A Magnetic-Bead-Based Immunoassay with a Newly Developed Monoclonal Antibody for Rapid and Highly Sensitive Detection of Forchlorfenuron
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Production of Monoclonal Antibody aganist CPPU
2.3. Development of Conventional icELISA
2.4. Development of MB-Based Assay
2.4.1. Immobilization of Biotinylated CPPU–BSA on Streptavidin Magnetic Beads
2.4.2. Preparation of HRP-Labeled mAb
2.4.3. MB-Based Assay Procedure
2.4.4. Optimization of MB-Based Assay
2.5. Selectivity Determination
2.6. Sample Preparation
3. Results and Discussion
3.1. Production and Characterization of Anti-CPPU mAb
3.2. Optimization of an Indirect Competitive ELISA
3.3. Development and Optimization of MB-Based Assay
3.4. Selectivity of MB-Based Assay and icELISA
3.5. Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.J.; Jiao, B.N.; Su, X.S.; Zhao, Q.Y.; Qin, D.M.; Wang, C.Q. Dissipation and residue of forchlorfenuron in citrus fruits. Bull. Environ. Contam. Toxicol. 2013, 90, 756–760. [Google Scholar] [CrossRef]
- Kim, J.G.; Takami, Y.; Mizugami, T.; Beppu, K.; Fukuda, T.; Kataoka, I. CPPU application on size and quality of hardy kiwifruit. Sci. Hortic. 2006, 110, 219–222. [Google Scholar] [CrossRef]
- Liu, X.S.; Luo, Y.C.; Wang, S.W.; Wang, H.C.; Harpaz-Saad, S.; Huang, X.M. Residue analysis and the effect of preharvest forchlorfenuron (CPPU) application on on-tree quality maintenance of ripe fruit in “Feizixiao” Litchi (Litchi chinensis Sonn.). Front. Plant Sci. 2022, 13, 829635. [Google Scholar] [CrossRef] [PubMed]
- GB 2763-2021; National Food Safety Standards-Maximum Residue Limits for Pesticides in Food. China Agriculture Press: Beijing, China, 2021.
- The Commission of the European Communities. Commission Regulation (EU) No 398/2014 of 22 April 2014 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for benthiavalicarb, cyazofamid, cyhalofop-butyl, forchlorfenuron, pymetrozine and silthiofam in or on certain products. Off. J. Eur. Union 2014, L119/3–L119/39.
- Bu, Q.; Wang, X.Y.; Xie, H.C.; Zhong, K.; Wu, Y.P.; Zhang, J.Q.; Wang, Z.S.; Gao, H.; Huang, Y.N. 180 day repeated-dose toxicity study on forchlorfenuron in Sprague Dawley rats and its effects on the production of steroid hormones. J. Agric. Food Chem. 2019, 67, 10207–10213. [Google Scholar] [CrossRef]
- Gong, G.; Kam, H.; Tse, Y.; Lee, S.M. Cardiotoxicity of forchlorfenuron (CPPU) in zebrafish (Danio rerio) and H9c2 cardiomyocytes. Chemosphere 2019, 235, 153–162. [Google Scholar] [CrossRef]
- Gong, G.; Kam, H.; Tse, Y.; Giesy, J.P.; Seto, S.W.; Lee, S.M. Forchlorfenuron (CPPU) causes disorganization of the cytoskeleton and dysfunction of human umbilical vein endothelial cells, and abnormal vascular development in zebrafifish embryos. Environ. Pollut. 2021, 271, 115791. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.M.; Xiang, P.; Xie, Q.L.; Yang, H.X.; Liu, S.H. Rapid analysis of forchlorfenuron in fruits using molecular complex-based dispersive liquid-liquid microextraction. Food Addit. Contam. Part A-Chem. 2021, 38, 637–645. [Google Scholar] [CrossRef]
- Shi, X.M.; Jin, F.; Huang, Y.T.; Du, X.W.; Li, C.M.; Wang, M.; Shao, H.; Jin, M.J.; Wang, J. Determination of five plant growth regulators in fruits by modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction and liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2012, 60, 60–65. [Google Scholar] [CrossRef]
- Campillo, N.; Vinas, P.; Ferez-Melgarejo, G.; Hernandez-Cordoba, M. Dispersive liquid-liquid microextraction for the determination of three cytokinin compounds in fruits and vegetables by liquid chromatography with time-of-flight mass spectrometry. Talanta 2013, 116, 376–381. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Hu, S.; Lai, X.C.; Peng, J.; Lai, W.H. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci. Technol. 2021, 111, 68–88. [Google Scholar]
