Biosensing Platform for the Detection of Biomarkers for ALI/ARDS in Bronchoalveolar Lavage Fluid of LPS Mice Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. Mice Preparation
2.2.2. LPS Model for ALI/ARDS
2.2.3. Bronchoalveolar Lavage Fluid (BALF)
2.2.4. Cytospin and Cell Count Differentials
2.2.5. Cytokines and Chemokine Measurements with ELISA
2.2.6. Conjugation of PR3, MMP-2 and Human NE Peptides with Magnetic Beads
2.2.7. Sensing Platform Fabrication
2.2.8. Quantitative Measurements of the Paper-Based Biosensing Platform
2.2.9. In Vitro Testing Using FRET Assay (Fluorescence Resonance Energy Transfer Sensors)
2.2.10. Statistical Analysis
3. Results and Discussion
3.1. Assessing ALI/ARDS by Evaluating TNF-α/MIP-2 in a BAL Secretion after LPS Stimulation in Mice
3.2. Quantitative Measurements for Various Proteases Using the Paper-Based Assay
3.3. Measurements of Various Proteases in ALI/ARDS-Infected Mice
3.4. Comparison of the Paper-Based Sensors with Fluorescence Resonance Energy Transfer (FRET) Sensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Force, A.D.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.; Ferguson, N.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute Respiratory Distress Syndrome. JAMA 2012, 307, 2526–2533. [Google Scholar]
- Butt, Y.; Kurdowska, A.; Allen, T.C. Acute Lung Injury: A Clinical and Molecular Review. Arch. Pathol. Lab. Med. 2016, 140, 345–350. [Google Scholar] [CrossRef]
- Grommes, J.; Soehnlein, O. Contribution of Neutrophils to Acute Lung Injury. Mol. Med. 2011, 17, 293. [Google Scholar] [CrossRef]
- Weinrauch, Y.; Drujan, D.; Shapiro, S.D.; Weiss, J.; Zychlinsky, A. Neutrophil Elastase Targets Virulence Factors of Enterobacteria. Nature 2002, 417, 91. [Google Scholar] [CrossRef]
- López-Boado, Y.S.; Espinola, M.; Bahr, S.; Belaaouaj, A. Neutrophil Serine Proteinases Cleave Bacterial Flagellin, Abrogating Its Host Response-Inducing Activity. J. Immunol. 2004, 172, 509–515. [Google Scholar] [CrossRef]
- Wiedow, O.; Meyer-Hoffert, U. Neutrophil Serine Proteases: Potential Key Regulators of Cell Signalling during Inflammation. J. Intern. Med. 2005, 257, 319–328. [Google Scholar] [CrossRef]
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; Van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef]
- Walkey Allan, J.; Summer, R.; Ho, V.; Alkana, P. Acute Respiratory Distress Syndrome: Epidemiology and Management Approaches. Clin. Epidemiol. 2012, 4, 159. [Google Scholar] [CrossRef]
- Faurschou, M.; Borregaard, N. Neutrophil Granules and Secretory Vesicles in Inflammation. Microbes Infect. 2003, 5, 1317–1327. [Google Scholar] [CrossRef]
- Stapels, D.A.; Geisbrecht, B.V.; Rooijakkers, S.H. Neutrophil Serine Proteases in Antibacterial Defense. Curr. Opin. Microbiol. 2015, 23, 42–48. [Google Scholar] [CrossRef]
- Korkmaz, B.; Horwitz, M.S.; Jenne, D.E.; Gauthier, F. Neutrophil Elastase, Proteinase 3, and Cathepsin G as Therapeutic Targets in Human Diseases. Pharmacol. Rev. 2010, 62, 726–759. [Google Scholar] [CrossRef]
- Eyles, J.L.; Roberts, A.W.; Metcalf, D.; Wicks, I.P. Granulocyte Colony-Stimulating Factor and Neutrophils—Forgotten Mediators of Inflammatory Disease. Nat. Clin. Pract. Rheumatol. 2006, 2, 500. [Google Scholar] [CrossRef]
