Development of a Redox-Polymer-Based Electrochemical Glucose Biosensor Suitable for Integration in Microfluidic 3D Cell Culture Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Electrochemical Cell Design
2.3. Electrode Modification
2.4. Electrochemical Analysis
2.5. Imaging
2.6. Microfluidic Channel Fabrication
2.7. Data Analysis
3. Results and Discussion
3.1. Second-Generation Electrodes in Carbon SPEs
3.1.1. Cross-Linker Evaluation
3.1.2. Evaluation of Hydrogels in Culture Medium
3.1.3. Carbon Pencil Lead Electrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, T. Organ-on-a-chip microengineering for bio-mimicking disease models and revolutionizing drug discovery. Biosens. Bioelectron. X 2022, 11, 100194. [Google Scholar] [CrossRef]
- Zhu, Y.; Mandal, K.; Hernandez, A.L.; Kawakita, S.; Huang, W.; Bandaru, P.; Ahadian, S.; Kim, H.-J.; Jucaud, V.; Dokmeci, M.R.; et al. State of the art in integrated biosensors for organ-on-a-chip applications. Biomed. Eng. 2021, 19, 100309. [Google Scholar] [CrossRef]
- Santbergen, M.J.C.; van der Zande, M.; Bouwmeester, H.; Nielen, M.W.F. Online and in situ analysis of organs-on-a-chip. TrAC Trends Anal. Chem. 2019, 115, 138–146. [Google Scholar] [CrossRef]
- Bavli, D.; Prill, S.; Ezra, E.; Levy, G.; Cohen, M.; Vinken, M.; Vanfleteren, J.; Jaeger, M.; Nahmias, Y. Real-time monitoring of metabolic function in liver-onchip microdevices tracks the dynamics of Mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA 2016, 113, E2231–E2240. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Luo, Y.; Zhu, Q.; Jiang, M.; Pan, M.; Xie, T.; Huang, X.; Chen, D. In-situ monitoring of glucose metabolism in cancer cell microenvironments based on hollow fiber structure. Biosens. Bioelectron. 2020, 162, 112261. [Google Scholar] [CrossRef]
- Madhurantakam, S.; Babu, J.K.; Balagruru Rayappan, J.B.; Maheswari Krishnan, U. Fabrication of mediator-free hybrid nano-interfaced electrochemical biosensor for monitoring cancer cell proliferation. Biosens. Bioelectron. 2017, 207, 832–841. [Google Scholar] [CrossRef]
- Tang, Y.; Petropoulos, K.; Kurth, F.; Gao, H.; Migliorelli, D.; Guenat, O.; Generelli, S. Screen-Printed Glucose Sensors Modified with Cellulose Nanocrystals (CNCs) for Cell Culture Monitoring. Biosensors 2020, 10, 125. [Google Scholar] [CrossRef]
- Wang, T.-T.; Huang, X.-F.; Huang, H.; Luo, P.; Qing, L.-S. Nanomaterial-based optical- and electrochemical-biosensors for urine glucose detection: A comprehensive review. Adv. Sens. Energy Mater. 2022, 1, 100016. [Google Scholar] [CrossRef]
- Pullano, S.A.; Greco, M.; Bianco, M.G.; Foti, D.; Brunetti, A.; Fiorillo, A.S. Glucose biosensors in clinical practice: Principles, limits and perspectives of currently used devices. Theranostics 2022, 12, 493–511. [Google Scholar] [CrossRef]
- Fuchs, S.; Johansson, S.; Tjell, A.; Werr, G.; Mayr, T.; Tenje, M. In-line analysis of organ-on-chip systems with sensors: Integration, fabrication, challenges, and potential. ACS Biomater. Sci. Eng. 2021, 7, 2926–2948. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Li, X.; Zhou, X.; Zhang, Y.; Chen, N.; Wang, S.; Zhang, S.; Zhao, Y. Optical fiber sensors for glucose concentration measurement: A review. Opt. Laser Technol. 2021, 139, 106981. [Google Scholar] [CrossRef]
