A Methylene Blue-Enhanced Nanostructured Electrochemical Immunosensor for H-FABP Myocardial Injury Biomarker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Electrochemical Measurements and Equipment
2.3. PTh Film and Nanostructured Platform Preparation
2.4. The Anti-H-FABP Immobilization and Blocking of Non-Specific Bindings
2.5. Analytical Responses to the H-FABP
3. Results and Discussion
3.1. PTh Film Electrosynthesis
3.2. Assembly of the CNT@MB Nanostructures on PTh Films
Morphological Characterization
3.3. Anti-H-FABP Antibodies Immobilization
3.4. Analytical Response to the H-FABP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Musher, D.M.; Abers, M.S.; Corrales-Medina, V.F. Acute Infection and Myocardial Infarction. N. Engl. J. Med. 2019, 380, 171–177. [Google Scholar] [CrossRef]
- Thiele, H.; Ohman, E.M.; De Waha-Thiele, S.; Zeymer, U.; Desch, S. Management of Cardiogenic Shock Complicating Myocardial Infarction: An Update 2019. Eur. Heart J. 2019, 40, 2671–2683. [Google Scholar] [CrossRef]
- Otaki, Y.; Watanabe, T.; Kubota, I. Heart-Type Fatty Acid-Binding Protein in Cardiovascular Disease: A Systemic Review. Clin. Chim. Acta 2017, 474, 44–53. [Google Scholar] [CrossRef]
- Saleh, M.; Ambrose, J.A. Understanding Myocardial Infarction [Version 1; Referees: 2 Approved]. F1000Research 2018, 7, 1378. [Google Scholar] [CrossRef]
- Jaffe, A.S. Third Universal Definition of Myocardial Infarction. Clin. Biochem. 2013, 46, 1–4. [Google Scholar] [CrossRef]
- Brieger, D.; Eagle, K.A.; Goodman, S.G.; Steg, P.G.; Budaj, A.; White, K.; Montalescot, G. Acute Coronary Syndromes without Chest Pain, An Underdiagnosed and Undertreated High-Risk Group: Insights from The Global Registry of Acute Coronary Events. Chest 2004, 126, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Giannitsis, A.T. Microfabrication of Biomedical Lab-on-Chip Devices. A Review. Est. J. Eng. 2011, 17, 109–139. [Google Scholar] [CrossRef]
- Aldous, S.J. Cardiac Biomarkers in Acute Myocardial Infarction. Int. J. Cardiol. 2013, 164, 282–294. [Google Scholar] [CrossRef]
- Rezar, R.; Jirak, P.; Gschwandtner, M.; Derler, R.; Felder, T.K.; Haslinger, M.; Kopp, K.; Seelmaier, C.; Granitz, C.; Hoppe, U.C.; et al. Heart-Type Fatty Acid-Binding Protein (H-FABP) and Its Role as a Biomarker in Heart Failure: What Do We Know So Far? J. Clin. Med. 2020, 9, 164. [Google Scholar] [CrossRef]
- Morrow, D.A. Cardiovascular Biomarkers. Pathophysiology and Disease Management. Available online: https://www.abebooks.com/servlet/BookDetailsPL?bi=2483124692&searchurl=isbn%3D9781588295262%26sortby%3D17&cm_sp=snippet-_-srp1-_-title1 (accessed on 27 August 2023).
