Improved Differential Evolution Algorithm for Sensitivity Enhancement of Surface Plasmon Resonance Biosensor Based on Two-Dimensional Material for Detection of Waterborne Bacteria
Abstract
:1. Introduction
2. Design Configuration and Theoretical Method
3. Optimization of the SPR Biosensor Structure Parameters
4. The Principle of Improved Differential Evolution Algorithm
Algorithm 1: IDE algorithm |
Initialize: (1) Gm, D, T, F0, CRmax, CRmin, (2) population initialization particle x, mutation population v, selection population u, and target parameters Ob; Cycle: (3) For G = 1:1:Gm do (4) (5) (6) For m = 1:NP*T End For (7) (8) (9) % DE/best/2/bin (10) (11) (12) IF (fit(ui) > fit(xi) then xi = ui else xi = xi (13) End If (14) End For (15) End |
5. The Optimization Multilayer SPR Biosensor Based on IDE
6. Comparative Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Li, J.; Liu, J.; Yang, H. A Ag-Au bimetallic nanograting surface plasmon resonance sensor based on a prism structure. Opt. Commun. 2020, 461, 125105. [Google Scholar] [CrossRef]
- Gouzy, M.; Keß, M.; Krämer, P.M. A SPR-based immunosensor for the detection of isoproturon. Biosens. Bioelectron. 2009, 24, 1563–1568. [Google Scholar] [CrossRef] [PubMed]
- Schlichtiger, A.; Baier, C.; Yin, M.; Holmes, A.B.; Maruyama, M.; Strasser, R.; Rant, U.; Thaler, M.; Luppa, P.B. Covalent attachment of functionalized cardiolipin on a biosensor gold surface allows repetitive measurements of anticardiolipin antibodies in serum. Anal. Bioanal. Chem. 2013, 405, 275–285. [Google Scholar] [CrossRef]
- Frasconi, M.; Tortolini, C.; Botre, F.; Mazzei, F. Multifunctional au nanoparticle dendrimer-based surface plasmon resonance biosensor and its application for improved insulin detection. Anal. Chem. 2010, 82, 7335–7342. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K.; Schneider, E.M.; Luong, J.H.T. Surface plasmon resonance-based immunoassay for human c-reactive protein. Analyst 2015, 140, 4445–4452. [Google Scholar] [CrossRef] [PubMed]
- Trzaskowski, M.; Ciach, T. SPR system for on-site detection of biological warfare. Curr. Anal. Chem. 2017, 13, 144–149. [Google Scholar]
- Maharana, P.K.; Jha, R.; Palei, S. Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sens. Actuator B-Chem. 2014, 190, 494–501. [Google Scholar] [CrossRef]
- Singh, P. SPR biosensors: Historical perspectives and current challenges. Sens. Actuator B-Chem. 2016, 229, 110–130. [Google Scholar] [CrossRef]
- Mansouri, M.; Fathi, F.; Jalili, R.; Shoeibie, S.; Dastmalchi, S.; Khataee, A.; Rashidi, M. SPR enhanced DNA biosensor for sensitive detection of donkey meat adulteration. Food Chem. 2020, 331, 127163. [Google Scholar] [CrossRef]
- Han, L.; Zhao, X.; Huang, T.; Ding, H.; Wu, C. Comprehensive study of phase-sensitive SPR sensor based on metal–ITO hybrid multilayer. Plasmonics 2019, 14, 1743–1750. [Google Scholar] [CrossRef]
- Guner, H.; Ozgur, E.; Kokturk, G.; Celik, M.; Esen, E.; Topal, A.E.; Ayas, S.; Uludag, Y.; Elbuken, C.; Dana, A. A smart phone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sens. Actuator B-Chem. 2017, 239, 571–577. [Google Scholar] [CrossRef]
- Lin, Z.; Shu, Y.; Chen, W.; Zhao, Y.; Li, J. High-sensitivity PtSe2 surface plasmon resonance biosensor based on metal-Si-metal waveguide structure. Biosensors 2022, 12, 27. [Google Scholar] [PubMed]