- Lederle, M.; Tric, M.; Roth, T.; Schütte, L.; Rattenholl, A.; Lütkemeyer, D.; Wölfl, S.; Werner, T.; Wiedemann, P. Continuous optical in-line glucose monitoring and control in CHO cultures contributes to enhanced metabolic efficiency while maintaining darbepoetin alfa product quality. Biotechnol. J. 2021, 16, e2100088. [Google Scholar] [CrossRef]
- Rivera Diaz, P.A.; Gómez Camargo, D.E.; Ondo-Méndez, A.; Gómez-Alegría, C.J. A colorimetric bioassay for quantitation of both basal and insulin-induced glucose consumption in 3T3-L1 adipose cells. Heliyon 2020, 6, e12806. [Google Scholar] [CrossRef] [PubMed]
- Blodgett, A.B.; Kothinti, R.K.; Kamyshko, I.; Petering, D.H.; Kumar, S.; Tabatabai, N.M. A fluorescence method for measurement of glucose transport in kidney cells. Diabetes Technol. Ther. 2011, 13, 743–751. [Google Scholar] [CrossRef]
- Lu, Y.T.; Ma, X.L.; Xu, Y.H.; Hu, J.; Wang, F.; Qin, W.Y.; Xiong, W.Y. A Fluorescent Glucose Transport Assay for Screening SGLT2 Inhibitors in Endogenous SGLT2-Expressing HK-2 Cells. Nat. Prod. Bioprospect. 2019, 9, 13–21. [Google Scholar] [CrossRef]
- Hu, H.; Wei, Y.; Wang, D.; Su, N.; Chen, X.; Zhao, Y.; Liu, G.; Yang, Y. Glucose monitoring in living cells with single fluorescent protein-based sensors. RSC Adv. 2018, 8, 2485–2489. [Google Scholar] [CrossRef] [PubMed]
- Hassanein, M.; Weidow, B.; Koehler, E.; Bakane, N.; Garbett, S.; Shyr, Y.; Quaranta, V. Development of high-throughput quantitative assays for glucose uptake in cancer cell lines. Mol. Imaging Biol. 2011, 13, 840–852. [Google Scholar] [CrossRef]
- Dornhof, J.; Kieninger, J.; Muralidharan, H.; Maurer, J.; Urban, G.A.; Weltin, A. Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures. Lab Chip 2022, 22, 225–239. [Google Scholar] [CrossRef]
- Modena, M.M.; Chawla, K.; Misun, P.M.; Hierlemann, A. Smart Cell Culture Systems: Integration of Sensors and Actuators into Microphysiological Systems. ACS Chem. Biol. 2018, 13, 1767–1784. [Google Scholar] [CrossRef]
- Kieninger, J.; Weltin, A.; Flamm, H.; Urban, G.A. Microsensor systems for cell metabolism-from 2D culture to organ-on-chip. Lab Chip 2018, 18, 1274–1291. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Díaz-González, J.M.; Casanova-Moreno, J.R. Nanostructures in Diagnostics: Bio-sensing and Lab-on-a-chip Systems. In Nanochemistry: Synthesis, Characterization and Applications; Sharma, A., Oza, G., Eds.; CRC Press: Boca Raton, FL, USA, 2023; p. 167. [Google Scholar]
- Zhu, Z.; Garcia-Gancedo, L.; Flewitt, A.J.; Xie, H.; Moussy, F.; Milne, W.I. A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene. Sensors 2012, 12, 5996–6022. [Google Scholar] [CrossRef] [PubMed]
- Jan Carlo, M.D.-G.; Escalona-Villalpando, R.A.; Arriaga, L.G.; Minteer, S.D.; Casanova-Moreno, J.R. Effects of the cross-linker on the performance and stability of enzymatic electrocatalytic films of glucose oxidase and dimethylferrocene-modified linear poly(ethyleneimine). Electrochim. Acta 2020, 337, 135782. [Google Scholar] [CrossRef]