- Ye, X.-D.; He, Y.; Wang, S.; Wong, G.T.; Irwin, M.G.; Xia, Z. Heart-Type Fatty Acid Binding Protein (H-FABP) as a Biomarker for Acute Myocardial Injury and Long-Term Post-Ischemic Prognosis. Acta Pharmacol. Sin. 2018, 39, 1155–1163. [Google Scholar] [CrossRef]
- Mechanic, O.J.; Gavin, M.; Grossman, S.A. Acute Myocardial Infarction; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Reda, A.; Moharram, M.; Soliman, M. Role of Heart Fatty Acid-Binding Protein (h-FABP-Type III) as a Diagnostic Biomarker in Acute Coronary Syndrome. Menoufia Med. J. 2016, 29, 73. [Google Scholar] [CrossRef]
- Piro, B.; Reisberg, S. Recent Advances in Electrochemical Immunosensors. Sensors 2017, 17, 794. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, B.A.G.; Trindade, E.K.G.; Cabral, D.G.A.; Soares, E.C.L.; Menezes, C.E.L.; Ferreira, D.C.M.; Mendes, R.K.; Dutra, R.F. Nanomaterials for Advancing the Health Immunosensor. In Biosensors—Micro and Nanoscale Applications; InTech: London, UK, 2015; pp. 347–374. [Google Scholar]
- Regan, B.; O’kennedy, R.; Collins, D. Point-of-Care Compatibility of Ultra-Sensitive Detection Techniques for the Cardiac Biomarker Troponin I-Challenges and Potential Value. Biosensors 2018, 8, 114. [Google Scholar] [CrossRef]
- Syedmoradi, L.; Daneshpour, M.; Alvandipour, M.; Gomez, F.A.; Hajghassem, H.; Omidfar, K. Point of Care Testing: The Impact of Nanotechnology. Biosens. Bioelectron. 2016, 87, 373–387. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Prodromidis, M.I. Electrochemical Immunosensors: Critical Survey of Different Architectures and Transduction Strategies. Trends Anal. Chem. 2015, 79, 88–105. [Google Scholar] [CrossRef]
- Wan, Y.; Su, Y.; Zhu, X.; Liu, G.; Fan, C. Development of Electrochemical Immunosensors towards Point of Care Diagnostics. Biosens. Bioelectron. 2013, 47, 1–11. [Google Scholar] [CrossRef]
- Sharma, S.; Byrne, H.; O’Kennedy, R.J. Antibodies and Antibody-Derived Analytical Biosensors. Essays Biochem. 2016, 60, 9–18. [Google Scholar] [CrossRef]
- Amani, J.; Khoshroo, A.; Rahimi-nasrabadi, M. Electrochemical Immunosensor for the Breast Cancer Marker CA 15—3 Based on the Catalytic Activity of a CuS / Reduced Graphene Oxide Nanocomposite towards the Electrooxidation of Catechol. Microchim. Acta 2018, 185, 79. [Google Scholar] [CrossRef]
- Owino, J.H.O.; Arotiba, O.A.; Hendricks, N.; Songa, E.A.; Jahed, N.; Waryo, T.T.; Ngece, R.F.; Baker, P.G.L.; Iwuoha, E.I. Electrochemical Immunosensor Based on Polythionine/Gold Nanoparticles for the Determination of Aflatoxin B 1. Sensors 2008, 8, 8262–8274. [Google Scholar] [CrossRef]
- Silva, B.V.M.; Cordeiro, M.T.; Rodrigues, M.A.B.; Marques, E.T.A.; Dutra, R.F. A Label and Probe-Free Zika Virus Immunosensor Prussian Blue@carbon Nanotube-Based for Amperometric Detection of the NS2B Protein. Biosensors 2021, 11, 157. [Google Scholar] [CrossRef]
- Trindade, E.K.G.; Silva, B.V.M.; Dutra, R.F. A Probeless and Label-Free Electrochemical Immunosensor for Cystatin C Detection Based on Ferrocene Functionalized-Graphene Platform. Biosens. Bioelectron. 2019, 138, 111311. [Google Scholar] [CrossRef]
- Dutta, G.; Lillehoj, P.B. An Ultrasensitive Enzyme-Free Electrochemical Immunosensor Based on Redox Cycling Amplification Using Methylene Blue. Analyst 2017, 142, 3492–3499. [Google Scholar] [CrossRef] [PubMed]
