Recent Advances of Metal–Polyphenol Coordination Polymers for Biomedical Applications
Abstract
:1. Introduction
2. Synthesis of Metal–Polyphenols Coordination Polymers
2.1. MPCP Particles
2.1.1. MPCP Nanoparticles
2.1.2. MPCP Crystal Particles
2.1.3. Mesoporous MPCP Particles
2.2. MPCP Capsules
2.3. MPCP Films and Coatings
MPCPs | Metal Ions | Polyphenols | Structure | Size (nm) | Fabrication Method | Ref. |
---|---|---|---|---|---|---|
SmIII-EC | Sm3+ | EC | nanoparticle | ~50 | one-pot method | [21] |
SmIII-EGCG | Sm3+ | EGCG | nanoparticle | ~61 | one-pot method | [22] |
AQ4N-Cu(II)-gossypol | Cu2+ | gossypol | nanoparticle | ~88 | one-pot method | [23] |
Fe-CPNDs | Fe3+ | GA | nanoparticle | ~5 | self-assembly with PVP assistance | [24] |
FGPN | Fe3+ | GA | nanoparticle | ~6 | self-assembly with PVP assistance | [25] |
Fe-GA-PEG CPNs | Fe3+ | GA | nanoparticle | ~20 | self-assembly with PVP assistance | [26] |
Zn-TA | Zn2+ | TA | colloidal sphere | ~300 | sol–gel synthesis | [27] |
Gd-TA | Gd3+ | TA | colloidal nanoparticle | ~21 | sol–gel synthesis | [28] |
Fe-TA | Fe2+ | TA | colloidal nanoparticle | ~25 | sol–gel synthesis | [29] |
Gd/Fe-TA | Gd3+/Fe2+ | TA | colloidal nanoparticle | ~23 | Sol–gel synthesis | [30] |
Co-TA | Co2+ | TA | crystal particle | ~5000 | hydrothermal method | [31] |
Cu-TA | Cu2+ | TA | crystal particle | ~3000 | hydrothermal method | [32] |
Fe-EA | Fe3+ | EA | crystal particle | ~240 | self-assembly with PVP assistance | [33] |
EGCG-Fe(III) | Fe3+ | EGCG | mesoporous particles | ~2400 | hard template-based self-assembly | [34] |
AlIII-TA | Al3+ | TA | capsule | ~2500 | hard template-based self-assembly | [36] |
Fe(III)-TA | Fe3+ | TA | capsule | ~330 | hard template-based self-assembly | [37] |
E-MPNs | Fe3+ | PEG-polyphenol | capsule | 100–250 | emulsion template-based self-assembly | [39] |
PtP NPs | Fe3+ | PEG-polyphenol | capsule | ~100 | emulsion template-based self-assembly | [40] |
FeIII-TA | Fe3+ | TA | Film/coating | / | deposition | [41] |
Fe(III)-TA | Fe3+ | TA | Film/coating | / | spray method | [44] |
TA-Fe(III) | Fe3+ | TA | Film/coating | / | electrotriggered self-assembly | [45] |
3. Biomedical Applications of MPCPs
3.1. Biosensing
3.2. Drug Delivery
3.3. Bioimaging
3.3.1. Magnetic Resonance Imaging (MRI)
3.3.2. Photoacoustic Imaging (PAI)
3.3.3. Positron Emission Tomography (PET)
3.3.4. Other Imaging Modes
3.4. Tumor Therapy
3.4.1. Chemotherapy
3.4.2. Photothermal Therapy (PTT)
3.4.3. Chemodynamic Therapy (CDT)
3.4.4. Other Treatments
3.5. Antibacterial Application
MPCPs | Metal Ions | Polyphenols | Agent | Application | Ref. |
---|---|---|---|---|---|
Zn-TA | Zn2+ | TA | — | biosensing | [27] |
Cu-TA | Cu2+ | TA | — | biosensing | [32] |
AlIII-TA | Al3+ | TA | DOX | drug delivery | [36] |
PS@TA/FeIII | Fe3+ | TA | DOX | drug delivery | [65] |
MSN@MPN | Fe3+/Al3+ | TA | DOX | drug delivery | [66] |
UCNP@MSN | Cu2+ | TA | DOX | drug delivery | [67] |
Gd@PTCG | Gd3+ | EGCG | Pt-OH | MRI, chemotherapy | [72] |
AuNR@MSN@MON | Gd3+ | TA | DOX | MRI, chemotherapy | [73] |
Fe-CPNDs | Fe3+ | GA | — | MRI, PTT | [24] |
64Cu-labeled Fe-GA-PEG CPNs | 64Cu/Fe3+ | GA | — | PET, MRI, PAT, PTT | [26] |
Fe-EA NPs | Fe3+ | TA | — | MRI, PTT | [33] |
BPNS@TA-Mn | Mn2+ | TA | black phosphorus | PAI, PTT | [75] |
EGCG-Fe/PVP | Fe3+ | FGCG | — | PAI, PTT | [76] |
PPNPs | 89Zr | TA | — | PET, NIRF | [77] |
BaGdF5@MPN | Eu3+ | TA | — | CT/MRI/luminescence imaging | [78] |
SmIII-EC | Sm3+ | EC | — | chemotherapy | [21] |
SmIII-EGCG | Sm3+ | EGCG | — | chemotherapy | [22] |
AQ4N-Cu(II)-gossypol | Cu2+ | gossypol | — | chemotherapy | [23] |
Fe-CPNDs | Fe3+ | GA | PTT | [24] | |
Gd/Fe-TA | Gd3+/Fe2+ | TA | MRI, PTT | [30] | |
PTCG NPs | Fe2+/Fe3+ | EGCG | Pt-OH | chemotherapy, CDT | [72] |
EFPD | Fe2+/Fe3+ | EGCG | DOX | PTT/CDT/chemotherapy | [81] |
FeIII-TA | Fe3+ | TA | — | PTT | [84] |
GOx@ZIF@MPN | Fe2+/Fe3+ | TA | GOx | CDT | [91] |
ssPPE Lap@Fe-TA | Fe3+ | TA | β-lapachone | immunotherapy | [103] |
MPCP@HMMEs | Fe2+/Fe3+ | PEG-polyphenol | — | PDT | [107] |
