303, 111856. [Google Scholar]
- Wang, Y.F.; Tachibana, S.; Sekine, T. A Printed Flexible Humidity Sensor with High Sensitivity and Fast Response Using a Cellulose Nanofiber/Carbon Black Composite. ACS Appl. Mater. Interfaces 2022, 4, 14. [Google Scholar]
- Zheng, Y. A flexible humidity sensor based on natural biocompatible silk fibroin films. Adv. Mater. Technol. 2020, 6, 2001053. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Ma, K.; Ou, J.; Mo, D.; Lian, H.; Li, X.; Cui, Z.; Luo, Y. Fast-Response Non-Contact Flexible Humidity Sensor Based on Direct-Writing Printing for Respiration Monitoring. Biosensors 2023, 13, 792. https://doi.org/10.3390/bios13080792
Chen X, Ma K, Ou J, Mo D, Lian H, Li X, Cui Z, Luo Y. Fast-Response Non-Contact Flexible Humidity Sensor Based on Direct-Writing Printing for Respiration Monitoring. Biosensors. 2023; 13(8):792. https://doi.org/10.3390/bios13080792
Chicago/Turabian StyleChen, Xiaojun, Kanglin Ma, Jialin Ou, Deyun Mo, Haishan Lian, Xin Li, Zaifu Cui, and Yihui Luo. 2023. "Fast-Response Non-Contact Flexible Humidity Sensor Based on Direct-Writing Printing for Respiration Monitoring" Biosensors 13, no. 8: 792. https://doi.org/10.3390/bios13080792
APA StyleChen, X., Ma, K., Ou, J., Mo, D., Lian, H., Li, X., Cui, Z., & Luo, Y. (2023). Fast-Response Non-Contact Flexible Humidity Sensor Based on Direct-Writing Printing for Respiration Monitoring. Biosensors, 13(8), 792. https://doi.org/10.3390/bios13080792