- Boon, E.M.; Barton, J.K.; Bhagat, V.; Nersissian, M.; Wang, W.; Hill, M.G. Reduction of Ferricyanide by Methylene Blue at a DNA-Modified Rotating-Disk Electrode. Langmuir 2003, 19, 9255–9259. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, X. Wrapping Carbon Nanotubes with Poly (Sodium 4-Styrenesulfonate) for Enhanced Adsorption of Methylene Blue and Its Mechanism. Chem. Eng. J. 2014, 256, 85–92. [Google Scholar] [CrossRef]
- Zhang, Y.; An, Y.; Wu, L.; Chen, H.; Li, Z.; Dou, H.; Murugadoss, V.; Fan, J.; Zhang, X.; Mai, X.; et al. Metal-Free Energy Storage Systems: Combining Batteries with Capacitors Based on a Methylene Blue Functionalized Graphene Cathode. J. Mater. Chem. A Mater. 2019, 7, 19668–19675. [Google Scholar] [CrossRef]
- Ghica, M.E.; Ferreira, G.M.; Brett, C.M.A. Poly(Thionine)-Carbon Nanotube Modified Carbon Film Electrodes and Application to the Simultaneous Determination of Acetaminophen and Dipyrone. J. Solid. State Electrochem. 2015, 19, 2869–2881. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, M.; Gong, K.; Su, L.; Guo, Z.; Mao, L. Adsorption of Methylene Blue Dye onto Carbon Nanotubes: A Route to an Electrochemically Functional Nanostructure and Its Layer-by-Layer Assembled Nanocomposite. Chem. Mater. 2005, 17, 3457–3463. [Google Scholar] [CrossRef]
- Gomes-Filho, S.L.R.; Dias, A.C.M.S.; Silva, M.M.S.; Silva, B.V.M.; Dutra, R.F. A Carbon Nanotube-Based Electrochemical Immunosensor for Cardiac Troponin T. Microchem. J. 2013, 109, 10–15. [Google Scholar] [CrossRef]
- Pampaloni, N.P.; Giugliano, M.; Scaini, D.; Ballerini, L.; Rauti, R. Advances in Nano Neuroscience: From Nanomaterials to Nanotools. Front. Neurosci. 2019, 12, 953. [Google Scholar] [CrossRef]
- Silva, M.M.; Dias, A.C.; Silva, B.V.; Gomes-Filho, S.L.; Kubota, L.T.; Goulart, M.O.; Dutra, R.F. Electrochemical Detection of Dengue Virus NS1 Protein with a Poly(Allylamine)/Carbon Nanotube Layered Immunoelectrode. J. Chem. Technol. Biotechnol. 2015, 90, 194–200. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2001; ISBN 9780471043720. [Google Scholar]
- Yao, H.; Li, N.; Xu, S.; Xu, J.Z.; Zhu, J.J.; Chen, H.Y. Electrochemical Study of a New Methylene Blue/Silicon Oxide Nanocomposition Mediator and Its Application for Stable Biosensor of Hydrogen Peroxide. Biosens. Bioelectron. 2005, 21, 372–377. [Google Scholar] [CrossRef]
- Dohno, C.; Stemp, E.D.A.; Barton, J.K. Fast Back Electron Transfer Prevents Guanine Damage by Photoexcited Thionine Bound to DNA. J. Am. Chem. Soc. 2003, 125, 9586–9587. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fang, Y.; Ramasamy, R. Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development. Sensors 2019, 19, 392. [Google Scholar] [CrossRef]
- Guiver, M.D.; Robertson, G.P.; Foley, S. Chemical Modification of Polysulfones II: An Efficient Method for Introducing Primary Amine Groups onto the Aromatic Chain. Macromolecules 1995, 28, 7612–7621. [Google Scholar] [CrossRef]
- Kékedy-Nagy, L.; Shipovskov, S.; Ferapontova, E.E. Electrocatalysis of Ferricyanide Reduction Mediated by Electron Transfer through the DNA Duplex: Kinetic Analysis by Thin Layer Voltammetry. Electrochim. Acta 2019, 318, 703–710. [Google Scholar] [CrossRef]
- Banu, S.; Tanveer, S.; Manjunath, C.N. Comparative Study of High Sensitivity Troponin T and Heart-Type Fatty Acid-Binding Protein in STEMI Patients Production and Hosting by Elsevier. Saudi J. Biol. Sci. 2015, 22, 56–61. [Google Scholar] [CrossRef]