MXene@EGCG | Fe2+/Fe3+ | EGCG | Ti3C2Tx MXene | CDT, PTT, PDT | [110] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Wang, C.P.; Zou, Y.; Hu, J.J.; Li, Y.W.; Cheng, Y.Y. Natural polyphenols in drug delivery systems: Current status and future challenges. Giant 2020, 3, 100022. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Kumar, A.; Kumar, S.; Chanudhary, R.K.; Gulyás, B. Nanoparticles in Practice for molecular-imaging applications: An overview. Acta Biomater. 2016, 41, 1–16. [Google Scholar] [CrossRef]
- Li, Y.; Miao, Y.; Yang, L.N.; Zhao, Y.T.; Wu, K.K.; Lu, Z.H.; Hu, Z.Q.; Guo, J.S. Recent advances in the development and antimicrobial applications of metal-phenolic networks. Adv. Sci. 2022, 9, 2202684. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, Z.; Yang, P.; Duan, G.G.; Liu, X.H.; Gu, Z.P.; Li, Y.W. Polyphenol scaffolds in tissue engineering. Mater. Horiz. 2021, 8, 145–167. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Li, P.; Wei, J. Engineering functional mesoporous materials from plant polyphenol based coordination polymers. Coord. Chem. Rev. 2022, 468, 214649. [Google Scholar] [CrossRef]
- Hong, S.; Yang, K.; Kang, B.; Lee, C.; Song, I.T.; Byun, E.; Park, K.I.; Cho, S.W.; Lee, H. Hyaluronic acid catechol: A biopolymer exhibiting a pH-dependent adhesive or cohesive property for human neural stem cell engineering. Adv. Funct. Mater. 2013, 23, 1774–1780. [Google Scholar] [CrossRef]
- Lee, H.A.; Park, E.; Lee, H. Polydopamine and its derivative surface chemistry in material science: A focused review for studies at KAIST. Adv. Mater. 2020, 32, 1907505. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Li, C.; Xu, J.L.; Wang, K.F.; Lu, X.; Zhang, H.P.; Qu, S.X.; Zhen, G.M.; Ren, F.Z. Bioadhesive microporous architectures by self-assembling polydopamine microcapsules for biomedical applications. Chem. Mater. 2015, 27, 848–856. [Google Scholar] [CrossRef]
- Xu, L.Q.; Neoh, K.G.; Kang, E.T. Natural polyphenols as versatile platforms for material engineering and surface functionalization. Prog. Polym. Sci. 2018, 87, 165–196. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, B.H.; Zhou, Y.S.; Zhou, F.; Liu, W.M.; Wang, Z.K. Mussel-inspired hydrogels: From design principles to promising applications. Chem. Soc. Rev. 2020, 49, 3605–3637. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.L.; Sun, H.L.; Alt, K.; Tardy, B.L.; Richardson, J.J.; Suma, T.; Ejima, H.; Cui, J.W.; Hagemeyer, C.E.; Caruso, F. Boronate-phenolic network capsules with dual response to acidic pH and cis-Diols. Adv. Healthc. Mater. 2015, 4, 1796–1801. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, S.; Luo, S.Y.; Wu, D.C. Therapeutic agent-based infinite coordination polymer nanomedicines for tumor therapy. Coord. Chem. Rev. 2021, 445, 214059. [Google Scholar] [CrossRef]
- Zhou, J.J.; Lin, Z.X.; Ju, Y.; Rahim, M.A.; Richardson, J.J.; Caruso, F. Polyphenol-mediated assembly for particle engineering. Acc. Chem. Res. 2020, 53, 1269–1278. [Google Scholar] [CrossRef]
- Guo, Y.X.; Sun, Q.; Wu, F.G.; Dai, Y.L.; Chen, X.Y. Polyphenol-containing nanoparticles: Synthesis, properties, and therapeutic delivery. Adv. Mater. 2021, 33, 2007356. [Google Scholar] [CrossRef]
- Yun, G.; Besford, Q.A.; Johnston, S.T.; Richardson, J.J.; Pan, S.J.; Biviano, M.; Caruso, F. Self-assembly of nano- to macroscopic metal-phenolic materials. Chem. Mater. 2018, 30, 5750–5758. [Google Scholar] [CrossRef]
- Xu, J.T.; Wang, J.; Ye, J.; Jiao, J.; Liu, Z.G.; Zhao, C.J.; Li, B.; Fu, Y.J. Metal-coordinated supramolecular self-assemblies for cancer theranostics. Adv. Sci. 2021, 8, 2101101. [Google Scholar] [CrossRef]
- Xie, W.S.; Guo, Z.H.; Zhao, L.Y.; Wei, Y. Metal-phenolic networks: Facile assembled complexes for cancer theranostics. Theranostics 2021, 11, 6407–6426. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, L.S.; Ju, Y.; Dai, Y.L. Recent advances in metal-phenolic networks for cancer theranostics. Small 2021, 17, 2100314. [Google Scholar] [CrossRef]
- Liu, P.; Shi, X.; Zhong, S.; Peng, Y.; Qi, Y.; Ding, J.; Zhou, W. Metal-phenolic networks for cancer theranostics. Biomater. Sci. 2021, 9, 2825–2849. [Google Scholar] [CrossRef]