- Mudgal, N.; Saharia, A.; Choure, K.K.; Agarwal, A.; Singh, G. Sensitivity enhancement with anti-reflection coating of silicon nitride (Si3N4) layer in silver-based surface plasmon resonance (SPR) sensor for sensing of DNA hybridization. Appl. Phys. A-Mater. Sci. Process. 2020, 126, 94612. [Google Scholar] [CrossRef]
- Yuan, J.; Xie, Y.; Geng, Z.; Wang, C.; Chen, H.; Kan, Q.; Chen, H. Enhanced sensitivity of gold elliptic nanohole array biosensor with the surface plasmon polaritons coupling. Opt. Mater. Express. 2015, 5, 818–826. [Google Scholar]
- Peng, L.; Shi, F.; Zhou, G.; Ge, S.; Hou, Z.; Xia, C. A surface plasmon biosensor based on a d-shaped microstructured optical fiber with rectangular lattice. IEEE Photonics J. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Rahman, M.S.; Anower, M.S.; Abdulrazak, L.F. Utilization of a phosphorene-graphene/TMDC heterostructure in a surface plasmon resonance-based fiber optic biosensor. Photonics Nanostruct.-Fundam. Appl. 2019, 35, 100711. [Google Scholar]
- Kumar, R.; Pal, S.; Verma, A.; Prajapati, Y.K.; Saini, J.P. Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlattices Microstruct. 2020, 145, 106591. [Google Scholar] [CrossRef]
- Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef]
- Wu, L.; Guo, J.; Wang, Q.; Lu, S.; Dai, X.; Xiang, Y.; Fan, D. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuator B-Chem. 2017, 249, 542–548. [Google Scholar]
- Han, L.; Hu, Z.; Pan, J.; Huang, T.; Luo, D. High-sensitivity Goos-Hänchen shifts sensor based on Bluep-TMDCs-graphene heterostructure. Sensors 2020, 20, 3605. [Google Scholar]
- Chen, Y.; Hu, S.; Wang, H.; Zhi, Y.; Luo, Y.; Xiong, X.; Dong, J.; Jiang, Z.; Zhu, W.; Qiu, W.; et al. MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement. Adv. Opt. Mater. 2019, 7, 190047913. [Google Scholar]
- Xu, Y.; Ang, Y.; Wu, L.; Ang, L. High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: A theoretical study. Nanomaterials 2019, 9, 165. [Google Scholar] [PubMed]
- Srivastava, A.; Verma, A.; Das, R.; Prajapati, Y.K. A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus. Optik 2020, 203, 163430. [Google Scholar] [CrossRef]
- Wu, L.; You, Q.; Shan, Y.; Gan, S.; Zhao, Y.; Dai, X.; Xiang, Y. Few-layer Ti3C2tx MXene: A promising surface plasmon resonance biosensing material to enhance the sensitivity. Sens. Actuator B-Chem. 2018, 277, 210–215. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, J.; Chen, G.; Shen, J.; Li, C.; Tang, T. A high-sensitivity SPR sensor with bimetal/silicon/two-dimensional material structure: A theoretical analysis. Photonics 2021, 8, 2707. [Google Scholar] [CrossRef]
- Lin, C.; Chen, S. Design of high-performance Au-Ag-dielectric-graphene based surface plasmon resonance biosensors using genetic algorithm. J. Appl. Phys. 2019, 125, 11310111. [Google Scholar] [CrossRef]
- Lin, C.; Chen, S. Design of highly sensitive guided-wave surface plasmon resonance biosensor with deep dip using genetic algorithm. Opt. Commun. 2019, 445, 155–160. [Google Scholar]
- Lin, Z.; Chen, S.; Lin, C. Sensitivity improvement of a surface plasmon resonance sensor based on two-dimensional materials hybrid structure in visible region: A theoretical study. Sensors 2020, 20, 2445. [Google Scholar]