- Ramaiah, J.H.; Ramegowda, R.T.; Ashalatha, B.; Ananthakrishna, R.; Nanjappa, M.C. Heart-Type Fatty Acid-Binding Protein (H-Fabp) As a Novel Biomarker for the Early Diagnosis of Acute Myocardial Infarction in Comparison with Cardiac Troponin T. J. Evol. Med. Dent. Sci. 2013, 2, 8–18. [Google Scholar] [CrossRef]
- McNaught, A.D.; Wilkinson, A. Compendium of Chemical Terminology-Gold Book; IUPAC: Durham, NC, USA, 2012. [Google Scholar] [CrossRef]
- Nič, M.; Jirát, J.; Košata, B.; Jenkins, A.; McNaught, A. (Eds.) IUPAC Compendium of Chemical Terminology; IUPAC: Durham, NC, USA, 2009; ISBN 0-9678550-9-8. [Google Scholar]
- Bank, I.E.; Dekker, M.S.; Hoes, A.W.; Zuithoff, N.P.; Whm Verheggen, P.; De Vrey, E.A.; Wildbergh, T.X.; Timmers, L.; Pv De Kleijn, D.; Fc Glatz, J.; et al. Suspected Acute Coronary Syndrome in the Emergency Room: Limited Added Value of Heart Type Fatty Acid Binding Protein Point of Care or ELISA Tests: The FAME-ER (Fatty Acid Binding Protein in Myocardial Infarction Evaluation in the Emergency Room) Study. Eur. Heart J. Acute Cardiovasc. Care 2016, 5, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, I.R.; Katrukha, A.G.; Iavelov, I.S.; Averkov, O.V.; Gratsianskiĭ, N.A. Diagnostic Value of Heart Fatty-Acid Binding Protein in Early Hospitalized Patients with Non ST Elevation Acute Coronary Syndrome. Kardiologiia 2003, 43, 4–8. [Google Scholar] [PubMed]
- Kim, Y.; Kim, H.; Kim, S.Y.; Lee, H.K.; Kwon, H.J.; Kim, Y.G.; Lee, J.; Kim, H.M.; So, B.H. Automated Heart-Type Fatty Acid-Binding Protein Assay for the Early Diagnosis of Acute Myocardial Infarction. Am. J. Clin. Pathol. 2010, 134, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Stan, D.; Mihailescu, C.-M.; Savin, R.I.M.; Ion, B.; Gavrila, R. Development of an immunoassay for impedance-based detection of heart-type fatty acid binding protein. In Proceedings of the CAS 2012 Proceedings, Sinaia, Romania, 15–17 October 2012. [Google Scholar]
- Karaman, C.; Karaman, O.; Atar, N.; Yola, M.L. Electrochemical Immunosensor Development Based on Core-Shell High-Crystalline Graphitic Carbon Nitride@carbon Dots and Cd0.5Zn0.5S/d-Ti3C2Tx MXene Composite for Heart-Type Fatty Acid-Binding Protein Detection. Microchim. Acta 2021, 188, 182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado, C.M.; Burgos Ferreira, P.A.; Alves de Lima, L.; Gomes Trindade, E.K.; Fireman Dutra, R. A Methylene Blue-Enhanced Nanostructured Electrochemical Immunosensor for H-FABP Myocardial Injury Biomarker. Biosensors 2023, 13, 873. https://doi.org/10.3390/bios13090873
Prado CM, Burgos Ferreira PA, Alves de Lima L, Gomes Trindade EK, Fireman Dutra R. A Methylene Blue-Enhanced Nanostructured Electrochemical Immunosensor for H-FABP Myocardial Injury Biomarker. Biosensors. 2023; 13(9):873. https://doi.org/10.3390/bios13090873
Chicago/Turabian StylePrado, Cecília Maciel, Paula Angélica Burgos Ferreira, Lucas Alves de Lima, Erika Ketlem Gomes Trindade, and Rosa Fireman Dutra. 2023. "A Methylene Blue-Enhanced Nanostructured Electrochemical Immunosensor for H-FABP Myocardial Injury Biomarker" Biosensors 13, no. 9: 873. https://doi.org/10.3390/bios13090873
APA StylePrado, C. M., Burgos Ferreira, P. A., Alves de Lima, L., Gomes Trindade, E. K., & Fireman Dutra, R. (2023). A Methylene Blue-Enhanced Nanostructured Electrochemical Immunosensor for H-FABP Myocardial Injury Biomarker. Biosensors, 13(9), 873. https://doi.org/10.3390/bios13090873