- Kettritz, R. Neutral Serine Proteases of Neutrophils. Immunol. Rev. 2016, 273, 232–248. [Google Scholar] [CrossRef]
- Turner, A.; Karube, I.; Wilson, G.S. Biosensors: Fundamentals and Applications; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Campanelli, D.; Melchior, M.; Fu, Y.; Nakata, M.; Shuman, H.; Nathan, C.; Gabay, J.E. Cloning of Cdna for Proteinase 3: A Serine Protease, Antibiotic, and Autoantigen from Human Neutrophils. J. Exp. Med. 1990, 172, 1709–1715. [Google Scholar] [CrossRef]
- Perera, N.C.; Schilling, O.; Kittel, H.; Back, W.; Kremmer, E.; Jenne, D.E. Nsp4, an Elastase-Related Protease in Human Neutrophils with Arginine Specificity. Proc. Natl. Acad. Sci. USA 2012, 109, 6229–6234. [Google Scholar] [CrossRef]
- Campbell, E.J.; Campbell, M.A.; Owen, C.A. Bioactive Proteinase 3 on the Cell Surface of Human Neutrophils: Quantification, Catalytic Activity, and Susceptibility to Inhibition. J. Immunol. 2000, 165, 3366–3374. [Google Scholar] [CrossRef]
- Boxio, R.; Wartelle, J.; Nawrocki-Raby, B.; Lagrange, B.; Malleret, L.; Hirche, T.; Taggart, C.; Pacheco, Y.; Devouassoux, G.; Bentaher, A. Neutrophil Elastase Cleaves Epithelial Cadherin in Acutely Injured Lung Epithelium. Respir. Res. 2016, 17, 129. [Google Scholar] [CrossRef]
- Griffith, M.E.; Coulthart, A.; Pemberton, S.; George, A.J.; Pusey, C.D. Anti-Neutrophil Cytoplasmic Antibodies (Anca) from Patients with Systemic Vasculitis Recognize Restricted Epitopes of Proteinase 3 Involving the Catalytic Site. Clin. Exp. Immunol. 2001, 123, 170–177. [Google Scholar] [CrossRef]
- Corbel, M.; Boichot, E.; Lagente, V. Role of Gelatinases Mmp-2 and Mmp-9 in Tissue Remodeling Following Acute Lung Injury. Braz. J. Med. Biol. Res. 2000, 33, 749–754. [Google Scholar] [CrossRef]
- Xu, F.; Hu, Y.; Zhou, J.; Wang, X. Mesenchymal Stem Cells in Acute Lung Injury: Are They Ready for Translational Medicine? J. Cell. Mol. Med. 2013, 17, 927–935. [Google Scholar] [CrossRef]
- Chu, K.-E.; Fong, Y.; Wang, D.; Chen, C.F.; Yeh, D.Y.-W. Pretreatment of a Matrix Metalloproteases Inhibitor and Aprotinin Attenuated the Development of Acute Pancreatitis-Induced Lung Injury in Rat Model. Immunobiology 2018, 223, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, K.J.; Werb, Z.; Kheradmand, F. Matrix Metalloproteinases in Lung: Multiple, Multifarious, and Multifaceted. Physiol. Rev. 2007, 87, 69–98. [Google Scholar] [CrossRef]
- Pugin, J.; Widmer, M.C.; Kossodo, S.; Liang, C.M.; Preas, H.; Suffredini, A.F. Human Neutrophils Secrete Gelatinase B in Vitro and in Vivo in Response to Endotoxin and Proinflammatory Mediators. Am. J. Respir. Cell Mol. Biol. 1999, 20, 458–464. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, Y.; Zheng, Y.; Chai, Y.; Yuan, R. An Electrochemical Peptide Cleavage-Based Biosensor for Matrix Metalloproteinase-2 Detection with Exonuclease Iii-Assisted Cycling Signal Amplification. Chem. Commun. 2016, 52, 5943–5945. [Google Scholar] [CrossRef]
- Sheikhzadeh, E.; Beni, V.; Zourob, M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021, 230, 122026. [Google Scholar] [CrossRef]