- Xia, G.; Zhou, C.; Jin, S.; Huang, C.; Xing, J.; Liu, Z. Sensitivity enhancement of two-dimensional materials based on genetic optimization in surface plasmon resonance. Sensors 2019, 19, 1198. [Google Scholar]
- Li, Z.; Qin, J. A modified particle swarm optimization with elite archive for typical multi-objective problems. Iran. J. Sci. Technol. Trans. A-Sci. 2019, 43, 2351–2361. [Google Scholar] [CrossRef]
- Sun, Y.; Cai, H.; Wang, X.; Zhan, S. Optimization methodology for structural multiparameter surface plasmon resonance sensors in different modulation modes based on particle swarm optimization. Opt. Commun. 2019, 431, 142–150. [Google Scholar] [CrossRef]
- Amoosoltani, N.; Zarifkar, A.; Farmani, A. Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. J. Comput. Electron. 2019, 18, 1354–1364. [Google Scholar] [CrossRef]
- Han, L.; Xu, C.; Huang, T.; Dang, X. Improved particle swarm optimization algorithm for high performance SPR sensor design. Appl. Opt. 2021, 60, 1753–1760. [Google Scholar] [CrossRef] [PubMed]
- Prakashi, M.; Chinnamuthu, P. Techno-economic modeling of integrated renewable energy system using adaptive inertia weight based PSO. J. Sci. Ind. Res. 2020, 79, 647–652. [Google Scholar]
- Cakici, Z.; Murat, Y.S. A differential evolution algorithm-based traffic control model for signalized intersections. Adv. Civ. Eng. 2019, 2019, 7360939. [Google Scholar] [CrossRef]
- Civicioglu, P.; Besdok, E. Bernstain-search differential evolution algorithm for numerical function optimization. Expert Syst. Appl. 2019, 138, 112831. [Google Scholar] [CrossRef]
- Han, L.; Xu, C.; Huang, T.; Dang, X.; Li, C. Goos-Hänchen shift enhancement based on an improved differential evolution algorithm. J. Opt. Soc. Am. B-Opt. Phys. 2021, 38, 1462–1469. [Google Scholar] [CrossRef]
- Zeng, S.; Hu, S.; Xia, J.; Anderson, T.; Dinh, X.; Meng, X.; Coquet, P.; Yong, K. Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuator B-Chem. 2015, 207, 801–810. [Google Scholar] [CrossRef]
- Han, L.; Chen, Z.; Huang, T.; Ding, H.; Wu, C. Sensitivity enhancement of Ag-ITO-TMDCs-graphene nanostructure based on surface plasmon resonance biosensors. Plasmonics 2020, 15, 693–701. [Google Scholar] [CrossRef]
- Han, L.; Pan, J.; Wu, C.; Li, K.; Ding, H.; Ji, Q.; Yang, M.; Wang, J.; Zhang, H.; Huang, T. Giant Goos-Hänchen shifts in Au-ITO-TMDCs-graphene heterostructure and its potential for high performance sensor. Sensors 2020, 20, 1028. [Google Scholar] [CrossRef]
- Zibaii, M.I.; Latifi, H.; Pourbeyram, H.; Gholami, M.; Taghipour, Z.; Saeedian, Z.; Hosseini, S.M. Nonadiabatic tapered optical fiber sensor for measuring interaction nicotine with DNA. In Proceedings of the 21St International Conference on Optical Fiber Sensors, Ottawa, ON, Canada, 15–19 May 2011; Volume 7753, pp. 942–945. [Google Scholar]
- Sylvester-Hvid, K.O.; Mikkelsen, K.V.; Ratner, M.A. The iterative self-consistent reaction-field method: The refractive index of pure water. Int. J. Quantum Chem. 2011, 111, 904–913. [Google Scholar] [CrossRef]
