Cobalt–Nitrogen Co-Doped Carbon as Highly Efficient Oxidase Mimics for Colorimetric Assay of Nitrite
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Co-N-C and N-C
2.2. Probing the Diazotization Reaction of oxTMB
2.3. Ratiometric Colorimetric Analysis of Nitrite
3. Result and Discussion
3.1. Synthesis and Characterization of Co-N-C
3.2. Oxidase-like Activities of Co-N-C
3.3. Cascade of Oxidase-like Catalysis and Diazotization
3.4. Co-N-C Applied in the Ratiometric Colorimetric Assay of Nitrite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zandieh, M.; Liu, J. Surface Science of Nanozymes and Defining a Nanozyme Unit. Langmuir 2022, 38, 3617–3622. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Dong, Y.; Wang, G.; Sun, K.; Shi, X.; Zheng, L.; Li, X.; Liao, S. Well-Defined ZIF-Derived Fe–N Codoped Carbon Nanoframes as Efficient Oxygen Reduction Catalysts. ACS Appl. Mater. Interfaces 2017, 9, 9699–9709. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Shi, Q.; Zhu, W.; Liu, D.; Tian, H.; Fu, S.; Cheng, N.; Li, S.; Smith, J.N.; Du, D.; et al. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 2019, 142, 111495. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, Z.; Lei, Z.; Tan, Y.; Wu, W.; Mu, S.; Cheng, N. Defect-enriched hollow porous Co–N-doped carbon for oxygen reduction reaction and Zn-Air batteries. Carbon 2020, 167, 188–195. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, R.; Yan, X.; Fan, K. Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Mater. Today 2020, 41, 81–119. [Google Scholar] [CrossRef]
- Jiang, B.; Liang, M. Advances in Single-Atom Nanozymes Research. Chin. J. Chem. 2021, 39, 174–180. [Google Scholar] [CrossRef]
- Jiao, L.; Yan, H.; Wu, Y.; Gu, W.; Zhu, C.; Du, D.; Lin, Y. When Nanozymes Meet Single-Atom Catalysis. Angew. Chem. Int. Ed. 2020, 59, 2565–2576. [Google Scholar] [CrossRef]
- Jiang, B.; Guo, Z.; Liang, M. Recent progress in single-atom nanozymes research. Nano Res. 2022, 16, 1878–1889. [Google Scholar] [CrossRef]
- He, S.; Huang, J.; Zhang, Q.; Zhao, W.; Xu, Z.; Zhang, W. Bamboo-Like Nanozyme Based on Nitrogen-Doped Carbon Nanotubes Encapsulating Cobalt Nanoparticles for Wound Antibacterial Applications. Adv. Funct. Mater. 2021, 31, 2105198. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, A.; Mao, X.; Chen, Q.; Huang, Y. Engineered Mn/Co oxides nanocomposites by cobalt doping of Mn-BTC—New oxidase mimetic for colorimetric sensing of acid phosphatase. Sens. Actuators B Chem. 2019, 299, 126928. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Dong, X.; Sun, Y. Cobalt Phosphate Nanocrystals: A Catalase-Like Nanozyme and In Situ Enzyme-Encapsulating Carrier for Efficient Chemoenzymatic Synthesis of α-Keto Acid. ACS Appl. Mater. Interfaces 2021, 13, 49974–49981. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, Z.; Ding, Z.; Wang, S.; Lu, Y. Ultrathin porous Pd metallene as highly efficient oxidase mimics for colorimetric analysis. J. Colloid Interface Sci. 2022, 626, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.M.; Park, J.H.; Yoon, K.S. Nitrite formation from vegetable sources and its use as a preservative in cooked sausage. J. Sci. Food Agric. 2017, 97, 1774–1783. [Google Scholar] [CrossRef]