- Li, K.; Dai, Y.L.; Chen, W.; Yu, K.; Xiao, G.; Richardson, J.J.; Huang, W.; Guo, J.L.; Liao, X.P.; Shi, B. Self-assembled metal-phenolic nanoparticles for enhanced synergistic combination therapy against colon cancer. Adv. Biosyst. 2019, 3, 1800241. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xiao, G.; Richardson, J.J.; Tardy, B.L.; Ejima, H.; Huang, W.; Guo, J.L.; Liao, X.P.; Shi, B. Targeted therapy against metastatic melanoma based on self-assembled metal-phenolic nanocomplexes comprised of green tea catechin. Adv. Sci. 2019, 6, 1801688. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.H.; Wu, Y.S.; Li, K.; Wang, Y.; Wu, J.; Zeng, Y.; Wu, D.C. Versatile hyaluornic acid modified AQ4N-Cu(II)-gossypol infinite coordination polymer nanoparticles: Mulitiple tumor targeting, highle efficient synergistic chemotherapy and real-time self-montoring. Biomaterials 2018, 154, 197–212. [Google Scholar] [CrossRef]
- Liu, F.Y.; He, X.X.; Chen, H.D.; Zhang, J.P.; Wang, Z.X. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications. Nat. Commun. 2015, 6, 8003. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Chen, J.Y.; Qiu, S.S.; Wen, L.; Wu, Y.; Hou, Y.; Wang, Y.; Zeng, J.F.; Feng, Y.; Li, Z.; et al. Biodegradable nanoagents with short biological half-life for SPECT/PAI/MRI multimodality imaging and PTT therapy of tumors. Small 2018, 14, 1702700. [Google Scholar] [CrossRef]
- Jin, Q.T.; Zhu, W.J.; Jiang, D.W.; Zhang, R.; Kutyreff, C.J.; Engle, J.W.; Huang, P.; Cai, W.B.; Liu, Z.; Cheng, L. Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of 64Cu and multimodal imaging-guided photothermal therapy. Nanoscale 2017, 9, 12609–12617. [Google Scholar] [CrossRef]
- Wei, J.; Wang, G.; Chen, F.; Bai, M.; Liang, Y.; Wang, H.T.; Zhao, D.Y.; Zhao, Y.X. Sol-gel synthesis of metal-phenolic coordination spheres and their derived carbon composites. Angew. Chem. Int. Ed. 2018, 57, 9838–9843. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Liang, G.H.; Feng, Y.Y.; Feng, B.X.; Wang, G.; Wu, N.; Zhao, Y.X.; Wei, J. Synthesis of gadolinium/iron-bimetal-phenolic coordination polymer nanoparticles for theranostic applications. Nanoscale 2020, 12, 6096–6103. [Google Scholar] [CrossRef]
- Qin, J.; Liang, G.H.; Cheng, D.; Liu, Y.; Cheng, X.R.; Yang, P.K.; Wu, N.; Zhao, Y.X.; Wei, J. Controllable synthesis of iron-polyphenol colloidal nanoparticles with composition-dependent photothermal performance. J. Colloid Interface Sci. 2021, 593, 172–181. [Google Scholar] [CrossRef]
- Qin, J.; Liang, G.H.; Feng, B.X.; Wang, G.; Wu, N.; Deng, Y.H.; Elzatahryd, A.A.; Alghamdie, A.; Zhao, Y.X.; Wei, J. Facile synthesis of metal-polyphenol-formaldehyde coordination polymer colloidal nanoparticles with sub-50 nm for T1-weighted magnetic resonance imaging. Chin. Chem. Lett. 2021, 32, 842–848. [Google Scholar] [CrossRef]
- Wei, J.; Liang, Y.; Hu, Y.X.; Kong, B.; Zhang, J.; Gu, Q.F.; Tong, Y.P.; Wang, X.B.; Jiang, S.P.; Wang, H.T. Hydrothermal synthesis of metal-polyphenol coordination crystals and their derived metal/N-doped carbon composites for oxygen electrocatalysis. Angew. Chem. Int. Ed. 2016, 55, 12470–12474. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.B.; Qin, J.; Wang, G.; Guo, Z.H.; Yu, X.; Zhao, Y.X.; Wei, J. Synthesis of spiny metal-phenolic coordination crystals as a sensing platform for sequence-specific detection of nucleic acid. CrystEngComm 2018, 20, 7626–7630. [Google Scholar] [CrossRef]
- Zhao, G.Z.; Wu, H.H.; Feng, R.L.; Wang, D.D.; Xu, P.P.; Jiang, P.; Yang, K.; Wang, H.B.; Guo, Z.; Chen, Q.W. Novel metal polyphenol framework for MR imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces 2018, 10, 3295–3304. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.X.; Zhou, J.J.; Jugo, C.C.; Han, Y.Y.; Ma, Y.T.; Pan, S.J.; Hanssen, E.; Richardson, J.J.; Caruso, F. Ordered mesoporous metal-phenolic network particles. J. Am. Chem. Soc. 2020, 142, 335–341. [Google Scholar] [CrossRef]
- Guo, J.L.; Ping, Y.; Ejima, H.; Alt, K.; Meissner, M.; Richardson, J.J.; Yan, Y.; Peter, K.; Elverfeldt, D.V.; Hagemeyer, C.E.; et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem. Int. Ed. 2014, 53, 5652–5657. [Google Scholar] [CrossRef]
- Ping, Y.; Guo, J.L.; Ejima, H.; Chen, X.; Richardson, J.J.; Sun, H.; Caruso, F. pH-responsive capsules engineered from metal-phenolic networks for anticancer drug delivery. Small 2015, 11, 2032–2036. [Google Scholar] [CrossRef] [Green Version]
