Iodide-Mediated Etching of Gold Nanostar for the Multicolor Visual Detection of Hydrogen Peroxide
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Apparatus
2.3. Synthesis of Au NS [34]
2.4. Detection of H2O2
2.5. Detection of H2O2 in Tap Water
3. Results and Discussion
3.1. Characterization of AuNS
3.2. Feasibility of Iodide-Mediated Etching of AuNS for Detecting H2O2
3.3. Optimization of Experimental Conditions
3.4. Performance Analysis of Iodide-Mediated AuNS Etching for Detecting H2O2
3.5. The Selectivity and Interference Study of Iodide-Mediated Etching of AuNS for Detecting H2O2
3.6. Detection of H2O2 in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xing, L.; Zhang, W.; Fu, L.; Lorenzo, J.M.; Hao, Y. Fabrication and application of electrochemical sensor for analyzing hydrogen peroxide in food system and biological samples. Food Chem. 2022, 385, 132555. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, A.K.; Jeon, S. Highly efficient Ag doped δ-MnO2 decorated graphene: Comparison and application in electrochemical detection of H2O2. Appl. Surf. Sci. 2022, 592, 153162. [Google Scholar] [CrossRef] [PubMed]
- Gopakumar, A.; Ren, P.; Chen, J.; Manzolli Rodrigues, B.V.; Vincent Ching, H.Y.; Jaworski, A.; Doorslaer, S.V.; Rokicinska, A.; Kustrowski, P.; Barcaro, G.; et al. Lignin-Supported Heterogeneous Photocatalyst for the Direct Generation of H2O2 from Seawater. J. Am. Chem. Soc. 2022, 144, 2603–2613. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wang, Y.; Pan, Z.; Sayama, K. Electrochemical and Photoelectrochemical Water Oxidation for Hydrogen Peroxide Production. Angew. Chem. Int. Ed. 2021, 60, 10469–10480. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Fang, Y.; Yu, X.; Huang, J.; Wang, L. A ferrocene-linked metal-covalent organic polymer as a peroxidase-enzyme mimic for dual channel detection of hydrogen peroxide. Analyst 2021, 146, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, Q.; Liu, Y.; Qi, R.; Zhou, L.; Li, Z.; Yun, J.; Liu, R.; Hu, Y. Colorimetric H2O2 Detection Using Ag-Nanoparticle-Decorated Silica Microspheres. Nano 2020, 15, 2050009. [Google Scholar] [CrossRef]
- Liu, H.; Ding, Y.N.; Yang, B.C.; Liu, Z.X.; Zhang, X.; Liu, Q.Y. Iron Doped CuSn(OH)6 Microspheres as a Peroxidase-Mimicking Artificial Enzyme for H2O2 Colorimetric Detection. ACS Sustain. Chem. Eng. 2018, 6, 14383–14393. [Google Scholar] [CrossRef]
- Peng, Z.; Xiong, Y.; Liao, Z.; Zeng, M.; Zhong, J.; Tang, X.; Qiu, P. Rapid colorimetric detection of H2O2 in living cells and its upstream series of molecules based on oxidase-like activity of CoMnO3 nanofibers. Sens. Actuators B 2023, 382, 133540. [Google Scholar] [CrossRef]
- Ding, T.; Wang, Z.; Xia, D.; Zhu, J.; Huang, J.; Xing, Y.; Wang, S.; Chen, Y.; Zhang, J.; Cai, K. Long-Lasting Reactive Oxygen Species Generation by Porous Redox Mediator-Potentiated Nanoreactor for Effective Tumor Therapy. Adv. Funct. Mater. 2021, 31, 2008573. [Google Scholar] [CrossRef]