- Xiang, G.; Wang, Y.; Zhang, H.; Fan, H.; Fan, L.; He, L.; Jiang, X.; Zhao, W. Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for nitrite determination in food samples. Food Chem. 2018, 260, 13–18. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, H.; Liu, B.; Hu, P.; Pan, J.; Niu, X. Bifunctional Mn-Doped N-Rich Carbon Dots with Tunable Photoluminescence and Oxidase-Mimetic Activity Enabling Bimodal Ratiometric Colorimetric/Fluorometric Detection of Nitrite. ACS Appl. Mater. Interfaces 2022, 14, 44762–44771. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Cui, M.; Liu, Y.; Wang, J.; Zhang, L.; Zhan, G. A novel electrochemical sensor based on nitrite-oxidizing bacteria for highly specific and sensitive detection of nitrites. Sci. Total Environ. 2022, 826, 154178. [Google Scholar] [CrossRef]
- Prolo, C.; Rios, N.; Piacenza, L.; Álvarez, M.N.; Radi, R. Fluorescence and chemiluminescence approaches for peroxynitrite detection. Free Radic. Biol. Med. 2018, 128, 59–68. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, H.; Liu, Y.; Zhang, Y.; Shang, M.; Wang, L.; Zhuang, Y.; Lv, X. A colorimetric and fluorescent dual-readout probe based on red emission carbon dots for nitrite detection in meat products. Food Chem. 2022, 374, 131768. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Q.; Lang, Y.; Jiang, X.; Wu, P. Rationale of 3,3′,5,5′-Tetramethylbenzidine as the Chromogenic Substrate in Colorimetric Analysis. Anal. Chem. 2020, 92, 12400–12406. [Google Scholar] [CrossRef]
- Yang, H.; Shang, L.; Zhang, Q.; Shi, R.; Waterhouse, G.I.N.; Gu, L.; Zhang, T. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zang, W.; Sumboja, A.; Ma, Y.; Zhang, H.; Wu, Y.; Wu, S.; Wu, H.; Liu, Z.; Guan, C.; Wang, J.; et al. Single Co Atoms Anchored in Porous N-Doped Carbon for Efficient Zinc–Air Battery Cathodes. ACS Catal. 2018, 8, 8961–8969. [Google Scholar] [CrossRef]
- Kang, G.; Liu, W.; Liu, F.; Li, Z.; Dong, X.; Chen, C.; Lu, Y. Single-atom Pt catalysts as oxidase mimic for p-benzoquinone and α-glucosidase activity detection. Chem. Eng. J. 2022, 449, 137855. [Google Scholar] [CrossRef]
- Gu, W.; Wu, M.; Sun, J.; Xu, J.; Zhao, T. Atomically dispersed Fe–Nx active sites within hierarchical mesoporous carbon as efficient electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 20132–20138. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Jiang, Y.; Ni, P.; Zhang, C.; Wang, B.; Chen, C.; Lu, Y. Single-atom Pd catalysts as oxidase mimics with maximum atom utilization for colorimetric analysis. Nano Res. 2022, 15, 4411–4420. [Google Scholar] [CrossRef]
- Huang, T.; Sun, Y.; Wu, J.; Jin, J.; Wei, C.; Shi, Z.; Wang, M.; Cai, J.; An, X.-T.; Wang, P.; et al. A Dual-Functional Fibrous Skeleton Implanted with Single-Atomic Co–Nx Dispersions for Longevous Li–S Full Batteries. ACS Nano 2021, 15, 14105–14115. [Google Scholar] [CrossRef]
- Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; et al. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. Angew. Chem. Int. Ed. 2016, 55, 10800–10805. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Yan, W.; Liu, X.; Yang, X.; Miao, S.; Wang, W.; Wang, A.; Zhang, T. Single-atom dispersed Co–N–C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758–5764. [Google Scholar] [CrossRef] [Green Version]