- Tardy, B.L.; Richardson, J.J.; Guo, J.L.; Lehtonen, J.; Ago, M.; Rojas, O.J. Lignin nano- and microparticles as template for nanostructured materials: Formation of hollow metal-phenolic capsules. Green Chem. 2018, 20, 1335–1344. [Google Scholar] [CrossRef] [Green Version]
- Hormann, K.; Zimmer, A. Drug delivery and drug targeting with parenteral lipid nanoemulsions—A review. J. Control. Release 2016, 223, 85–98. [Google Scholar] [CrossRef]
- Besford, Q.A.; Ju, Y.; Wang, T.Y.; Yun, G.; Cherepanov, P.; Hagemeyer, C.E.; Cavalieri, F.; Caruso, F. Self-assembled metal-phenolic networks on emulsions as low-fouling and pH-responsive particles. Small 2018, 4, 1802342. [Google Scholar] [CrossRef]
- Dai, Y.L.; Guo, J.L.; Wang, T.Y.; Ju, Y.; Mitchell, A.J.; Bonnard, T.; Cui, J.W.; Richardson, J.J.; Hagemeyer, C.E.; Alt, K.; et al. Self-assembled nanoparticles from phenolic derivatives for cancer therapy. Adv. Healthc. Mater. 2017, 6, 1700467. [Google Scholar] [CrossRef] [Green Version]
- Ejima, H.; Richardson, J.J.; Liang, K.; Best, J.P.; Koeverden, M.P.V.; Such, G.K.; Cui, J.W.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341, 154–157. [Google Scholar] [CrossRef]
- Rahim, M.A.; Ejima, H.; Cho, K.L.; Kempe, K.; Müllner, M.; Best, J.P.; Caruso, F. Coordination-driven multistep assembly of metal-polyphenol films and capsules. Chem. Mater. 2014, 26, 1645–1653. [Google Scholar] [CrossRef]
- Zhong, Q.Z.; Pan, S.J.; Rahim, M.A.; Yun, G.; Li, J.H.; Ju, Y.; Lin, Z.X.; Han, Y.Y.; Ma, Y.T.; Richardson, J.J.; et al. Spray assembly of metal-phenolic networks: Formation, growth, and applications. ACS Appl. Mater. Interfaces 2018, 10, 33721–33729. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Choi, S.; Moon, H.C.; Seo, H.; Kim, J.Y.; Hong, S.P.; Lee, B.S.; Kang, E.; Lee, J.; Ryu, D.H.; et al. Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: Applications to shoe insoles and fruits. Sci. Rep. 2017, 7, 6980. [Google Scholar] [CrossRef] [Green Version]
- Maerten, C.; Lopez, L.; Lupattelli, P.; Rydzek, G.; Pronkin, S.; Schaaf, P.; Jierry, L.; Boulmedais, F. Electrotriggered confined self-assembly of metal-polyphenol nanocoatings using a morphogenic approach. Chem. Mater. 2017, 29, 9668–9679. [Google Scholar] [CrossRef] [Green Version]
- Mir, S.H.; Nagahara, L.A.; Thundat, T.; Tabari, P.M.; Furukawa, H.; Khosla, A. Review-organic-inorganic hybrid functional materials: An integrated platform for applied technologies. J. Electrochem. Soc. 2018, 165, B3137–B3156. [Google Scholar] [CrossRef]
- Dai, Y.L.; Yang, Z.; Cheng, S.Y.; Wang, Z.L.; Zhang, R.L.; Zhu, G.Z.; Wang, Z.T.; Yung, B.C.; Tian, R.; Jacoson, O.; et al. Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles. Adv. Mater. 2018, 30, 1704877. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.F.; Cheng, M.; Wang, Y.; Wen, L.; Chen, L.; Li, Z.; Wu, Y.Y.; Gao, M.Y.; Chai, Z.F. pH-responsive Fe(III)-gallic acid nanoparticles for in vivo photoacoustic-imaging-guided photothermal therapy. Adv. Healthc. Mater. 2016, 5, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Wang, L.; Zou, B.C.; Ren, S.L.; Yan, Z.R.; Gao, J.F.; Zhang, R.P. Fluorescent-based nanoplatform with real-time quantification of drug release. ACS Appl. Polym. Mater. 2023, 5, 1539–1544. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, Q.; Cui, D.; Han, L.X.; Chen, L.G.; Xu, J.T.; Niu, N. Metal-polyphenol network coated magnetic hydroxyapatite for pH-activated MR imaging and drug delivery. Colloids Surf. B Biointerfaces 2023, 222, 113076. [Google Scholar] [CrossRef]
- Wu, D.; Zhou, B.; Li, J.; Wang, X.Y.; Li, B.; Liang, H.S. Coordination-driven metal polyphenolic nanoparticles toward effective anticancer therapy. Adv. Healthc. Mater. 2022, 11, 2200559. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Jia, D.; Wang, Q.M.; Sun, Y.R.; Rao, Z.N.; Lei, X.J.; Zhao, J.C.; Zeng, K.F.; Xu, Z.G.; Ming, J. Promotion of the anticancer activity of curcumin based on a metal–polyphenol networks delivery system. Int. J. Pharm. 2021, 602, 120650. [Google Scholar] [CrossRef]
- Jie, L.; Li, W.X.; Xie, L.S.; Sang, W.; Wang, G.H.; Zhang, Z.; Li, B.; Tian, H.; Yan, Y.; Tian, Y.; et al. A metal-polyphenolic nanosystem with NIR-II fluorescence-guided combined photothermal therapy and radiotherapy. Chem. Commun. 2021, 57, 11473–11476. [Google Scholar]