- Liu, P.Y.; Chin, L.K.; Ser, W.; Ayi, T.C.; Yap, P.H.; Bourouina, T.; Leprince-Wang, Y. Real-time measurement of single bacterium’s refractive index using optofluidic immersion refractometry. In Proceedings of the 28Th European Conference on Solid-State Transducers (Eurosensors 2014), Brescia, Italy, 7–10 September 2014; Volume 87, pp. 356–359. [Google Scholar]
- JWaswa, W.; Debroy, C.; Irudayaraj, J. Rapid detection of Salmonella enteritidis and Escherichia coli using surface plasmon resonance biosensor. J. Food Process Eng. 2006, 29, 373–385. [Google Scholar]
- Zhang, J.; Sanderson, A.C. Jade: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 2009, 13, 945–958. [Google Scholar] [CrossRef]
- Luo, J.; Yang, Y.; Shi, B. Multi-threshold image segmentation of 2d otsu based on improved adaptive differential evolution algorithm. J. Electron. Inf. Technol. 2019, 41, 2018–2024. [Google Scholar]
Type of 2D Materials | Monolayer (nm) | Refractive Index |
---|---|---|
MXene | 0.993 | 2.38 + 1.33i |
Graphene | 0.34 | 3.0 + 1.1491i |
Waterborne Bacteria | Refractive Index |
---|---|
Pure water | 1.333 |
V. cholera | 1.365 |
E. coli | 1.388 |
Waterborne Bacteria | Ag (nm) | MXene (Layer) | Graphene (Layer) | Affinity (nm) | Sensitivity (°/RIU) | FOM |
---|---|---|---|---|---|---|
Pure water | 57 | 3 | 5 | 3 | 158 | 15.96 |
V. cholera | 62 | 1 | 5 | 3 | 196.4 | 34.88 |
E. coli | 63 | 1 | 1 | 3 | 246.2 | 41.52 |
Waterborne Bacteria | Ag (nm) | MXene (L) | Graphene (L) | Affinity (nm) | Sensitivity (°/RIU) | FOM | Iterations (Times) |
---|---|---|---|---|---|---|---|
Pure water | 62 | 2 | 5 | 10 | 160.8 | 18.19 | 4 |
V. cholera | 61 | 1 | 3 | 10 | 202.2 | 28.76 | 3 |
E. coli | 61 | 1 | 1 | 4 | 246.6 | 39.77 | 3 |
Waterborne Bacteria | Ag (nm) | MXene (L) | Graphene (L) | Affinity (nm) | Sensitivity (°/RIU) | FOM | Iterations (Times) |
---|---|---|---|---|---|---|---|
Pure water | 62 | 2 | 5 | 10 | 160.8 | 18.19 | 8 |
V. cholera | 61 | 1 | 3 | 10 | 202.2 | 28.76 | 6 |
E. coli | 61 | 1 | 1 | 4 | 246.6 | 39.77 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Xu, W.; Liu, T.; Zhang, Y.; Ma, Y.; Jin, M.; Xu, C. Improved Differential Evolution Algorithm for Sensitivity Enhancement of Surface Plasmon Resonance Biosensor Based on Two-Dimensional Material for Detection of Waterborne Bacteria. Biosensors 2023, 13, 600. https://doi.org/10.3390/bios13060600
Han L, Xu W, Liu T, Zhang Y, Ma Y, Jin M, Xu C. Improved Differential Evolution Algorithm for Sensitivity Enhancement of Surface Plasmon Resonance Biosensor Based on Two-Dimensional Material for Detection of Waterborne Bacteria. Biosensors. 2023; 13(6):600. https://doi.org/10.3390/bios13060600
Chicago/Turabian StyleHan, Lei, Wentao Xu, Tao Liu, Yong Zhang, Yanhua Ma, Min Jin, and Chaoyu Xu. 2023. "Improved Differential Evolution Algorithm for Sensitivity Enhancement of Surface Plasmon Resonance Biosensor Based on Two-Dimensional Material for Detection of Waterborne Bacteria" Biosensors 13, no. 6: 600. https://doi.org/10.3390/bios13060600
APA StyleHan, L., Xu, W., Liu, T., Zhang, Y., Ma, Y., Jin, M., & Xu, C. (2023). Improved Differential Evolution Algorithm for Sensitivity Enhancement of Surface Plasmon Resonance Biosensor Based on Two-Dimensional Material for Detection of Waterborne Bacteria. Biosensors, 13(6), 600. https://doi.org/10.3390/bios13060600