- Ji, D.; Fan, L.; Li, L.; Peng, S.; Yu, D.; Song, J.; Ramakrishna, S.; Guo, S. Atomically Transition Metals on Self-Supported Porous Carbon Flake Arrays as Binder-Free Air Cathode for Wearable Zinc–Air Batteries. Adv. Mater. 2019, 31, 1808267. [Google Scholar] [CrossRef]
- Qiu, H.-J.; Du, P.; Hu, K.; Gao, J.; Li, H.; Liu, P.; Ina, T.; Ohara, K.; Ito, Y.; Chen, M. Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn–Air Batteries. Adv. Mater. 2019, 31, 1900843. [Google Scholar] [CrossRef]
- Wan, G.; Yu, P.; Chen, H.; Wen, J.; Sun, C.-J.; Zhou, H.; Zhang, N.; Li, Q.; Zhao, W.; Xie, B.; et al. Engineering Single-Atom Cobalt Catalysts toward Improved Electrocatalysis. Small 2018, 14, 1704319. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xue, J.; Zhou, Q.; Zheng, Y.; Chen, X.; Liu, S.; Shen, Y.; Zhang, Y. The Fe-N-C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug–Drug Interactions. Angew. Chem. Int. Ed. 2020, 59, 14498–14503. [Google Scholar] [CrossRef] [PubMed]
- Long, R.; Mao, K.; Ye, X.; Yan, W.; Huang, Y.; Wang, J.; Fu, Y.; Wang, X.; Wu, X.; Xie, Y.; et al. Surface Facet of Palladium Nanocrystals: A Key Parameter to the Activation of Molecular Oxygen for Organic Catalysis and Cancer Treatment. J. Am. Chem. Soc. 2013, 135, 3200–3207. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Liu, X.; Liu, X.; Ling, C.; Wei, K.; Zhan, G.; Guo, Y.; Zhang, L. Adjacent single-atom irons boosting molecular oxygen activation on MnO2. Nat. Commun. 2021, 12, 5422. [Google Scholar] [CrossRef]
- Jin, T.; Li, Y.; Jing, W.; Li, Y.; Fan, L.; Li, X. Cobalt-based metal organic frameworks: A highly active oxidase-mimicking nanozyme for fluorescence “turn-on” assays of biothiol. Chem. Commun. 2020, 56, 659–662. [Google Scholar] [CrossRef]
- Sun, L.; Li, W.; Liu, Z.; Zhou, Z.; Feng, Y. Iodine-doped single-atom cobalt catalysts with boosted antioxidant enzyme-like activity for colitis therapy. Chem. Eng. J. 2023, 453, 139870. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Q.; Lu, Y.; Zhang, X.; Huang, Y. Rational Design of N-Doped Carbon Nanocage-Equipped Co-Nx Active Sites for Oxidase Mimicking and Sensing Applications. ACS Sustain. Chem. Eng. 2021, 9, 7668–7677. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Jia, G.; Zheng, L.; Zhao, J.; Cui, X. Elucidating the mechanism of the structure-dependent enzymatic activity of Fe–N/C oxidase mimics. Chem. Commun. 2019, 55, 5271–5274. [Google Scholar] [CrossRef]
- Kim, M.S.; Cho, S.; Joo, S.H.; Lee, J.; Kwak, S.K.; Kim, M.I.; Lee, J. N- and B-Codoped Graphene: A Strong Candidate To Replace Natural Peroxidase in Sensitive and Selective Bioassays. ACS Nano 2019, 13, 4312–4321. [Google Scholar] [CrossRef]
- Herrmann, S.S.; Granby, K.; Duedahl-Olesen, L. Formation and mitigation of N-nitrosamines in nitrite preserved cooked sausages. Food Chem. 2015, 174, 516–526. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.M.; Miller, M.L.; McCord, B.R.; McCollam, D.A.; Mushrush, G.W. A Multicomponent Mobile Phase for Ion Chromatography Applied to the Separation of Anions from the Residue of Low Explosives. Anal. Chem. 2000, 72, 2302–2307. [Google Scholar] [CrossRef] [PubMed]