- Meng, G.; Long, F.; Zeng, Z.; Kong, L.; Zhao, B.; Yan, J.; Yang, L.; Yang, Y.; Liu, X.Y.; Yan, Z.; et al. Silk fibroin based wearable electrochemical sensors with biomimetic enzyme-like activity constructed for durable and on-site health monitoring. Biosens. Bioelectron. 2023, 228, 115198. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Yang, L.; Wang, F.; Liu, A. Recent advances in gold nanostructures based biosensing and bioimaging. Coord. Chem. Rev. 2018, 370, 1–21. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, Y.; Zeng, T.; Aleisa, R.; Qiu, Z.; Chen, Y.; Huang, J.; Wang, D.; Yan, Z.; Yin, Y. Anisotropic plasmonic nanostructures for colorimetric sensing. Nano Today 2020, 32, 100855. [Google Scholar] [CrossRef]
- Duan, W.; Liu, A.; Li, Q.; Li, Z.; Wen, C.Y.; Cai, Z.; Tang, S.; Li, X.; Zeng, J. Toward ultrasensitive and fast colorimetric detection of indoor formaldehyde across the visible region using cetyltrimethylammonium chloride-capped bone-shaped gold nanorods as “chromophores”. Analyst 2019, 144, 4582–4588. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhou, Y.; Hao, Y.; Zhao, L.; Sun, S.; Zhang, Y.; Ye, B.; Xu, M. “Turn-on” ratiometric electrochemical detection of H2O2 in one drop of whole blood sample via a novel microelectrode sensor. Biosens. Bioelectron. 2020, 165, 112402. [Google Scholar] [CrossRef]
- Xia, C.; He, W.; Yang, X.F.; Gao, P.F.; Zhen, S.J.; Li, Y.F.; Huang, C.Z. Plasmonic Hot-Electron-Painted Au@Pt Nanoparticles as Efficient Electrocatalysts for Detection of H2O2. Anal. Chem. 2022, 94, 13440–13446. [Google Scholar] [CrossRef]
- Johnson, R.E.; van der Zalm, J.M.; Chen, A.; Bell, I.J.; Van Raay, T.J.; Al-Abdul-Wahid, M.S.; Manderville, R.A. Unraveling the Chemosensing Mechanism by the 7-(Diethylamino)coumarin-hemicyanine Hybrid: A Ratiometric Fluorescent Probe for Hydrogen Peroxide. Anal. Chem. 2022, 94, 11047–11054. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, Y.; Ouyang, H.; Shi, B.; Li, S.; Chen, S.; Zhao, S. Facile preparation of Cu-doped carbon dots for naked-eye discrimination of phenylenediamine isomers and highly sensitive ratiometric fluorescent detection of H2O2. Talanta 2022, 239, 123110. [Google Scholar] [CrossRef]
- Liu, X.-L.; Wang, J.-H.; Liang, S.; Yang, D.-J.; Nan, F.; Ding, S.-J.; Zhou, L.; Hao, Z.-H.; Wang, Q.-Q. Tuning Plasmon Resonance of Gold Nanostars for Enhancements of Nonlinear Optical Response and Raman Scattering. J. Phys. Chem. C 2014, 118, 9659–9664. [Google Scholar] [CrossRef]
- Chakraborty, A.; Acharya, H. Magnetically separable Fe3O4 NPs/MIL-53(Al) nanocomposite catalyst for intrinsic OPD oxidation and colorimetric hydrogen peroxide detection. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126830. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, X.; Wan, G.; Shi, S.; Wang, G. NiFe2O4/CNTs fabricated by atomic layer deposition as highly stable peroxidase mimics for sensitive colorimetric detection of hydrogen peroxide and glucose. Mater. Res. Bull. 2022, 147, 111637. [Google Scholar] [CrossRef]
- Tran, H.V.; Nguyen, T.V.; Nguyen, L.T.N.; Hoang, H.S.; Huynh, C.D. Silver nanoparticles as a bifunctional probe for label-free and reagentless colorimetric hydrogen peroxide chemosensor and cholesterol biosensor. J. Sci. Adv. Mater. Devices 2020, 5, 385–391. [Google Scholar] [CrossRef]
- Ahmed, A.; John, P.; Nawaz, M.H.; Hayat, A.; Nasir, M. Zinc-Doped Mesoporous Graphitic Carbon Nitride for Colorimetric Detection of Hydrogen Peroxide. ACS Appl. Nano Mater. 2019, 2, 5156–5168. [Google Scholar] [CrossRef]