- Butor, I.; Jančová, P.; Purevdorj, K.; Klementová, L.; Kluz, M.; Huňová, I.; Pištěková, H.; Buňka, F.; Buňková, L. Effect of selected factors influencing biogenic amines degradation by bacillus subtilis isolated from food. Microorganisms 2023, 11, 1091. [Google Scholar] [CrossRef] [PubMed]
- Rojas, S.; Arenas, V.A.; Horcajada, P. Metal-organic frameworks: A novel platform for combined advanced therapies. Coord. Chem. Rev. 2019, 388, 202–226. [Google Scholar] [CrossRef]
- Yang, J.; Stuart, M.; Kamperman, M. Jack of all trades: Versatile catechol crosslinking mechanisms. Chem. Soc. Rev. 2014, 43, 8271–8298. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Dai, Y.; Yin, C.; Fan, Q.L.; Zhang, W.S.; Song, J.; Yu, G.C.; Tang, W.; Fan, W.P.; Yung, B.C.; et al. Activatable semiconducting theranostics: Simultaneous generation and ratiometric photoacoustic imaging of reactive oxygen species in vivo. Adv. Mater. 2018, 30, 1707509. [Google Scholar] [CrossRef]
- Bertleff-Zieschang, N.; Rahim, M.; Ju, Y. Biofunctional metal-phenolic films from dietary flavonoids. Chem. Commun. 2017, 53, 1068–1071. [Google Scholar] [CrossRef] [Green Version]
- Rahim, M.; Kempe, K.; Mullner, M. Surface-confined amorphous films from metal-coordinated simple phenolic ligands. Chem. Mater. 2015, 27, 5825–5832. [Google Scholar] [CrossRef]
- Rahim, M.; Bjornmalm, M.; Bertleff-Zieschang, N. Multiligand metal-phenolic assembly from green tea infusions. ACS Appl. Mater. Interfaces 2018, 10, 7632–7639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Q.; Geng, H.; Yu, Q.; Hao, J.C.; Cui, J.W. Polyphenol-based particles for theranostics. Theranostics 2019, 9, 3170–3190. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Shi, H.C.; Yu, H.; Zhou, R.T.; Yin, J.H.; Luan, S.F. One-step hydrophobization of tannic acid for antibacterial coating on catheters to prevent catheter-associated infections. Biomater. Sci. 2019, 7, 5035–5043. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zeng, H.; Zhu, X. Metal-organic frameworks as photoluminescent biosensing platforms: Mechanisms and applications. Chem. Soc. Rev. 2021, 50, 4484–4513. [Google Scholar] [CrossRef] [PubMed]
- Ai, H. Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 772–788. [Google Scholar] [CrossRef]
- Chen, J.P.; Pan, S.J.; Zhou, J.J.; Zhong, Q.Z.; Qu, Y.J.; Richardson, J.J.; Caruso, F. Programmable permeability of metal-phenolic network microcapsules. Chem. Mater. 2020, 32, 6975–6982. [Google Scholar] [CrossRef]
- Yang, B.; Zhou, S.; Zeng, J.; Zhan, L.P.; Zhang, R.H.; Liang, K.; Xie, L.; Shao, B.; Song, S.L.; Huang, G.; et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 2020, 13, 1013–1019. [Google Scholar] [CrossRef]
- Hu, F.; Liu, B.; Chu, H.Q.; Liu, C.; Li, Z.H.; Chen, D.Q.; Li, L.L. Real-time monitoring of pH-responsive drug release using a metal-phenolic network-functionalized upconversion nanoconstruct. Nanoscale 2019, 11, 9201–9206. [Google Scholar] [CrossRef]
- Fass, L. Imaging and cancer: A review. Mol. Oncol. 2008, 2, 115–152. [Google Scholar] [CrossRef]
- Xie, W.S.; Guo, Z.H.; Cao, Z.B.; Gao, Q.; Wang, D.; Boyer, C.; Kavallaris, M.; Sun, X.D.; Wang, X.M.; Zhao, L.Y.; et al. Manganese-based magnetic layered double hydroxide nanoparticle: A pH-sensitive and concurrently enhanced T1/T2-weighted dual-mode magnetic resonance imaging contrast agent. ACS Biomater. Sci. Eng. 2019, 5, 2555–2562. [Google Scholar] [CrossRef]
- Li, C. A targeted approach to cancer imaging and therapy. Nat. Mater. 2014, 13, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Wu, C.; Wang, S. Comparative study on in vivo behavior of PEGylated gadolinium oxide nanoparticles and magnevist as MRI contrast agent. Nanomedicine 2018, 14, 547–555. [Google Scholar] [CrossRef]
- Ren, Z.G.; Sun, S.C.; Sun, R.R.; Cui, G.Y.; Hong, L.J. A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy. Adv. Mater. 2020, 32, 1906024. [Google Scholar] [CrossRef]