- Wignarajah, S.; Suaifan, G.A.; Bizzarro, S.; Bikker, F.J.; Kaman, W.E.; Zourob, M. Colorimetric Assay for the Detection of Typical Biomarkers for Periodontitis Using a Magnetic Nanoparticle Biosensor. Anal. Chem. 2015, 87, 12161–12168. [Google Scholar] [CrossRef] [PubMed]
- Wanger, J.; Clausen, J.L.; Coates, A.; Pedersen, O.F.; Brusasco, V.; Burgos, F.; Casaburi, R.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.; et al. Standardisation of the Measurement of Lung Volumes. Eur. Respir. J. 2005, 26, 511–522. [Google Scholar] [CrossRef]
- Meade, M.O.; Cook, D.J.; Guyatt, G.H.; Slutsky, A.S.; Arabi, Y.M.; Cooper, D.J.; Davies, A.R.; Hand, L.E.; Zhou, Q.; Thabane, L.; et al. Ventilation Strategy Using Low Tidal Volumes, Recruitment Maneuvers, and High Positive End-Expiratory Pressure for Acute Lung Injury and Acute Respiratory Distress Syndrome: A Randomized Controlled Trial. JAMA 2008, 299, 637–645. [Google Scholar] [CrossRef]
- Slutsky, A.S. Lung Injury Caused by Mechanical Ventilation. Chest 1999, 116, S9. [Google Scholar] [CrossRef]
- Gajic, O.; Dara, S.I.; Mendez, J.L.; Adesanya, A.O.; Festic, E.; Caples, S.M.; Rana, R.; StSauver, J.L.; Lymp, J.F.; Afessa, B.; et al. Ventilator-Associated Lung Injury in Patients without Acute Lung Injury at the Onset of Mechanical Ventilation. Crit. Care Med.-Baltim. 2004, 32, 1817–1824. [Google Scholar] [CrossRef]
- Younan, D.; Griffin, R.; Zaky, A.; Pittet, J.F.; Camins, B. Burn Patients with Infection-Related Ventilator Associated Complications Have Worse Outcomes Compared to Those without Ventilator Associated Events. Am. J. Surg. 2018, 215, 678–681. [Google Scholar] [CrossRef]
- Herasevich, V.; Yilmaz, M.; Khan, H.; Hubmayr, R.D.; Gajic, O. Validation of an Electronic Surveillance System for Acute Lung Injury. Intensive Care Med. 2009, 35, 1018–1023. [Google Scholar] [CrossRef]
- Sink, T.D.; Lochmann, R.T.; Fecteau, K.A. Validation, Use, and Disadvantages of Enzyme-Linked Immunosorbent Assay Kits for Detection of Cortisol in Channel Catfish, Largemouth Bass, Red Pacu, and Golden Shiners. Fish Physiol. Biochem. 2008, 34, 95–101. [Google Scholar] [CrossRef]
- Gasanov, U.; Hughes, D.; Hansbro, P.M. Methods for the Isolation and Identification of Listeria Spp. And Listeria Monocytogenes: A Review. FEMS Microbiol. Rev. 2005, 29, 851–875. [Google Scholar] [CrossRef]
- Eissa, S.; Zourob, M. Ultrasensitive Peptide-Based Multiplexed Electrochemical Biosensor for the Simultaneous Detection of Listeria Monocytogenes and Staphylococcus Aureus. Microchim. Acta 2020, 187, 486. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Zourob, M. A Dual Electrochemical/Colorimetric Magnetic Nanoparticle/Peptide-Based Platform for the Detection of Staphylococcus Aureus. Analyst 2020, 145, 4606–4614. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Schluesener, H.J.; Xu, S. Gold Nanoparticle-Based Biosensors. Gold Bull. 2010, 43, 29–41. [Google Scholar] [CrossRef]
- Driscoll, K.E. Tnfα and Mip-2: Role in Particle-Induced Inflammation and Regulation by Oxidative Stress. Toxicol. Lett. 2000, 112, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Liang, J.; Fan, J.; Yu, S.; Chen, S.; Luo, Y.; Prestwich, G.D.; Mascarenhas, M.M.; Garg, H.G.; Quinn, D.A.; et al. Regulation of Lung Injury and Repair by Toll-Like Receptors and Hyaluronan. Nat. Med. 2005, 11, 1173. [Google Scholar] [CrossRef]