- Suarez-Pantaleon, C.; Mercader, J.V.; Agullo, C.; Abad-Somovilla, A.; Abad-Fuentes, A. Hapten synthesis and polyclonal antibody-based immunoassay development for the analysis of forchlorfenuron in kiwifruit. J. Agric. Food Chem. 2010, 58, 8502–8511. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Pantaleon, C.; Esteve-Turrillas, F.A.; Mercader, J.V.; Agullo, C.; Abad-Somovilla, A.; Abad-Fuentes, A. Development and validation of a direct competitive monoclonal antibody-based immunoassay for the sensitive and selective analysis of the phytoregulator forchlorfenuron. Anal. Bioanal. Chem. 2012, 403, 2019–2026. [Google Scholar] [CrossRef]
- Suarez-Pantaleon, C.; Wichers, J.; Abad-Somovilla, A.; van Amerongen, A.; Abad-Fuentes, A. Development of an immunochromatographic assay based on carbon nanoparticles for the determination of the phytoregulator forchlorfenuron. Biosens. Bioelectron. 2013, 42, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Xie, B.; Cheng, Y.J.; Luo, L.; Liang, Y.F.; Xiao, Z.L. A sensitive monoclonal-antibody-based ELISA for forchlorfenuron residue analysis in food samples. Biosensors 2022, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Pantaleon, C.; Mercader, J.V.; Agullo, C.; Abad-Somovilla, A.; Abad-Fuentes, A. Production and characterization of monoclonal and polyclonal antibodies to forchlorfenuron. J. Agric. Food Chem. 2008, 56, 11122–11131. [Google Scholar] [CrossRef]
- Suarez-Pantaleon, C.; Mercader, J.V.; Agullo, C.; Abad-Somovilla, A.; Abad-Fuentes, A. Forchlorfenuron-mimicking haptens: From immunogen design to antibody characterization by hierarchical clustering analysis. Org. Biomol. Chem. 2011, 9, 4863–4872. [Google Scholar] [CrossRef]
- Shan, T.T.; Zhang, X.; Guo, C.F.; Guo, S.H.; Zhao, X.B.; Yuan, Y.H.; Yue, T.L. Identity, synthesis, and cytotoxicity of forchlorfenuron metabolites in kiwifruit. J. Agric. Food Chem. 2021, 69, 9529–9535. [Google Scholar] [CrossRef]
- Wang, L.; Lin, J.H. Recent advances on magnetic nanobead based biosensors: From separation to detection. Trac. Trends Anal. Chem. 2020, 128, 115915. [Google Scholar] [CrossRef]
- He, S.; Huang, Q.; Zhang, Y.; Zhang, H.; Xu, H.; Li, X.; Ma, X. Magnetic beads-based multicolor colorimetric immunoassay for ultrasensitive detection of aflatoxin B1. Chin. Chem. Lett. 2021, 32, 1462–1465. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Q.; Liu, X.; Yang, Y.; Yang, Y.; Liu, M.; Li, P.; Zhou, Y. Antibody-biotin-streptavidin-horseradish peroxidase (HRP) sensor for rapid and ultra-sensitive detection of fumonisins. Food Chem. 2020, 316, 126356. [Google Scholar] [CrossRef] [PubMed]
- Gaiani, G.; Leonardo, S.; Tudo, A.; Toldra, A.; Rey, M.; Andree, K.B.; Tsumuraya, T.; Hirama, M.; Diogene, J.; O’Sullivan, C.K.; et al. Rapid detection of ciguatoxins in Gambierdiscus and Fukuyoa with immunosensing tools. Ecotox. Environ. Safe 2020, 204, 111004. [Google Scholar] [CrossRef]
- Toyos-Rodriguez, C.; Llamedo-Gonzalez, A.; Pando, D.; Garcia, S.; Garcia, J.A.; Garcia-Alonso, F.J.; De la Escosura-Muniz, A. Novel magnetic beads with improved performance for Alzheimer’s disease biomarker detection. Microchem. J. 2022, 175, 107211. [Google Scholar] [CrossRef]
- Manclus, J.J.; Primo, J.; Montoya, A. Development of enzyme-linked immunosorbent assays for the insecticide chlorpyrifos. 1. Monoclonal antibody production and immunoassay design. J. Agric. Food Chem. 1996, 44, 4052–4062. [Google Scholar] [CrossRef]
- Zhang, D.H.; Li, P.W.; Zhang, Q.; Zhang, W.; Huang, Y.L.; Ding, X.X.; Jiang, J. Production of ultrasensitive generic monoclonal antibodies against major aflatoxins using a modified two-step screening procedure. Anal. Chim. Acta 2009, 636, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Beatty, J.D.; Barbara, B.G.; Vlahos, W.G. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J. Immunol. Methods 1987, 100, 173–179. [Google Scholar] [CrossRef]
- GB/T 23200.110-2018; Determination of Forchlorfenuron in Foods of Plant Origin-Liquid Chromatography Tandem Mass Spectrometry. National Standards of the People’s Republic of China: Beijing, China, 2018.