- Fan, J.X.; Zheng, D.W.; Mei, W.W.; Chen, S.; Chen, S.Y.; Cheng, S.X.; Zhang, X.Z. A metal-polyphenol network coated nanotheranostic system for metastatic tumor treatments. Small 2017, 13, 1702714. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.; Beard, P.; Bohndiek, Q. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, T.; Lin, Y.; Jin, G.; Weng, R.G.; Song, J.B.; Liu, X.Z.; Huang, G.M.; Huo, L.; Yang, H.H. Manganese-phenolic network-coated black phosphorus nanosheets for theranostics combining magnetic resonance/photoacoustic dual-modal imaging and photothermal therapy. Chem. Commun. 2019, 55, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Luo, K.; Lin, X.C.; Zhu, C.L. Multifunctional ultra-small nanocomplexes capping mesoporous silica nanoparticles for multimodal imaging and chemo-photothermal therapy. ChemNanoMat 2019, 5, 1115–1122. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yan, J.J.; Pan, D.H.; Yang, R.L.; Wang, L.Z.; Xu, Y.P.; Sheng, J.; Yue, Y.Y.; Huang, Q.H.; Wang, Y.T.; et al. Polyphenol-poloxamer self-assembled supramolecular nanoparticles for tumor NIRF/PET imaging. Adv. Healthc. Mater. 2018, 7, 1701505. [Google Scholar] [CrossRef]
- Zhu, W.; Liang, S.; Wang, J.; Yang, Z.; Zhang, L.; Yuan, T.M.; Xu, Z.S.; Li, P.H. Europium-phenolic network coated BaGdF5 nanocomposites for tri-modal computed tomography/magnetic resonance/luminescence imaging. J. Mater. Sci. Mater. Med. 2017, 28, 74. [Google Scholar] [CrossRef]
- Guo, J.L.; Wang, X.W.; Henstridge, D.C.; Richardson, J.J.; Cui, J.W.; Sharma, A.; Febbraio, M.A.; Peter, K.; Haan, J.B.; Hagemeyer, C.E.; et al. Nanoporous metal-phenolic particles as ultrasound imaging probes for hydrogen peroxide. Adv. Healthc. Mater. 2015, 4, 2170–2175. [Google Scholar] [CrossRef]
- Mu, M.; Liang, X.; Chuan, D.; Zhao, S.; Yu, W.; Fan, R.; Tong, A.; Zhao, N.; Han, B.; Guo, G. Chitosan coated pH-responsive metal-polyphenol delivery platform for melanoma chemotherapy. Carbohydr. Polym. 2021, 264, 118000. [Google Scholar] [CrossRef]
- Shi, H.; Wang, R.; Cao, H.C.; Guo, H.Y.; Pan, P.; Xiong, C.F.; Zhang, L.J.; Yang, Q.; Wei, S.; Liu, T. A metal-polyphenol-based oxygen economizer and Fenton reaction amplifier for self-enhanced synergistic photothermal/chemodynamic/chemotherapy. Adv. Healthc. Mater. 2023, 12, 2300054. [Google Scholar] [CrossRef]
- Chen, Z.X.; Li, J.L.; Pan, P.; Bao, P.; Zeng, X. Combination gut microbiota modulation and chemotherapy for orthotopic colorectal cancer therapy. Nano Today 2021, 41, 101329. [Google Scholar] [CrossRef]
- Liu, Y.J.; Bhattarai, P.; Dai, Z.F.; Chen, X.Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, M.K.; Liu, W.L.; Zeng, X.; Song, X.L.; Yang, X.Q.; Zhang, X.Z.; Feng, J. Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications. ACS Nano 2018, 12, 3917–3927. [Google Scholar] [CrossRef]
- Su, J.; Liao, T.; Ren, Z.; Kuang, Y.; Yu, W.; Qiao, Q.; Jiang, B.; Chen, X.; Xu, Z.; Li, Z.C. Polydopamine nanoparticles coated with a metal-polyphenol network for enhanced photothermal/chemodynamic cancer combination therapy. Int. J. Biol. Macromol. 2023, 238, 124088. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Luo, Z.; Liu, Q.; Wang, C.; Zhou, F.; Zhou, M. Metal-polyphenol polymer modified polydopamine for chemo-photothermal therapy. Front. Chem. 2023, 11, 1124448. [Google Scholar] [CrossRef]
- Wang, T.; Yang, J.; Kang, H.; Zhang, L.; Chen, H. Facile preparation of a novel hyaluronic acid-modified metal-polyphenol photothermal nanoformulation for tumor therapy. Int. J. Biol. Macromol. 2022, 222, 3066–3076. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Z.; Ma, M.; Liang, K.C.; Shen, J.; Lan, Z.Y.; Chen, H.G. A self-assembled metal-polyphenolic nanomedicine for mild photothermal-potentiated chemodynamic therapy of tumors. Appl. Mater. Today 2021, 25, 101235. [Google Scholar] [CrossRef]
- Wu, Y.C.; Zhu, J.Q.; Li, Q.Z.; Yang, M.Y.; Sun, X.; Zheng, G.J.; Du, F.Y.; Zhang, M.M. Fabrication of manganese-coordinated polyphenol carbon dots for photothermal therapy and immune activation. Cancer Nanotechnol. 2022, 13, 30. [Google Scholar] [CrossRef]
- Zhang, C.; Bu, W.B.; Ni, D.L.; Zhang, S.J.; Li, Q.; Yao, Z.W.; Zhang, J.W.; Yao, H.L.; Wang, Z.; Shi, J.L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem. Int. Ed. 2016, 55, 2101–2106. [Google Scholar] [CrossRef]
- Zhang, L.; Wan, S.S.; Li, C.X.; Xu, L.; Cheng, H.; Zhang, X.Z. An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion. Nano Lett. 2018, 18, 7609–7618. [Google Scholar] [CrossRef]