- Antczak-Chrobot, A.; Bąk, P.; Wojtczak, M. The use of ionic chromatography in determining the contamination of sugar by-products by nitrite and nitrate. Food Chem. 2018, 240, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Melanson, J.E.; Lucy, C.A. Ultra-rapid analysis of nitrate and nitrite by capillary electrophoresis. J. Chromatogr. A 2000, 884, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Merusi, C.; Corradini, C.; Cavazza, A.; Borromei, C.; Salvadeo, P. Determination of nitrates, nitrites and oxalates in food products by capillary electrophoresis with pH-dependent electroosmotic flow reversal. Food Chem. 2010, 120, 615–620. [Google Scholar] [CrossRef]
- Wu, H.; Fan, S.; Jin, X.; Zhang, H.; Chen, H.; Dai, Z.; Zou, X. Construction of a Zinc Porphyrin–Fullerene-Derivative Based Nonenzymatic Electrochemical Sensor for Sensitive Sensing of Hydrogen Peroxide and Nitrite. Anal. Chem. 2014, 86, 6285–6290. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, S.; Liu, Y.; Zhang, X.; Tang, Y.; Chai, H.; Huang, Y. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B Chem. 2020, 305, 127511. [Google Scholar] [CrossRef]
- Kong, X.-J.; Yu, R.; Chen, T.-L.; Hu, Y.-H.; Fang, Y.-Z.; Xiao, Q. Dual-responsive ratiometric fluorescence detection of Ce4+ and ascorbic acid by regulating oxidase-mimicking activity of Ce4+-based nanocomplex. Sens. Actuators B Chem. 2023, 377, 133087. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, H.; Shi, W.; Liu, H.; Huang, Y. Fe–Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing. Chem. Commun. 2013, 49, 5013–5015. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhang, D.; Chen, C. Intrinsic oxidase-like nanoenzyme Co4S3/Co(OH)2 hybrid nanotubes with broad-spectrum antibacterial activity. ACS Appl. Mater. Interfaces 2020, 12, 29614–29624. [Google Scholar] [CrossRef]
- Wu, Y.; Jiao, L.; Luo, X.; Xu, W.; Wei, X.; Wang, H.; Yan, H.; Gu, W.; Xu, B.Z.; Du, D.; et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 2019, 15, 1903108. [Google Scholar] [CrossRef]
- Ponlakhet, K.; Phooplub, K.; Phongsanam, N.; Phongsraphang, T.; Phetduang, S.; Surawanitkun, C.; Buranachai, C.; Loilome, W.; Ngeontae, W. Smartphone-based portable fluorescence sensor with gold nanoparticle mediation for selective detection of nitrite ions. Food Chem. 2022, 384, 132478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, X.; Kong, W.; Zhao, Y.; Xia, L.; Qu, F. An enhanced-stability metal–organic framework of NH2-MIL-101 as an improved fluorescent and colorimetric sensor for nitrite detection based on diazotization reaction. Sens. Actuators B Chem. 2023, 386. [Google Scholar] [CrossRef]
- Chen, Y.L.; Shen, C.H.; Huang, C.W.; Kung, C.W. Terbium-modified two-dimensional zirconium-based metal–organic frameworks for photoluminescence detection of nitrite. Mol. Syst. Des. Eng. 2023, 8, 330–340. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.Y.; Wang, Q.; Zou, J.; Liao, G.P.; Li, M.T.; Liu, X.L.; Xia, H.; Xu, F.J. Metal–organic cages ZrT-1-NH2 for rapid and selective sensing of nitrite. Chin. J. Anal. Chem. 2023, 51. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, S.; Wang, G.; Zhang, Y.; Zhao, H. Fluorescence determination of nitrite in water using prawn-shell derived nitrogen-doped carbon nanodots as fluorophores. ACS Sens. 2016, 1, 875–881. [Google Scholar] [CrossRef]
- Deng, H.-H.; Huang, K.-Y.; Zhang, M.-J.; Zou, Z.-Y.; Xu, Y.-Y.; Peng, H.-P.; Chen, W.; Hong, G.-L. Sensitive and selective nitrite assay based on fluorescent gold nanoclusters and Fe2+/Fe3+ redox reaction. Food Chem. 2020, 317, 126456. [Google Scholar] [CrossRef] [PubMed]