- Anfossi, L.; Calderara, M.; Baggiani, C.; Giovannoli, C.; Arletti, E.; Giraudi, G. Development and application of solvent-free extraction for the detection of aflatoxin M1 in dairy products by enzyme immunoassay. J. Agric. Food Chem. 2008, 56, 1852–1857. [Google Scholar] [CrossRef]
- Hu, S.; Huang, Z.; Wang, C.; Peng, J.; Lai, W.H. Using hapten cross-reactivity to screen heterologous competitive antigens for improving the sensitivity of ELISA. Food Chem. 2020, 303, 125379. [Google Scholar] [CrossRef]
- Wang, Y.K.; Wang, Y.C.; Wang, H.A.; Ji, W.H.; Sun, J.H.; Yan, Y.X. An immunomagnetic-bead-based enzyme-linked immunosorbent assay for sensitive quantification of fumonisin B1. Food Control 2014, 40, 41–45. [Google Scholar] [CrossRef]
- Nunes, G.S.; Toscano, I.A.; Barcelo, D. Analysis of pesticides in food and environmental samples by enzyme-linked immunosorbent assays. Trac. Trends Anal. Chem. 1998, 17, 79–87. [Google Scholar] [CrossRef]
Analytes | Structure | MB-Based Assay | icELISA | ||
---|---|---|---|---|---|
IC50 (ng/mL) | CR (%) | IC50 (ng/mL) | CR (%) | ||
Forchlorfenuron (CPPU) | 0.0061 | 100 | 0.0253 | 100 | |
Diuron | >1.0 | <0.6 | >2.5 | <1.0 | |
Chlorotoluron | >1.0 | <0.6 | >2.5 | <1.0 | |
Thidiazuron | >1.0 | <0.6 | >2.5 | <1.0 | |
Linuron | >1.0 | <0.6 | >2.5 | <1.0 | |
Clofentezine | >1.0 | <0.6 | >2.5 | <1.0 |
Samples | Spiked Level (μg/kg) | MB-Based Assay | HPLC | ||||
---|---|---|---|---|---|---|---|
Mean ± SD (μg/kg) | Recovery (%) | RSD (%) | Mean ± SD (μg/kg) | Recovery (%) | RSD (%) | ||
Kiwifruit | 10 | 8.6 ± 0.6 | 86.0 | 7.0 | 8.9 ± 0.5 | 89.0 | 5.6 |
20 | 19.3 ± 0.5 | 96.5 | 2.6 | 23.3 ± 3.0 | 116.5 | 12.9 | |
50 | 45.1 ± 4.5 | 90.2 | 10.0 | 52.3 ± 1.3 | 104.6 | 2.5 | |
Grape | 10 | 12.0 ± 0.2 | 120.0 | 1.7 | 8.7 ± 1.2 | 87.0 | 13.8 |
20 | 20.3 ± 1.2 | 101.5 | 5.9 | 16.4 ± 0.5 | 82.0 | 3.0 | |
50 | 46.5 ± 1.3 | 93.0 | 2.8 | 48.4 ± 3.6 | 96.8 | 7.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, Y.; He, T.; Li, Y.; Zhu, J.; Yue, X.; Yang, Y. A Magnetic-Bead-Based Immunoassay with a Newly Developed Monoclonal Antibody for Rapid and Highly Sensitive Detection of Forchlorfenuron. Biosensors 2023, 13, 593. https://doi.org/10.3390/bios13060593
Shan Y, He T, Li Y, Zhu J, Yue X, Yang Y. A Magnetic-Bead-Based Immunoassay with a Newly Developed Monoclonal Antibody for Rapid and Highly Sensitive Detection of Forchlorfenuron. Biosensors. 2023; 13(6):593. https://doi.org/10.3390/bios13060593
Chicago/Turabian StyleShan, Yubao, Ting He, Ying Li, Jiang Zhu, Xiali Yue, and Yunhuang Yang. 2023. "A Magnetic-Bead-Based Immunoassay with a Newly Developed Monoclonal Antibody for Rapid and Highly Sensitive Detection of Forchlorfenuron" Biosensors 13, no. 6: 593. https://doi.org/10.3390/bios13060593
APA StyleShan, Y., He, T., Li, Y., Zhu, J., Yue, X., & Yang, Y. (2023). A Magnetic-Bead-Based Immunoassay with a Newly Developed Monoclonal Antibody for Rapid and Highly Sensitive Detection of Forchlorfenuron. Biosensors, 13(6), 593. https://doi.org/10.3390/bios13060593