- Guo, Y.X.; Jia, H.R.; Zhang, X.D.; Zhang, X.P.; Sun, Q.; Wang, S.Z.; Zhao, J.; Wu, F.G. A glucose/oxygen-exhausting nanoreactor for starvation and hypoxia-activated sustainable and cascade chemo-chemodynamic therapy. Small 2020, 16, 2000897. [Google Scholar] [CrossRef] [PubMed]
- Chuan, D.; Hou, H.; Wang, Y.L.; Mu, M.; Li, J.L.; Ren, Y.M.; Zhao, N.; Han, B.; Chen, H.F.; Guo, G. Multifunctional metal-polyphenol nanocomposite for melanoma targeted photo/chemodynamic synergistic therapy. J. Mater. Sci. Technol. 2023, 152, 159–168. [Google Scholar] [CrossRef]
- Shi, D.W.; Li, S.Y.; Liu, W.H.; Song, L.; Xu, R. Metal-phenolic network pH-sensitive nanoparticle-enabled chemo/chemodynamic therapy for lung cancer. Mater. Des. 2023, 231, 112072. [Google Scholar] [CrossRef]
- Xing, C.; Lin, Q.T.; Chen, Y.T.; Zeng, S.J.; Wang, J.; Lu, C.H. A smart metal-polyphenol-DNAzyme nanoplatform for gene-chemodynamic synergistic tumor therapy. Acta Biomater. 2023, 167, 564–573. [Google Scholar] [CrossRef]
- Dai, Y.L.; Cheng, S.Y.; Wang, Z.L.; Zhang, R.L.; Yang, Z.; Wang, J.J.; Yung, B.C.; Wang, Z.T.; Jacobson, O.; Xu, C.; et al. Hypochlorous acid promoted platinum drug chemotherapy by myeloperoxidase-encapsulated therapeutic metal phenolic nanoparticles. ACS Nano 2018, 12, 455–463. [Google Scholar] [CrossRef]
- Duan, J.L.; Liao, T.; Xu, X.Y.; Liu, Y.; Kuang, Y.; Li, C. Metal-polyphenol nanodots loaded hollow MnO2 nanoparticles with a “dynamic protection” property for enhanced cancer chemodynamic therapy. J. Colloid Interface Sci. 2023, 634, 836–851. [Google Scholar] [CrossRef]
- Feng, W.J.; Shi, W.R.; Wang, Z.; Cui, Y.Q.; Shao, X.X.; Liu, S.W.; Rong, L.; Liu, Y.; Zhang, H. Enhancing tumor therapy of Fe(III)-shikonin supramolecular nanomedicine via triple ferroptosis amplification. ACS Appl. Mater. 2022, 14, 37540–37552. [Google Scholar] [CrossRef]
- Peng, M.R.; Ju, E.G.; Xu, Y.T.; Wang, Y.Q.; Lv, S.X.; Shao, D.; Wang, H.X.; Tao, Y.; Zheng, Y.; Li, M.Q. Dual-responsive disassembly of core-shell nanoparticles with self-supplied H2O2 and autocatalytic Fenton reaction for enhanced chemodynamic therapy. NPG Asia Mater. 2022, 14, 95. [Google Scholar] [CrossRef]
- You, J.; Yuan, F.; Cheng, S.S.; Kong, Q.Q.; Jiang, Y.L.; Luo, X.Z.; Xian, Y.Z.; Zhang, C.L. Aiegen-based sp2 carbon-conjugated covalent organic frameworks with high stability and emission for activatable imaging and ferroptosis in target tumor cells. Chem. Mater. 2022, 34, 7078–7089. [Google Scholar] [CrossRef]
- Wang, X.L.; Chen, Z.G.; Zhang, C.; Zhang, C.G.; Ma, G.L.; Yang, J.; Wei, X.Q.; Sun, H.F. A generic coordination assembly-enabled nanocoating of individual tumor cells for personalized immunotherapy. Adv. Healthc. Mater. 2019, 8, 1900474. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, S.; Li, Q.; Yang, M.; Qiu, X.; Yu, B.; Wu, C.; Su, Z.; Du, F.; Zhang, M. Bimetallic infinite coordination nanopolymers via phototherapy and sting activation for eliciting robust antitumor immunity. J. Colloid Interface Sci. 2023, 642, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhu, Y.Q.; Su, M.; Chen, J.B.; Shen, S.; Xu, C.F.; Yang, X.Z. Rigid shell decorated nanodevice with Fe/H2O2 supply and glutathione depletion capabilities for potentiated ferroptosis and synergized immunotherapy. Adv. Funct. Mater. 2023, 33, 2215022. [Google Scholar] [CrossRef]
- Björnmalm, M.; Wong, L.; Wojciechowski, J.; Penders, J.; Horgan, C.C.; Booth, M.A.; Martin, N.G.; Sattler, S.; Stevens, M.M. In vivo biocompatibility and immunogenicity of metal-phenolic gelation. Chem. Sci. 2019, 10, 10179–10194. [Google Scholar] [CrossRef]
- Xiang, J.; Zhang, Y.; Liu, X.; Zhou, Q.; Piao, Y.; Shao, S.; Tang, J.; Zhou, Z.; Xie, Y.; Shen, Y. Natural polyphenols-platinum nanocomplexes stimulate immune system for combination cancer therapy. Nano Lett. 2022, 22, 5615–5625. [Google Scholar] [CrossRef]
- Fan, W.P.; Huang, P.; Chen, X.Y. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6488–6519. [Google Scholar] [CrossRef]
- Wei, Y.Q.; Wei, Z.Z.; Luo, P.C.; Wei, W.; Liu, S.Q. pH-sensitive metal-phenolic network capsules for targeted photodynamic therapy against cancer cells. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1552–1561. [Google Scholar] [CrossRef]