- Pol, R.; Diez, L.; Gabriel, D.; Baeza, M. Versatile three-dimensional-printed platform for nitrite ion analyses using a smartphone with real-time location. Anal. Chem. 2019, 91, 13916–13923. [Google Scholar] [CrossRef]
- Wang, M.; Liu, P.; Zhu, H.; Liu, B.; Niu, X. Ratiometric colorimetric detection of nitrite realized by stringing nanozyme catalysis and diazotization together. Biosensors 2021, 11, 280. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Liu, J.; Gui, J.; Liu, M.; Zhang, Y.; Yao, S. The target-induced redox and diazotized reaction for colorimetric ratio detection of nitrite using CoOOH nanosheets as mimetic oxidase. Talanta 2023, 258, 124458. [Google Scholar] [CrossRef]
- Hong, C.; Li, D.; Cao, S.; Huang, X.; Yang, H.; Yang, D.; Huang, Z.; Cai, R.; Tan, W. Sensitive and multicolor detection of nitrite based on iodide-mediated etching of gold nanostars. Chem. Commun. 2022, 58, 12983–12986. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Chen, Y.-C.; Chuang, W.-S.; Li, J.-H.; Wang, Y.-S.; Chuang, C.-H.; Chen, C.-Y.; Kung, C.-W. Pore-confined silver nanoparticles in a porphyrinic metal–organic framework for electrochemical nitrite detection. ACS Appl. Nano Mater. 2020, 3, 9440–9448. [Google Scholar] [CrossRef]
- Lete, C.; Chelu, M.; Marin, M.; Mihaiu, S.; Preda, S.; Anastasescu, M.; Calderón-Moreno, J.M.; Dinulescu, S.; Moldovan, C.; Gartner, M. Nitrite electrochemical sensing platform based on tin oxide films. Sens. Actuators B Chem. 2020, 316. [Google Scholar] [CrossRef]
- Gao, B.; Zhao, X.; Liang, Z.; Wu, Z.; Wang, W.; Han, D.; Niu, L. CdS/TiO2 nanocomposite-based photoelectrochemical sensor for a sensitive determination of nitrite in principle of etching reaction. Anal. Chem. 2021, 93, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, R.; Dong, C.; Cheng, F.; Guo, Y. Sensitive electrochemical sensor for nitrite ions based on rose-like AuNPs/MoS2/graphene composite. Biosens. Bioelectron. 2019, 142, 111529. [Google Scholar] [CrossRef]
Sample | Added (µM) | Detected (µM) | Recovery (%) | RSD (%, n = 3) |
---|---|---|---|---|
0 | 7.44 | NA | 1.3 | |
Pickled quail eggs | 50 | 59.06 | 110.8 | 1.7 |
100 | 108.97 | 108.9 | 4.4 | |
0 | 0.49 | NA | 0.1 | |
Preserved sausage | 50 | 51.05 | 102.1 | 1.5 |
100 | 100.25 | 100.3 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, D.; Wu, S.; Chu, S.; Lu, Y. Cobalt–Nitrogen Co-Doped Carbon as Highly Efficient Oxidase Mimics for Colorimetric Assay of Nitrite. Biosensors 2023, 13, 748. https://doi.org/10.3390/bios13070748
Lin D, Wu S, Chu S, Lu Y. Cobalt–Nitrogen Co-Doped Carbon as Highly Efficient Oxidase Mimics for Colorimetric Assay of Nitrite. Biosensors. 2023; 13(7):748. https://doi.org/10.3390/bios13070748
Chicago/Turabian StyleLin, Dalei, Shuzhi Wu, Shushu Chu, and Yizhong Lu. 2023. "Cobalt–Nitrogen Co-Doped Carbon as Highly Efficient Oxidase Mimics for Colorimetric Assay of Nitrite" Biosensors 13, no. 7: 748. https://doi.org/10.3390/bios13070748
APA StyleLin, D., Wu, S., Chu, S., & Lu, Y. (2023). Cobalt–Nitrogen Co-Doped Carbon as Highly Efficient Oxidase Mimics for Colorimetric Assay of Nitrite. Biosensors, 13(7), 748. https://doi.org/10.3390/bios13070748