- Wang, H.-B.; Li, Y.; Dong, G.-L.; Gan, T.; Liu, Y.-M. A convenient and label-free colorimetric assay for dopamine detection based on the inhibition of the Cu(II)-catalyzed oxidation of a 3,3’,5,5’-tetramethylbenzidine—H2O2 system. New J. Chem. 2017, 41, 14364–14369. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Zhu, R.; Wang, B.; Yang, J.; Xu, F.; Ramaswamy, S.; Zhang, X. Fe3+-Doped Aminated Lignin as Peroxidase-Mimicking Nanozymes for Rapid and Durable Colorimetric Detection of H2O2. ACS Sustain. Chem. Eng. 2021, 9, 12833–12843. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Q.; Deng, G.; Chen, X.; Yang, Y.; Lan, W.; Hu, Y.; Zhang, L.; Xu, L.; Li, C.; et al. Rapid and highly sensitive colorimetric biosensor for the detection of glucose and hydrogen peroxide based on nanoporphyrin combined with bromine as a peroxidase-like catalyst. Sens. Actuators B 2021, 343, 130104. [Google Scholar] [CrossRef]
- Liu, Y.; Lopes, R.P.; Lüdtke, T.; Di Silvio, D.; Moya, S.; Hamon, J.-R.; Astruc, D. “Click” dendrimer-Pd nanoparticle assemblies as enzyme mimics: Catalytic o-phenylenediamine oxidation and application in colorimetric H2O2 detection. Inorg. Chem. Front. 2021, 8, 3301–3307. [Google Scholar] [CrossRef]
- Ismail, S.M.; Abd-Elaal, A.A.; Abd El-salam, F.H.; Taher, F.A.; Aiad, I.; Shaban, S.M. Synthesis of silver decorated magnetic Fe3O4/alginate polymeric surfactant with controllable catalytic activity toward p-NP removal and enzymatic-mimic activity for solid-colorimetric H2O2 detection. Chem. Eng. J. 2023, 453, 139593. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Yang, Z.; Wang, Y.; Rao, H.; Yue, G.; Wu, C.; Lu, C.; Wang, X. A ratiometric fluorescence and colorimetric dual-mode assay for H2O2 and xanthine based on Fe, N co-doped carbon dots. Dye. Pigment. 2020, 180, 108486. [Google Scholar] [CrossRef]
- Amjadi, M.; Abolghasemi-Fakhri, Z. Gold nanostar-enhanced chemiluminescence probe for highly sensitive detection of Cu(II) ions. Sens. Actuators B 2018, 257, 629–634. [Google Scholar] [CrossRef]
- Nehl, C.L.; Liao, H.; Hafner, J.H. Optical properties of star-shaped gold nanoparticles. Nano Lett. 2006, 6, 683–688. [Google Scholar] [CrossRef]
- Luo, L.; Luo, S.Z.; Jia, B.Z.; Zhang, W.F.; Wang, H.; Wei, X.Q.; Shen, Y.D.; Lei, H.T.; Xu, Z.L.; Yang, J.Y. A high-resolution colorimetric immunoassay for tyramine detection based on enzyme-enabled growth of gold nanostar coupled with smartphone readout. Food Chem. 2022, 396, 133729. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, Y.; Zhang, Q.; Zha, Y.; Lu, S.; Yang, Y.; Li, P.; Zhou, Y. Colorimetric immunoassay via smartphone based on Mn2+-Mediated aggregation of AuNPs for convenient detection of fumonisin B1. Food Control. 2022, 132, 108481. [Google Scholar] [CrossRef]
- Mulder, D.; Phiri, M.M.; Vorster, B.C. Tailor-made gold nanostar colorimetric detection determined by morphology change and used as an indirect approach by using hydrogen peroxide to determine glucose concentration. Sens. Bio-Sens. Res. 2019, 25, 100296. [Google Scholar] [CrossRef]
- Xianyu, Y.; Lin, Y.; Chen, Q.; Belessiotis-Richards, A.; Stevens, M.M.; Thomas, M.R. Iodide-Mediated Rapid and Sensitive Surface Etching of Gold Nanostars for Biosensing. Angew. Chem. Int. Ed. 2021, 60, 9891–9896. [Google Scholar] [CrossRef]
- Tanwar, S.; Haldar, K.K.; Sen, T. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2017, 139, 17639–17648. [Google Scholar] [CrossRef]