- Massey, V.L.; Poole, L.G.; Siow, D.L.; Torres, E.; Warner, N.L.; Schmidt, R.H.; Ritzenthaler, J.D.; Roman, J.; Arteel, G.E. Chronic Alcohol Exposure Enhances Lipopolysaccharide-Induced Lung Injury in Mice: Potential Role of Systemic Tumor Necrosis Factor-Alpha. Alcohol. Clin. Exp. Res. 2015, 39, 1978–1988. [Google Scholar] [CrossRef]
- Bohr, A.; Tsapis, N.; Andreana, I.; Chamarat, A.; Foged, C.; Delomenie, C.; Noiray, M.; El Brahmi, N.; Majoral, J.P.; Mignani, S.; et al. Anti-Inflammatory Effect of Anti-Tnf-A Sirna Cationic Phosphorus Dendrimer Nanocomplexes Administered Intranasally in a Murine Acute Lung Injury Model. Biomacromolecules 2017, 18, 2379–2388. [Google Scholar] [CrossRef]
- Xu, Y.; Ito, T.; Fushimi, S.; Takahashi, S.; Itakura, J.; Kimura, R.; Sato, M.; Mino, M.; Yoshimura, A.; Matsukawa, A. Spred-2 Deficiency Exacerbates Lipopolysaccharide-Induced Acute Lung Inflammation in Mice. PLoS One 2014, 9, e108914. [Google Scholar] [CrossRef]
- Perl, M.; Lomas-Neira, J.; Chung, C.S.; Ayala, A. Epithelial Cell Apoptosis and Neutrophil Recruitment in Acute Lung Injury—a Unifying Hypothesis? What We Have Learned from Small Interfering Rnas. Mol. Med. 2008, 14, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Craven, T.H.; Avlonitis, N.; McDonald, N.; Walton, T.; Scholefield, E.; Akram, A.R.; Walsh, T.S.; Haslett, C.; Bradley, M.; Dhaliwal, K. Super-Silent Fret Sensor Enables Live Cell Imaging and Flow Cytometric Stratification of Intracellular Serine Protease Activity in Neutrophils. Sci. Rep. 2018, 8, 13490. [Google Scholar] [CrossRef] [PubMed]
- Popow-Stellmaszyk, J.; Bajorowicz, B.; Malankowska, A.; Wysocka, M.; Klimczuk, T.; Zaleska-Medynska, A.; Lesner, A. Design, Synthesis, and Enzymatic Evaluation of Novel Zno Quantum Dot-Based Assay for Detection of Proteinase 3 Activity. Bioconjugate Chem. 2018, 29, 1576–1583. [Google Scholar] [CrossRef] [PubMed]
- Jing, P.; Yi, H.; Xue, S.; Yuan, R.; Xu, W. A ‘Signal on-Off’electrochemical Peptide Biosensor for Matrix Metalloproteinase 2 Based on Target Induced Cleavage of a Peptide. RSC Adv. 2015, 5, 65725–65730. [Google Scholar] [CrossRef]
- Kou, B.-B.; Zhang, L.; Xie, H.; Wang, D.; Yuan, Y.-L.; Chai, Y.-Q.; Yuan, R. DNA Enzyme-Decorated DNA Nanoladders as Enhancer for Peptide Cleavage-Based Electrochemical Biosensor. ACS Appl. Mater. Interfaces 2016, 8, 22869–22874. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Z. A Novel Strategy for Improving Amperometric Biosensor Sensitivity Using Dual-Signal Synergistic Effect for Ultrasensitive Detection of Matrix Metalloproteinase-2. Sens. Actuators B Chem. 2018, 266, 46–51. [Google Scholar] [CrossRef]
- Kou, B.-B.; Chai, Y.-Q.; Yuan, Y.-L.; Yuan, R. Ptnps as Scaffolds to Regulate Interenzyme Distance for Construction of Efficient Enzyme Cascade Amplification for Ultrasensitive Electrochemical Detection of Mmp-2. Anal. Chem. 2017, 89, 9383–9387. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Z.; Han, H. A Novel Impedance Enhancer for Amperometric Biosensor Based Ultrasensitive Detection of Matrix Metalloproteinase-2. Bioelectrochemistry 2019, 130, 107324. [Google Scholar] [CrossRef]