- Casanova-Moreno, J.; Arjona, N.; Cercado, B. Bioelectrocatalysis for biofuel cells. In Biofuel Cells: Materials and Challenges; Ahamed, M.I.I., Boddula, R., Rezakazemi, M., Eds.; Wiley-Scrivener: Beverly, MA, USA, 2021; pp. 1–52. ISBN 9781119725008. [Google Scholar]
- Theuer, L.; Randek, J.; Junne, S.; Neubauer, P.; Mandenius, C.F.; Beni, V. Single-use printed biosensor for l-lactate and its application in bioprocess monitoring. Processes 2020, 8, 321. [Google Scholar] [CrossRef]
- Michalkiewicz, S.; Skorupa, A.; Jakubczyk, M. Carbon materials in electroanalysis of preservatives: A review. Materials 2021, 14, 7630. [Google Scholar] [CrossRef]
- Gonzalez-Gallardo, C.L.; Díaz Díaz, A.; Casanova-Moreno, J.R. Improving plasma bonding of PDMS to gold-patterned glass for electrochemical microfluidic applications. Microfluid. Nanofluidics 2021, 25, 20. [Google Scholar] [CrossRef]
- Vasudev, A.; Kaushik, A.; Tomizawa, Y.; Norena, N.; Bhansali, S. An LTCC-based microfluidic system for label-free, electrochemical detection of cortisol. Sens. Actuators B Chem. 2013, 182, 139–146. [Google Scholar] [CrossRef]
- Dumitrescu, I.; Yancey, D.F.; Crooks, R.M. Dual-electrode microfluidic cell for characterizing electrocatalysts. Lab Chip 2012, 12, 986–993. [Google Scholar] [CrossRef]
- Kovarik, M.L.; Torrence, N.J.; Spence, D.M.; Martin, R.S. Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses. Analyst 2004, 129, 400–405. [Google Scholar] [CrossRef]
- Pavesi, A.; Piraino, F.; Fiore, G.B.; Farino, K.M.; Moretti, M.; Rasponi, M. How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Lab Chip 2011, 11, 1593–1595. [Google Scholar] [CrossRef]
- Annu; Sharma, S.; Jain, R.; Raja, A.N. Review—Pencil Graphite Electrode: An Emerging Sensing Material. J. Electrochem. Soc. 2020, 167, 037501. [Google Scholar] [CrossRef]
- Witkowska-Nery, E.; Kundys-Siedlecka, M.; Furuya, Y.; Jönsson-Niedziółka, M. Pencil lead as a material for microfluidic 3D-electrode assemblies. Sensors 2018, 18, 4037. [Google Scholar] [CrossRef]
- David, I.G.; Popa, D.E.; Buleandra, M. Pencil graphite electrodes: A versatile tool in electroanalysis. J. Anal. Methods Chem. 2017, 2017, 1905968. [Google Scholar] [CrossRef] [PubMed]
- Torrinha, Á.; Montenegro, M.C.B.S.M.; Araújo, A.N. Microfluidic Platform with an Embedded Pencil Graphite Electrode Biosensor for the Detection of Glucose and Cadmium. J. Electrochem. Soc. 2019, 166, B155–B160. [Google Scholar] [CrossRef]
- Campos Tavares, P.H.; Sanches Barbeira, P.J. Influence of pencil lead hardness on voltammetric response of graphite reinforcement carbon electrodes. J. Appl. Electrochem. 2008, 38, 827–832. [Google Scholar] [CrossRef]
- Islam, J.; Shao, H.; Badal, M.R.; Razeeb, K.M.; Jamalid, M. Pencil graphite as electrode platform for free chlorine sensors and energy storage devices. PLoS ONE 2021, 16, e0248142. [Google Scholar] [CrossRef] [PubMed]
- Senel, M.; Alachkar, A. Lab-in-a-pencil graphite: A 3D-printed microfluidic sensing platform for real-time measurement of antipsychotic clozapine level. Lab Chip 2021, 21, 405–411. [Google Scholar] [CrossRef]