- Li, X.Y.; Gao, P.; Tan, J.Y.; Xiong, K.Q.; Maitz, M.F.; Pan, C.J.; Wu, H.K.; Chen, Y.; Yang, Z.L.; Huang, N. Assembly of metal-phenolic/catecholamine networks for synergistically anti-inflammatory, antimicrobial, and anticoagulant coatings. ACS Appl. Mater. Interfaces 2018, 10, 40844–40853. [Google Scholar] [CrossRef]
- Wei, H.; Qin, J.; Huang, Q.; Jin, Z.; Zheng, L.; Zhao, J.; Qin, Z. Epigallocatechin-3-gallate (EGCG) based metal-polyphenol nanoformulations alleviates chondrocytes inflammation by modulating synovial macrophages polarization. Biomed. Pharmacother. 2023, 161, 114366. [Google Scholar] [CrossRef]
- Liao, T.; Chen, Z.; Kuang, Y.; Ren, Z.; Yu, W.; Rao, W.; Li, L.; Liu, Y.; Xu, Z.; Jiang, B.; et al. Small-size Ti3C2Tx MXene nanosheets coated with metal-polyphenol nanodots for enhanced cancer photothermal therapy and anti-inflammation. Acta Biomater. 2023, 159, 312–323. [Google Scholar] [CrossRef]
- Huo, J.; Jia, Q.; Wang, K.; Chen, J.; Zhang, J.; Li, P.; Huang, W. Metal-phenolic networks assembled on TiO2 nanospikes for antimicrobial peptide deposition and osteoconductivity enhancement in orthopedic applications. Langmuir 2023, 39, 1238–1249. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.Y.; Li, L.; Guo, F.; Ma, L.; Fu, P.; Wang, Y.B. Chitosan coated bacteria responsive metal-polyphenol coating as efficient platform for wound healing. Compos. Part B 2022, 234, 109665. [Google Scholar] [CrossRef]
- Liu, N.; Zhu, S.; Deng, Y.; Xie, M.; Zhao, M.; Sun, T.; Yu, C.; Zhong, Y.; Guo, R.; Cheng, K.; et al. Construction of multifunctional hydrogel with metal-polyphenol capsules for infected full-thickness skin wound healing. Bioact. Mater. 2022, 13, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Huang, L.; Sun, D.W.; Pu, H. Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity. J. Hazard. Mater. 2022, 426, 127824. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Zhang, Q.; Sun, H.; Su, Z.; Dan, J.; Liang, Y.; Kang, Y.; Du, T.; Sun, J.; Wang, J.; et al. Glucose Oxidase-integrated metal-polyphenolic network as a microenvironment-activated cascade nanozyme for hyperglycemic wound disinfection. ACS Biomater. Sci. Eng. 2022, 8, 5145–5154. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, W.; Qu, X.; Lei, B. Bioactive anti-inflammatory thermocatalytic nanometal-polyphenol polypeptide scaffolds for MRSA-infection/tumor postsurgical tissue repair. ACS Appl. Mater. Interfaces 2022, 14, 4946–4958. [Google Scholar] [CrossRef]
- Lin, X.H.; Zhang, H.; Li, S.S.; Huang, L.; Zhang, R.R.; Zhang, L.N.; Yu, A.X.; Duan, B. Polyphenol-driving assembly for constructing chitin-polyphenol-metal hydrogel as wound dressing. Carbohydr. Polym. 2022, 290, 11944. [Google Scholar] [CrossRef]
- Guo, N.; Xia, Y.; Duan, Y.X.; Wu, Q.X.; Xiao, L.; Shi, Y.X.; Yang, B.; Liu, Y. Self-enhanced photothermal-chemodynamic antibacterial agents for synergistic anti-infective therapy. Chin. Chem. Lett. 2023, 34, 107542. [Google Scholar] [CrossRef]
- Fu, J.Y.; Zhou, Y.X.; Liu, T.; Wang, W.H.; Zhao, Y.T.; Sun, Y.; Zhang, Y.M.; Qin, W.X.; Chen, Z.W.; Lu, C.; et al. A triple-enhanced chemodynamic approach based on glucose-powered hybrid nanoreactors for effective bacteria killing. Nano Res. 2023, 16, 2682–2694. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Xiao, L.; Chen, J.; Wu, Q.X.; Yu, W.H.; Zeng, W.S.; Shi, Y.X.; Lu, Y.N.; Liu, Y. α-Fe2O3 based nanotherapeutics for near-infrared/dihydroartemisinin dual-augmented chemodynamic antibacterial therapy. Acta Biomater. 2022, 150, 367–379. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Guo, N.; Yang, J.; Chen, Y. Recent Advances of Metal–Polyphenol Coordination Polymers for Biomedical Applications. Biosensors 2023, 13, 776. https://doi.org/10.3390/bios13080776
Qin J, Guo N, Yang J, Chen Y. Recent Advances of Metal–Polyphenol Coordination Polymers for Biomedical Applications. Biosensors. 2023; 13(8):776. https://doi.org/10.3390/bios13080776
Chicago/Turabian StyleQin, Jing, Ningning Guo, Jia Yang, and Yong Chen. 2023. "Recent Advances of Metal–Polyphenol Coordination Polymers for Biomedical Applications" Biosensors 13, no. 8: 776. https://doi.org/10.3390/bios13080776
APA StyleQin, J., Guo, N., Yang, J., & Chen, Y. (2023). Recent Advances of Metal–Polyphenol Coordination Polymers for Biomedical Applications. Biosensors, 13(8), 776. https://doi.org/10.3390/bios13080776