- Saikiran, M.; Sato, D.; Pandey, S.S.; Hayase, S.; Kato, T. Efficient near Infrared Fluorescence Detection of Elastase Enzyme Using Peptide-Bound Unsymmetrical Squaraine Dye. Bioorganic Med. Chem. Lett. 2017, 27, 4024–4029. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.V.; Prevost, N.; French, A.; Concha, M.; DeLucca, A.; Wu, Q. Nanocellulose-Based Biosensors: Design, Preparation, and Activity of Peptide-Linked Cotton Cellulose Nanocrystals Having Fluorimetric and Colorimetric Elastase Detection Sensitivity. Engineering 2013, 5, 20. [Google Scholar] [CrossRef]
- Folch, E.; Salas, A.; Panés, J.; Gelpí, E.; Roselló-Catafau, J.; Anderson, D.C.; Navarro, S.; Piqué, J.M.; Fernández-Cruz, L.; Closa, D. Role of P-Selectin and Icam-1 in Pancreatitis-Induced Lung Inflammation in Rats: Significance of Oxidative Stress. Ann. Surg. 1999, 230, 792. [Google Scholar] [CrossRef]
- Kaman, W.E.; Voskamp-Visser, I.; de Jongh, D.M.; Endtz, H.P.; van Belkum, A.; Hays, J.P.; Bikker, F.J. Evaluation of a D-Amino-Acid-Containing Fluorescence Resonance Energy Transfer Peptide Library for Profiling Prokaryotic Proteases. Anal. Biochem. 2013, 441, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Fujinaga, M.; Chernaia, M.M.; Halenbeck, R.; Koths, K.; James, M.N. The Crystal Structure of Pr3, a Neutrophil Serine Proteinase Antigen of Wegener’s Granulomatosis Antibodies. J. Mol. Biol. 1996, 261, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Zheng, M.; Zhu, Y.; Sha, M.; Wu, Y.; Han, X. Selection of Peptide Inhibitor to Matrix Metalloproteinase-2 Using Phage Display and Its Effects on Pancreatic Cancer Cell Lines Panc-1 and Cfpac-1. Int. J. Biol. Sci. 2012, 8, 650. [Google Scholar] [CrossRef]
- Avlonitis, N.; Debunne, M.; Aslam, T.; McDonald, N.; Haslett, C.; Dhaliwal, K.; Bradley, M. Highly Specific, Multi-Branched Fluorescent Reporters for Analysis of Human Neutrophil Elastase. Org. Biomol. Chem. 2013, 11, 4414–4418. [Google Scholar] [CrossRef]
- Alhogail, S.; Suaifan, G.A.; Zourob, M. Rapid Colorimetric Sensing Platform for the Detection of Listeria Monocytogenes Foodborne Pathogen. Biosens. Bioelectron. 2016, 86, 1061–1066. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alekhmimi, N.K.; Cialla-May, D.; Ramadan, Q.; Eissa, S.; Popp, J.; Al-Kattan, K.; Zourob, M. Biosensing Platform for the Detection of Biomarkers for ALI/ARDS in Bronchoalveolar Lavage Fluid of LPS Mice Model. Biosensors 2023, 13, 676. https://doi.org/10.3390/bios13070676
Alekhmimi NK, Cialla-May D, Ramadan Q, Eissa S, Popp J, Al-Kattan K, Zourob M. Biosensing Platform for the Detection of Biomarkers for ALI/ARDS in Bronchoalveolar Lavage Fluid of LPS Mice Model. Biosensors. 2023; 13(7):676. https://doi.org/10.3390/bios13070676
Chicago/Turabian StyleAlekhmimi, Nuha Khalid, Dana Cialla-May, Qasem Ramadan, Shimaa Eissa, Jürgen Popp, Khaled Al-Kattan, and Mohammed Zourob. 2023. "Biosensing Platform for the Detection of Biomarkers for ALI/ARDS in Bronchoalveolar Lavage Fluid of LPS Mice Model" Biosensors 13, no. 7: 676. https://doi.org/10.3390/bios13070676
APA StyleAlekhmimi, N. K., Cialla-May, D., Ramadan, Q., Eissa, S., Popp, J., Al-Kattan, K., & Zourob, M. (2023). Biosensing Platform for the Detection of Biomarkers for ALI/ARDS in Bronchoalveolar Lavage Fluid of LPS Mice Model. Biosensors, 13(7), 676. https://doi.org/10.3390/bios13070676