- Coria-Oriundo, L.L.; Cortez, M.L.; Azzaroni, O.; Battaglini, F. Enzymes hosted in redox-active ionically cross-linked polyelectrolyte networks enable more efficient biofuel cells. Soft Matter 2021, 17, 5240–5247. [Google Scholar] [CrossRef]
- Forster, B.; Van De Ville, D.; Berent, J.; Sage, D.; Unser, M. Extended Depth-of-Focus for Multi-Channel Microscopy Images: A Complex Wavelet Approach. In Proceedings of the 2004 2nd IEEE Int. Symp. Biomed. Imaging Nano to Macro (IEEE Cat No. 04EX821), Arlington, VA, USA, 18 April 2004; Volume 1, pp. 660–663. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Cooney, M.J. Kinetic Measurements for Enzyme Immobilization. In Enzyme Stabilization and Immobilization; Minteer, S.D., Ed.; Humana Press: Totowa, NJ, USA, 2011; Volume 679, pp. 215–232. ISBN 9781493964970. [Google Scholar]
- Bagalkoti, J.T.; Pattar, V.P.; Nandibewoor, S.T. Square wave and differential pulse voltammetric methods for the analysis of olivetol at gold electrode. J. Electrochem. Sci. Eng. 2017, 7, 77. [Google Scholar] [CrossRef]
- Molina, A.; González, J.; Laborda, E.; Wang, Y.; Compton, R.G. Catalytic mechanism in cyclic voltammetry at disc electrodes: An analytical solution. Phys. Chem. Chem. Phys. 2011, 13, 14694–14704. [Google Scholar] [CrossRef]
- Bollella, P.; Katz, E. Enzyme-based biosensors: Tackling electron transfer issues. Sensors 2020, 20, 3517. [Google Scholar] [CrossRef]
- Vasylieva, N.; Marinesco, S. Enzyme immobilization on microelectrode biosensors. In Neuromethods; Marinesco, S., Dale, N., Eds.; Humana Press: Totowa, NJ, USA, 2013; Volume 80, pp. 95–114. ISBN 9781627033695. [Google Scholar]
- Ma, W.; Yang, L.; He, L. Overview of the detection methods for equilibrium dissociation constant KD of drug-receptor interaction. J. Pharm. Anal. 2018, 8, 147–152. [Google Scholar] [CrossRef]
- Camarillo, I.G.; Xiao, F.; Madhivanan, S.; Salameh, T.; Nichols, M.; Reece, L.M.; Leary, J.F.; Otto, K.; Natarajan, A.; Ramesh, A.; et al. Low and High Voltage Electrochemotherapy for Breast Cancer: An In Vitro Model Study; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9781908818294. [Google Scholar]
- Razak, N.A.; Abu, N.; Ho, W.Y.; Zamberi, N.R.; Tan, S.W.; Alitheen, N.B.; Long, K.; Yeap, S.K. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Pirsko, V.; Cakstina, I.; Priedite, M.; Dortane, R.; Feldmane, L.; Nakazawa-Miklasevica, M.; Daneberga, Z.; Gardovskis, J.; Miklasevics, E. An effect of culture media on epithelial differentiation markers in breast cancer cell lines MCF7, MDA-MB-436 and SkBr3. Medicina 2018, 54, 11. [Google Scholar] [CrossRef]
- Lara-Reyes, J.A.; Castillo-García, Z.H.; Aranda-Abreu, G.E.; Herrera-Covarrubias, D.; Sampieri-Ramírez, C.L.; Aquino-Gálvez, A.; Suárez-Medellín, J.M.; Hernández-Aguilar, M.E.; Rojas-Durán, F. Prolactin increases cell migration of MCF-7 cells without inducing an epithelium-mesenchyme transition. Gac. Mex. Oncol. 2022, 21, 54–58. [Google Scholar] [CrossRef]