- Lin, M.-H.; Sun, L.; Kong, F.; Lin, M. Rapid detection of paraquat residues in green tea using surface-enhanced Raman spectroscopy (SERS) coupled with gold nanostars. Food Control. 2021, 130, 108280. [Google Scholar] [CrossRef]
- Weng, G.; Dong, X.; Li, J.; Zhao, J. Halide ions can trigger the oxidative etching of gold nanorods with the iodide ions being the most efficient. J. Mater. Sci. 2016, 51, 7678–7690. [Google Scholar] [CrossRef]
- Vetr, F.; Moradi-Shoeili, Z.; Özkar, S. Oxidation of o-phenylenediamine to 2,3-diaminophenazine in the presence of cubic ferrites MFe2O4 (M = Mn, Co, Ni, Zn) and the application in colorimetric detection of H2O2. Appl. Organomet Chem. 2018, 32, e4465. [Google Scholar] [CrossRef]
- Vetr, F.; Moradi-Shoeili, Z.; Özkar, S. Mesoporous MnCo2O4 with efficient peroxidase mimetic activity for detection of H2O2. Inorg. Chem. Commun. 2018, 98, 184–191. [Google Scholar] [CrossRef]
- Kong, J.; Zheng, J.; Li, Z.; Huang, J.; Cao, F.; Zeng, Q.; Li, F. One-pot synthesis of AuAgPd trimetallic nanoparticles with peroxidase-like activity for colorimetric assays. Anal. Bioanal. Chem. 2021, 413, 5383–5393. [Google Scholar] [CrossRef]
- Zhu, D.; He, P.; Kong, H.; Yang, G.; Luan, X.; Wei, G. Biomimetic graphene-supported ultrafine platinum nanowires for colorimetric and electrochemical detection of hydrogen peroxide. J. Mater. Chem. B 2022, 10, 9216–9225. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, J.; Huang, Y.; Sun, Z.; Zhang, H.; Fu, L.; Li, X.; Jin, Y. Single-Atom Fe-Anchored Nano-Diamond with Enhanced Dual-Enzyme Mimicking Performance for H2O2 and Glutathione Detection. Front. Bioeng. Biotechnol. 2021, 9, 790849. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Chen, S.; Zhang, H.; Qiu, J.; Liu, X. Fe N C single atom nanozymes with dual enzyme-mimicking activities for colorimetric detection of hydrogen peroxide and glutathione. J. Materiomics 2022, 8, 1251–1259. [Google Scholar] [CrossRef]
- Peng, L.-J.; Zhou, H.-Y.; Zhang, C.-Y.; Yang, F.-Q. Study on the peroxidase-like activity of cobalt phosphate and its application in colorimetric detection of hydrogen peroxide. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129031. [Google Scholar] [CrossRef]
Sample Number | Added (μmol L−1) | Found (μmol L−1) | Recovery (%) | RSD (n = 3, %) |
---|---|---|---|---|
1 | 10.0 | 9.28 ± 0.41 | 92.8 | 4.4 |
2 | 20.0 | 20.31 ± 0.70 | 101.6 | 3.5 |
3 | 30.0 | 28.18 ± 0.96 | 93.9 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.; Yu, B.; Lin, T.; Hou, L. Iodide-Mediated Etching of Gold Nanostar for the Multicolor Visual Detection of Hydrogen Peroxide. Biosensors 2023, 13, 585. https://doi.org/10.3390/bios13060585
Lai Y, Yu B, Lin T, Hou L. Iodide-Mediated Etching of Gold Nanostar for the Multicolor Visual Detection of Hydrogen Peroxide. Biosensors. 2023; 13(6):585. https://doi.org/10.3390/bios13060585
Chicago/Turabian StyleLai, Yunping, Beirong Yu, Tianran Lin, and Li Hou. 2023. "Iodide-Mediated Etching of Gold Nanostar for the Multicolor Visual Detection of Hydrogen Peroxide" Biosensors 13, no. 6: 585. https://doi.org/10.3390/bios13060585
APA StyleLai, Y., Yu, B., Lin, T., & Hou, L. (2023). Iodide-Mediated Etching of Gold Nanostar for the Multicolor Visual Detection of Hydrogen Peroxide. Biosensors, 13(6), 585. https://doi.org/10.3390/bios13060585