- Yun, J.K.; McCormick, T.S.; Villabona, C.; Judware, R.R.; Espinosa, M.B.; Lapetina, E.G. Inflammatory mediators are perpetuated in macrophages resistant to apoptosis induced by hypoxia. Proc. Natl. Acad. Sci. USA 1997, 94, 13903–13908. [Google Scholar] [CrossRef] [PubMed]
- Spencer, D.M.; Gauley, J.; Pisetsky, D.S. Cells Undergoing in vitro Activation or Apoptosis. Innate Immun. 2014, 20, 239–248. [Google Scholar] [CrossRef]
- Kubot, A.; Minamino, N.; Isumi, Y.; Katafuchi, T.; Kangawa, K.; Dohi, K.; Matsuo, H. Production of adrenomedullin in macrophage cell line and peritoneal macrophage. J. Biol. Chem. 1998, 273, 16730–16738. [Google Scholar] [CrossRef]
- Suggs, J.E.; Madden, M.C.; Friedman, M.; Edgell, C.S. Prostacyclin Expression by a Continuous Human Cell Line Derived From Vascular Endothelium. Blood 1986, 68, 825–829. [Google Scholar] [CrossRef]
- Feng, T.; Yu, H.; Xia, Q.; Ma, Y.; Yin, H.; Shen, Y. Cross-talk mechanism between endothelial cells and hepatocellular carcinoma cells via growth factors and integrin pathway promotes tumor angiogenesis and cell migration. Oncotarget 2017, 8, 69577–69593. [Google Scholar] [CrossRef] [PubMed]
- Betz, J.; Bielaszewska, M.; Thies, A.; Humpf, H.; Dreisewerd, K.; Karch, H.; Kim, K.S.; Friedrich, A.W.; Müthing, J. Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: Differential association with membrane lipid raft microdomains. J. Lipid Res. 2011, 52, 618–634. [Google Scholar] [CrossRef]
- Gstraunthaler, G.; Lindl, T.; van der Valk, J. A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology 2013, 65, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, E.; Tamborlane, W.V. A tale of two compartments: Interstitial versus blood glucose monitoring. Diabetes Technol. Ther. 2009, 11, S-11–S-16. [Google Scholar] [CrossRef]
- Surridge, N.A.; Jernigan, J.C.; Dalton, E.F.; Buck, R.P.; Watanabe, M.; Zhang, H.; Pinkerton, M.; Wooster, T.T.; Longmire, M.L.; Facci, J.S.; et al. The Electrochemistry Group Medal Lecture: Electron self-exchange dynamics between redox sites in polymers. Faraday Discuss. Chem. Soc. 1989, 88, 1–17. [Google Scholar] [CrossRef]
- Dalton, E.F.; Surridge, N.A.; Jernigan, J.C.; Wilbourn, K.O.; Facci, J.S.; Murray, R.W. Charge transport in electroactive polymers consisting of fixed molecular redox sites. Chem. Phys. 1990, 141, 143–157. [Google Scholar] [CrossRef]
- Buttry, D.A.; Anson, F.C. Electron hopping vs. molecular diffusion as charge transfer mechanisms in redox polymer films. J. Electroanal. Chem. 1981, 130, 333–338. [Google Scholar] [CrossRef]
- Liu, S.G.; Li, N.; Ling, Y.; Kang, B.H.; Geng, S.; Li, N.B.; Luo, H.Q. pH-Mediated Fluorescent Polymer Particles and Gel from Hyperbranched Polyethylenimine and the Mechanism of Intrinsic Fluorescence. Langmuir 2016, 32, 1881–1889. [Google Scholar] [CrossRef]
- Gale, B.K.; Jafek, A.R.; Lambert, C.J.; Goenner, B.L.; Moghimifam, H.; Nze, U.C.; Kamarapu, S.K. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 2018, 3, 60. [Google Scholar] [CrossRef]
- Sehat, A.A.; Khodadadi, A.A.; Shemirani, F.; Mortazavi, Y. Fast immobilization of glucose oxidase on graphene oxide for highly sensitive glucose biosensor fabrication. Int. J. Electrochem. Sci. 2015, 10, 272–286. [Google Scholar]
- Saglam, Ö.; KIzIlkaya, B.; Uysal, H.; Dilgin, Y. Biosensing of glucose in flow injection analysis system based on glucose oxidase-quantum dot modified pencil graphite electrode. Talanta 2016, 147, 315–321. [Google Scholar] [CrossRef] [PubMed]
Hydrogel | LOD (mM) | LOQ (mM) | Sensitivity (µA/mM cm2) | Stability † (% jmax) | Linear Range (mM) | R2 |
---|---|---|---|---|---|---|
Screen printed electrodes in 0.1 M pH 7.4 PB | ||||||
OsBPEI/GOx/GA 3.33 mM | 0.48 | 1.59 | 3.36 | 7.59 | 0–5 | 0.997 |
OsBPEI/GOx/GA 17.5 mM | 0.89 | 2.98 | 3.82 | 9.14 | 0–7.5 | 0.994 |
OsBPEI/GOx/GA 33.3 mM | 0.12 | 0.39 | 4.64 | 19.5 | 0–5 | 0.987 |
OsBPEI/GOx/EGDGE 3.33 mM | 0.09 | 0.30 | 2.90 | 1.33 * | 0–7.5 | 0.998 |
OsBPEI/GOx/EGDGE 17.5 mM | 0.42 | 1.40 | 1.74 | 1.34 * | 0–7.5 | 0.980 |
OsBPEI/GOx/EGDGE 33.3 mM | 0.61 | 2.05 | 2.66 | 7.23 * | 0–5 | 0.993 |
BPEI/GOx/GA 33.3 mM | 3.05 | 10.2 | 2.96 | 100 | 0.5–5 | 0.994 |
BPEI/GOx/EGDGE 33.3 mM | 36.38 | 121.28 | 4.64 | 53.6 | 0.5–7.5 | 0.911 |
Screen printed electrodes in RPMI-1640 | ||||||
OsBPEI/GOx/GA 33.3 mM | 1.41 | 4.71 | 5.22 | 12.2 | 0–5 | 0.970 |
OsBPEI/GOx/EGDGE 33.3 mM | 0.28 | 0.93 | 9.04 | 50.7 | 0–5 | 0.995 |
Pencil lead electrodes in RPMI-1640 with 5% FBS (on-chip) | ||||||
OsBPEI/GOx/GA 33.3 mM | 1.49 | 4.97 | 3.10 | 52.9 | 0–7.5 | 0.989 |
OsBPEI/GOx/EGDGE 33.3 mM | 0.50 | 1.67 | 4.69 | 49.9 | 0–10 | 0.993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Nateras, L.; Diaz-Gonzalez, J.; Aguas-Chantes, D.; Coria-Oriundo, L.L.; Battaglini, F.; Ventura-Gallegos, J.L.; Zentella-Dehesa, A.; Oza, G.; Arriaga, L.G.; Casanova-Moreno, J.R. Development of a Redox-Polymer-Based Electrochemical Glucose Biosensor Suitable for Integration in Microfluidic 3D Cell Culture Systems. Biosensors 2023, 13, 582. https://doi.org/10.3390/bios13060582
Navarro-Nateras L, Diaz-Gonzalez J, Aguas-Chantes D, Coria-Oriundo LL, Battaglini F, Ventura-Gallegos JL, Zentella-Dehesa A, Oza G, Arriaga LG, Casanova-Moreno JR. Development of a Redox-Polymer-Based Electrochemical Glucose Biosensor Suitable for Integration in Microfluidic 3D Cell Culture Systems. Biosensors. 2023; 13(6):582. https://doi.org/10.3390/bios13060582
Chicago/Turabian StyleNavarro-Nateras, L., Jancarlo Diaz-Gonzalez, Diana Aguas-Chantes, Lucy L. Coria-Oriundo, Fernando Battaglini, José Luis Ventura-Gallegos, Alejandro Zentella-Dehesa, Goldie Oza, L. G. Arriaga, and Jannu R. Casanova-Moreno. 2023. "Development of a Redox-Polymer-Based Electrochemical Glucose Biosensor Suitable for Integration in Microfluidic 3D Cell Culture Systems" Biosensors 13, no. 6: 582. https://doi.org/10.3390/bios13060582
APA StyleNavarro-Nateras, L., Diaz-Gonzalez, J., Aguas-Chantes, D., Coria-Oriundo, L. L., Battaglini, F., Ventura-Gallegos, J. L., Zentella-Dehesa, A., Oza, G., Arriaga, L. G., & Casanova-Moreno, J. R. (2023). Development of a Redox-Polymer-Based Electrochemical Glucose Biosensor Suitable for Integration in Microfluidic 3D Cell Culture Systems. Biosensors, 13(6), 582. https://doi.org/10.3390/bios13060582